Citation: | Yong-chao Zhang, Le-le Liu, Gao-wei Hu, Qing-tao Bu, Cheng-feng Li, Zheng-cai Zhang, Jian-ye Sun, Chang-ling Liu, 2022. Formation mechanism, experimental method, and property characterization of grain-displacing methane hydrates in marine sediment: A review, China Geology, 5, 345-354. doi: 10.31035/cg2022014 |
Grain-displacing hydrate deposits exist at many marine sites, which constitute an important part of methane hydrate resources worldwide. Attributed to the difficulties in acquiring field data and synthesizing experimental samples, the formation and property characterization of grain-displacing hydrate remains less understood and characterized than the pore-filling hydrate in current literature. This study reviews the formation mechanisms of grain-displacing hydrate from the perspective of geological accumulation and microscale sedimentary property. The experimental methods of synthesizing grain-displacing hydrate in the laboratory and the current knowledge on the property of grain-displacing hydrate sediment are also introduced. Shortcomings in current theories and suggestions for future study are proposed. The work is hoped to provide valuable insights for the research into the hydrate accumulation, geophysics, and hydrate exploitation targeted at the grain-displacing hydrate in the marine sediments.
Aksu I, Bazilevskaya E, Karpyn ZT. 2015. Swelling of clay minerals in unconsolidated porous media and its impact on permeability. GeoResJ, 7, 1–13. doi: 10.1016/j.grj.2015.02.003. |
Anderson BJ, Tester JW, Borghi GP, Trout BL. 2005. Properties of inhibitors of methane hydrate formation via molecular dynamics simulations. Journal of the American Chemical Society, 127(50), 17852–17862. doi: 10.1021/ja0554965. |
Anderson R, Llamedo M, Tohidi B, Burgass RW. 2003. Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica. The Journal of Physical Chemistry B, 107(15), 3507–3514. doi: 10.1021/jp0263370. |
Boswell R, Collett TS. 2011. Current perspectives on gas hydrate resources. Energy & Environmental Science, 4(4), 1206–1215. doi: 10.1039/C0EE00203H. |
Boswell R, Collett TS, Frye M, Shedd W, McConnell DR, Shelander D. 2012. Subsurface gas hydrates in the northern Gulf of Mexico. Marine and Petroleum Geology, 34(1), 4–30. doi: 10.1016/j.marpetgeo.2011.10.003. |
Boswell R, Hancock S, Yamamoto K, Collett T, Pratap M, Lee SR. 2020. Natural gas hydrates: Status of potential as an energy resource. Future Energy, 111–131. doi: 10.1016/B978-0-08-102886-5.00006-2. |
Bourg IC, Ajo-Franklin JB. 2017. Clay, water, and salt: Controls on the permeability of fine-grained sedimentary rocks. Accounts of Chemical Research, 50(9), 2067–2074. doi: 10.1021/acs.accounts.7b00261. |
Bu QT, Hu GW, Liu CL, Dong J, Xing TJ, Sun JY, Li CF, Meng QG. 2021. Effect of methane gas on acoustic characteristics of hydrate-bearing sediment-model analysis and experimental verification. Journal of Ocean University of China, 20(1), 75–86. doi: 10.1007/s11802-021-4354-7. |
Buffett BA, Zatsepina OY. 2000. Formation of gas hydrate from dissolved gas in natural porous media. Marine Geology, 164(1−2), 69–77. doi: 10.1016/S0025-3227(99)00127-9. |
Cai JC, Xia YX, Lu C, Bian H, Zou SM. 2020a. Creeping microstructure and fractal permeability model of natural gas hydrate reservoir. Marine and Petroleum Geology, 115, 104282. doi: 10.1016/j.marpetgeo.2020.104282. |
Cai JC, Xia YX, Xu S, Tian HT. 2020b. Advances in multiphase seepage characteristics of natural gas hydrate sediments. Chinese Journal of Theoretical and Applied Mechanics, 52(1), 208–223 (in Chinese with English abstract). doi: 10.6052/0459-1879-19-362. |
Chen Q, Hu GW, Wu NY, Liu CL, Meng QG, Li CF, Sun JY, Li YL. 2020. Evaluation of clayed silt properties on the behavior of hydrate production in South China Sea. China Geology, 3(3), 362–368. doi: 10.31035/cg2020050. |
Chong ZR, Pujar GA, Yang M, Linga P. 2016. Methane hydrate formation in excess water simulating marine locations and the impact of thermal stimulation on energy recovery. Applied Energy, 177, 409–421. doi: 10.1016/j.apenergy.2016.05.077. |
Collett TS, Lee MW, Zyrianova MV, Mrozewski SA, Guerin G, Cook AE, Goldberg DS. 2012. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and analysis. Marine and Petroleum Geology, 34(1), 41–61. doi: 10.1016/j.marpetgeo.2011.08.003. |
Cook AE, Anderson BI, Malinverno A, Mrozewski S, Goldberg DS. 2010. Electrical anisotropy due to gas hydrate-filled fractures. Geophysics, 75(6), F173–F185. doi: 10.1190/1.3506530. |
Cook AE, Goldberg DS, Malinverno A. 2014. Natural gas hydrates occupying fractures: A focus on non-vent sites on the Indian continental margin and the northern Gulf of Mexico. Marine and Petroleum Geology, 58, 278–291. doi: 10.1016/j.marpetgeo.2014.04.013. |
Cui YD, Lu C, Wu MT, Peng Y, Yao YB, Luo WJ. 2018. Review of exploration and production technology of natural gas hydrate. Advances in Geo-Energy Research, 2(1), 53–62. doi: 10.26804/ager.2018.01.05. |
Dai S, Santamarina JC, Waite WF, Kneafsey TJ. 2012. Hydrate morphology: Physical properties of sands with patchy hydrate saturation: Patchy hydrate saturation. Journal of Geophysical Research: Soild Earth, 117, B11205. doi: 10.1029/2012JB009667. |
Daigle H, Dugan B. 2011. Origin and evolution of fracture-hosted methane hydrate deposits. Journal of Geophysical Research, 115, B11103. doi: 10.1029/2010JB007492. |
Dvorkin J, Prasad M, Sakai A, Lavoie D. 1999. Elasticity of marine sediments: Rock physics modeling. Geophysical research letters, 26(12), 1781–1784. doi: 10.1029/1999GL900332. |
Englezos P, Kakogerakis N, Dholabhai PN, Bishnoi PR. 1987. Kenetics of formation of methane and ethane gas hydrates. Chemical Engineering Science, 42(11), 2647–2658. doi: 10.1016/0009-2509(87)87015-X. |
Holland M, Schultheiss P, Roberts J, Druce M. 2008. Observed gas hydrate morphologies in marine sediments. Presented at the International conference on gas hydrates, Vancouver, British Columbia, Canada, 6–10. doi: 10.1306/13201161m893358. |
Hu GW, Ye YG, Zhang J, Liu CL, Li Q. 2014. Acoustic response of gas hydrate formation in sediments from South China Sea. Marine and Petroleum Geology, 52, 1–8. doi: 10.1016/j.marpetgeo.2014.01.007. |
Hu GW, Ye YG, Zhang J, Liu CL, Diao SB, Wang JS. 2010. Acoustic properties of gas hydrate–bearing consolidated sediments and experimental testing of elastic velocity models. Journal of Geophysical Research: Solid Earth, 115, B02102. doi: 10.1029/2008JB006160. |
Ji YK, Hou J, Cui GD, Lu N, Zhao EM, Liu YL, Du QJ. 2019. Experimental study on methane hydrate formation in a partially saturated sandstone using low-field NMR technique. Fuel, 251, 82–90. doi: 10.1016/j.fuel.2019.04.021. |
Jing PF, Hu GW, Bu QT, Chen J, Wan YZ, Mao PX. 2020. Identification of pore-filling and fracture-filling hydrate by petrophysical simulation and acoustic experiment. Marine Geology & Quaternary Geology, 40(6), 208–218 (in Chinese with English abstract). doi: 10.16562/j.cnki.0256-1492.2019122501. |
Klauda JB, Sandler SI. 2005. Global distribution of methane hydrate in ocean sediment. Energy & Fuels, 19(2), 459–470. doi: 10.1021/ef049798o. |
Lee JY, Yun TS, Santamarina JC, Ruppel CD. 2007. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments: Study of hydrate-bearing sediments. Geochemistry, Geophysics, Geosystems, 8(6), Q06003. doi: 10.1029/2006GC001531. |
Lee MW. 2002. Modified Biot-Gassmann theory for calculating elastic velocities for unconsolidated and consolidated sediments. Marine Geophysical Researches, 23(5), 403–412. doi: 10.1023/B:MARI.0000018195.75858.12. |
Lee MW, Collett TS. 2009. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India. Journal of Geophysical Research: Solid Earth, 114, B07102. doi: 10.1029/2008JB006237. |
Lee MW, Hutchinson DR, Collett TS, Dillon WP. 1996. Seismic velocities for hydrate-bearing sediments using weighted equation. Journal of Geophysical Research: Solid Earth, 101(B9), 20347–20358. doi: 10.1029/96JB01886. |
Lei L. 2017. Gas Hydrate in Fine-grained Sediments—Laboratory Studies and Coupled Processes Analyses. Atlanta, Georgia Institute of Technology, Ph. D thesis, 1–193 . |
Lei L, Santamarina JC. 2018. Laboratory strategies for hydrate formation in fine-grained sediments. Journal of Geophysical Research: Solid Earth, 123(4), 2583–2596. doi: 10.1002/2017JB014624. |
Lei L, Seol Y. 2019. High-saturation gas hydrate reservoirs—A pore scale investigation of their formation from free gas and dissociation in sediments. Journal of Geophysical Research: Solid Earth, 124(12), 12430–12444. doi: 10.1029/2019JB018243. |
Lei L, Seol Y, Choi JH, Kneafsey TJ. 2019. Pore habit of methane hydrate and its evolution in sediment matrix–Laboratory visualization with phase-contrast micro-CT. Marine and Petroleum Geology, 104, 451–467. doi: 10.1016/j.marpetgeo.2019.04.004. |
Li CF, Liu CL, Hu GW, Sun JY, Hao XL, Liu LL, Meng QG. 2019. Investigation on the multiparameter of hydrate-bearing sands using nano-focus X-ray computed tomography. Journal of Geophysical Research: Solid Earth, 124(3), 2286–2296. doi: 10.1029/2018JB015849. |
Li JF, Ye JL, Qin XW, Qiu HJ, Wu NY, Lu HL, Xie WW, Lu JA, Peng F, Xu ZQ. 2018. The first offshore natural gas hydrate production test in South China Sea. China Geology, 1(1), 5–16. doi: 10.31035/cg2018003. |
Li XS, Xu CG, Zhang Y, Ruan XK, Li G, Wang Y. 2016. Investigation into gas production from natural gas hydrate: A review. Applied Energy, 172, 286–322. doi: 10.1016/j.apenergy.2016.03.101. |
Li YL, Liu CL, Liu LL, Sun JY, Liu HJ, Meng QG. 2018. Experimental study on evolution behaviors of triaxial-shearing parameters for hydrate-bearing intermediate fine sediment. Advances in Geo-Energy Research, 2(1), 43–52. doi: 10.26804/ager.2018.01.04. |
Li YL, Liu LL, Jin YR, Wu NY. 2021. Characterization and development of marine natural gas hydrate reservoirs in clayey-silt sediments: A review and discussion. Advances in Geo-Energy Research, 5(1), 75–86. doi: 10.46690/ager.2021.01.08. |
Li YL, Sun HL, Meng QG, Liu CL, Chen Q, Xing LC. 2020. 2-D electrical resistivity tomography assessment of hydrate formation in sandy sediments. Natural Gas Industry B, 7(3), 278–284. doi: 10.1016/j.ngib.2019.10.010. |
Liu LL, Dai S, Ning FL, Cai JC, Liu CL, Wu NY. 2019. Fractal characteristics of unsaturated sands−implications to relative permeability in hydrate-bearing sediments. Journal of Natural Gas Science and Engineering, 66, 11–17. doi: 10.1016/j.jngse.2019.03.019. |
Liu LL, Liu CL, Wu NY, Ruan HL, Zhang YC, Hao XL, Bu QT. 2021a. Advances in pressure core transfer and testing technology of offshore hydrate-bearing sediments. Geological Bulletin of China, 40(2−3), 408–422 (in Chinese with English abstract). |
Liu LL, Zhang Z, Liu CL, Wu NY, Ning FL, Zhang YC, Meng QG, Li CF. 2021b. Nuclear magnetic resonance transverse surface relaxivity in quartzitic sands containing gas hydrate. Energy& Fuels, 35, 6144–6152. doi: 10.1021/acs.energyfuels.1c00225. |
Liu T, Liu XW. 2018. Identifying the morphologies of gas hydrate distribution using P-wave velocity and density: A test from the GMGS2 expedition in the South China Sea. Journal of Geophysics and Engineering 15(3), 1008–1022. doi: 10.1088/1742-2140/aaaba1. |
Liu XL, Flemings PB. 2007. Dynamic multiphase flow model of hydrate formation in marine sediments. Journal of Geophysical Research: Solid Earth, 112, B03101. doi: 10.1029/2005JB004227. |
Liu ZC, Kim CC, Lei L, Ning FL, Dai S. 2019. Tetrahydrofuran hydrate in clayey sediments—Laboratory formation, morphology, and wave characterization. Journal of Geophysical Research: Solid Earth, 124(4), 3307–3319. doi: 10.1029/2018JB017156. |
Malagar BRC, Lijith KP, Singh DN. 2019. Formation & dissociation of methane gas hydrates in sediments: A critical review. Journal of Natural Gas Science and Engineering, 65, 168–184. doi: 10.1016/j.jngse.2019.03.005. |
Malinverno A, Goldberg DS. 2015. Testing short-range migration of microbial methane as a hydrate formation mechanism: Results from Andaman Sea and Kumano Basin drill sites and global implications. Earth and Planetary Science Letters, 422, 105–114. doi: 10.1016/j.jpgl.2015.04.019. |
Matsumoto R, Tanahashi M, Kakuwa Y, Snyder G, Ohkawa S, Tomaru H, Morita S. 2017. Recovery of thick deposits of massive gas hydrates from gas chimney structures, eastern margin of Japan Sea. Fire in the Ice, 17(1), 1–6. doi: 10.3390/en8064647. |
Milkov AV. 2004. Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth-science reviews, 66(3–4), 183–197. doi: 10.1016/j.earscirev.2003.11.002. |
Myerson A. 2002. Handbook of industrial crystallization. Waltham, Butterworth-Heinemann, 33–63. |
Ning FL, Yu YB, Kjelstrup S, Vlugt TJH, Glavatskiy K. 2012. Mechanical properties of clathrate hydrates: status and perspectives. Energy & Environmental Science, 5(5), 6779–6795. doi: 10.1039/c2ee03435b. |
Qin XW, Lu JA, Lu HL, Qiu HJ, Liang JQ, Kang DJ, Zhan LS, Lu HF, Kuang ZG. 2020. Coexistence of natural gas hydrate, free gas and water in the gas hydrate system in the Shenhu Area, South China Sea. China Geology, 3(2), 210–220. doi: 10.31035/cg2020038. |
Qin Y, Pan Z, Liu ZM, Shang LY, Zhou L. 2021. Influence of the particle size of porous media on the formation of natural gas hydrate: A review. Energy& Fuels, 35(15), 11640–11664. doi: 10.1021/acs.energyfuels.1c00936. |
Rasoolzadeh A, Aaldijk L, Raeissi S, Shariati A, Peters CJ. 2020. Experimental investigation and thermodynamic modeling of xenon clathrate hydrate stability conditions. Fluid Phase Equilibria, 512, 112528. doi: 10.1016/j.fluid.2020.112528. |
Ren XW, Guo ZY, Ning FL, Ma SZ. 2020. Permeability of hydrate-bearing sediments. Earth-Science Reviews, 202, 103100. doi: 10.1016/j.earscirev.2020.103100. |
Ruppel CD, Kessler JD. 2017. The interaction of climate change and methane hydrates: Climate-hydrates interactions. Reviews of Geophysics, 55(1), 126–168. doi: 10.1002/2016RG000534. |
Sloan ED. 2003. Fundamental principles and applications of natural gas hydrates. Nature, 426(6964), 353–359. doi: 10.1038/nature02135. |
Sloan JED, Koh CA. 2007. Clathrate Hydrates of Natural Gases. Boca Raton, CRC Press, 113–189. |
Spangenberg E, Kulenkampff J. 2006. Influence of methane hydrate content on electrical sediment properties. Geophysical Research Letters, 33(24), L24315. doi: 10.1029/2006GL028188. |
Su PB, Liang JQ, Zhang W, Liu F, Li TW, Wang FF, Wang XX. 2021. Numerical simulation of gas hydrate migration-accumulation system and trial mining optimization of orebodies in the Shenhu area. Geological Bulletin of China, 40(2−3), 267–279 (in Chinese with English abstract). |
Tamaki M, Fujii T, Suzuki K. 2017. Characterization and prediction of the gas hydrate reservoir at the second offshore gas production test site in the eastern Nankai Trough, Japan. Energies, 10(10), 1678. doi: 10.3390/en10101678. |
Terzariol M, Park J, Castro GM, Santamarina JC. 2020. Methane hydrate-bearing sediments: Pore habit and implications. Marine and Petroleum Geology, 116, 104302. doi: 10.1016/j.marpetgeo.2020.104302. |
Tohidi B, Anderson R, Clennell MB, Burgass RW, Biderkab AB. 2001. Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels. Geology, 29(9), 867. doi: 10.1130/0091-7613(2001)0292.0.CO. |
Torres ME, Wallmann K, Tréhu AM, Bohrmann G, Borowski WS, Tomaru H. 2004. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon. Earth and Planetary Science Letters, 226(1−2), 225–241. doi: 10.1016/j.jpgl.2004.07.029. |
Tréhu AM. 2006. Gas hydrates in marine sediments: Lessons from scientific ocean drilling. Oceanography, 19, 124–142. doi: 10.1007/3-540-32144-6_14. |
Tréhu AM, Long PE, Torres ME, Bohrmann G, Rack FR, Collett TS, Goldberg DS, Milkov AV, Riedel M, Schultheiss P. 2004. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204. Earth and Planetary Science Letters, 222(3−4), 845–862. doi: 10.1016/j.jpgl.2004.03.035. |
Waite WF, Santamarina JC, Cortes DD, Dugan B, Espinoza DN, Germaine J, Jang J, Jung JW, Kneafsey TJ, Shin H. 2009. Physical properties of hydrate‐bearing sediments. Reviews of geophysics, 47(4), 465–484. doi: 10.1029/2008RG000279. |
Wang HB, Yang SX, Wu NY, Zhang GX, Liang JQ, Chen DF. 2013. Controlling factors for gas hydrate occurrence in Shenhu area on the northern slope of the South China Sea. Science China Earth Sciences, 56(4), 513–520. doi: 10.1007/s11430-013-4596-3. |
Wang JL, Wang XJ, Qian J, Wu SG. 2013. Anisotropic analysis and saturation estimation of gas hydrate filled in fractures: A case of site NGHP01-10D, offshore eastern India. Chinese Journal Of Geophysics, 56(4), 1312–1320 (in Chinese with English abstract). doi: 10.6038/cjg20130425. |
Wang JL, Wu SG, Yao YJ, Li B. 2017. Advances in geophysical research on gas hydrate reservoirs on the east continental margin of India. Journal of Tropical Oceanography, 36(6), 90–99 (in Chinese with English abstract). doi: 10.11978/2016087. |
Wang XJ, Peng JP, Guo YQ, Li J, Li YP, Qian J, Wang B, Zhou JL. 2021. The characteristics of gas hydrate accumulation and quantitative estimation in the north slope of South China Sea. Earth Science, 46(3), 1038–1057 (in Chinese with English abstract). |
Winters WJ, Waite WF, Mason DH, Gilbert LY, Pecher IA. 2007. Methane gas hydrate effect on sediment acoustic and strength properties. Journal of petroleum science and engineering, 56(1−3), 127–135. doi: 10.1016/j.petrol.2006.02.003. |
Wu NY. 2020. Gas Hydrate Migration and Accumulation System: Theory, Method and Practice. Hefei, Anhui Science and Technology Press, 1–6 (in Chinese). |
Wu NY, Liu CL, Hao XL. 2018. Experimental simulations and methods for natural gas hydrate analysis in China. China Geology, 1(1), 61–71. doi: 10.31035/cg2018008. |
Wu NY, Zhang HQ, Yang SX, Zhang GX, Liang JQ, Su X, Schultheiss P, Holland M, Zhu YH. 2011. Gas hydrate system of Shenhu Area, Northern South China Sea: Geochemical results. Journal of Geological Research, 2011, 1–10. doi: 10.1155/2011/370298. |
Wyllie MRJ, Gregory AR, Gardner GHF. 1958. An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics, 23(3), 459–493. doi: 10.1190/1.1438493. |
Xu WY, Ruppel CD. 1999. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments. Journal of Geophysical Research: Solid Earth, 104(B3), 5081–5095. doi: 10.1029/1998JB900092. |
Yamamoto K, Terao Y, Fujii T, Ikawa T, Seki M, Matsuzawa M, Kanno T. 2014. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough, in: Offshore Technology Conference. OnePetro, Houston, Texas, US. doi: 10.4043/25243-MS. |
Yang L, Liu YL, Zhang HQ, Xiao B, Guo XW, Wei RP, Xu L, Sun LJ, Yu B, Leng SD, Li YH. 2019. The status of exploitation techniques of natural gas hydrate. Chinese Journal of Chemical Engineering, 27(9), 2133–2147. doi: 10.1016/j.cjche.2019.02.028. |
Ye JL, Qin XW, Xie WW, Lu HL, Ma BJ, Qiu HJ, Liang JQ, Lu JA, Kuang ZG, Lu C. 2020. The second natural gas hydrate production test in the South China Sea. China Geology, 3(2), 197–209. doi: 10.31035/cg2020043. |
Yin ZY, Khurana M, Tan HK, Linga P. 2018. A review of gas hydrate growth kinetic models. Chemical Engineering Journal, 342, 9–29. doi: 10.1016/j.cej.2018.01.120. |
Yin ZY, Praveen L. 2019. Methane hydrates: A future clean energy resource. Chinese Journal of Chemical Engineering, 27(9), 36–46. doi: 10.1016/j.cjche.2019.01.005. |
You KH, Flemings PB, Malinverno A, Collett TS, Darnell K. 2019. Mechanisms of methane hydrate formation in geological systems. Reviews of Geophysics, 57(4), 1146–1196. doi: 10.1029/2018RG000638. |
Zhang B, Jiang RJ, Sun BC, Lu N, Hou J, Bai YJ, Chen WQ, Liu YG. 2022. Establishment of the productivity prediction method of Class III gas hydrate developed by depressurization and horizontal well based on production performance and inflow relationship. Fuel, 308, 122006. doi: 10.1016/j.fuel.2021.122006. |
Zhang XD, Yin C, Zeng FX, Zhao B. 2021. Collective fluid flow system and its implications for gas hydrate accumulation in the north slope of the South China Sea. Geological Bulletin of China, 40(2−3), 280–286 (in Chinese with English abstract). |
Zhang YC, Liu LL, Wang DG, Chen PF, Zhang Z, Meng QG, Liu CL. 2021a. Application of low-field nuclear magnetic resonance (LFNMR) in characterizing the dissociation of gas hydrate in a porous media. Energy& Fuels, 35(3), 2174–2182. doi: 10.1021/acs.energyfuels.0c03855. |
Zhang YC, Liu LL, Wang DG, Zhang Z, Li CF, Meng QG, Liu CL. 2021b. The interface evolution during methane hydrate dissociation within quartz sands and its implications to the permeability prediction based on NMR data. Marine and Petroleum Geology, 129, 105065. doi: 10.1016/j.marpetgeo.2021.105065. |
Zhang YC, Wan YZ, Liu LL, Wang DG, Li CF, Liu CL, Wu NY. 2021c. Changes in reaction surface during the methane hydrate dissociation and its implications for hydrate production. Energy, 230, 120848. doi: 10.1016/j.energy.2021.120848. |
Zhang ZC, Guo GJ, Wu NY, Kusalik PG. 2020. Molecular insights into guest and composition dependence of mixed hydrate nucleation. The Journal of Physical Chemistry C, 124(45), 25078–25086. doi: 10.1021/acs.jpcc.0c07375. |
Zhang ZC, Kusalik PG, Guo GJ. 2018. Bridging solution properties to gas hydrate nucleation through guest dynamics. Physical Chemistry Chemical Physics, 20(38), 24535–24538. doi: 10.1039/c8cp04466j. |
Zhang ZC, Liu CJ, Walsh MR, Guo GJ. 2016. Effects of ensembles on methane hydrate nucleation kinetics. Physical Chemistry Chemical Physics, 18(23), 15602–15608. doi: 10.1039/C6CP02171A. |
The gas hydrate resources pyramid (revised from Boswell R and Collett TS, 2011).
Five types of gas hydrate occurrences in a geological system (after You KH et al., 2019).
A schematic diagram of the hydrate formation in the manner of pore-filling and grain-displacing.
Diagram of the phase equilibrium curves for bulk hydrate and hydrate in the porous sediments with different particle sizes (modified from Lei L, 2017)
Synthesized grain-displacing hydrate using the ice-seeding method in the authors’ previous work. a‒ synthesized hydrate nodule/chunk in coarse-grained sediment; b‒synthesized hydrate chunk in fine-grained sediment.