2022 Vol. 5, No. 2
Article Contents

Yun-kai Ji, Chang-ling Liu, Zhun Zhang, Qing-guo Meng, Le-le Liu, Yong-chao Zhang, Neng-you Wu, 2022. Experimental study on characteristics of pore water conversion during methane hydrates formation in unsaturated sand, China Geology, 5, 276-284. doi: 10.31035/cg2022013
Citation: Yun-kai Ji, Chang-ling Liu, Zhun Zhang, Qing-guo Meng, Le-le Liu, Yong-chao Zhang, Neng-you Wu, 2022. Experimental study on characteristics of pore water conversion during methane hydrates formation in unsaturated sand, China Geology, 5, 276-284. doi: 10.31035/cg2022013

Experimental study on characteristics of pore water conversion during methane hydrates formation in unsaturated sand

More Information
  • Understanding the pore water conversion characteristics during hydrate formation in porous media is important to study the accumulation mechanism of marine gas hydrate. In this study, low-field NMR was used to study the pore water conversion characteristics during methane hydrate formation in unsaturated sand samples. Results show that the signal intensity of T2 distribution isn’t affected by sediment type and pore pressure, but is affected by temperature. The increase in the pressure of hydrogen-containing gas can cause the increase in the signal intensity of T2 distribution. The heterogeneity of pore structure is aggravated due to the hydrate formation in porous media. The water conversion rate fluctuates during the hydrate formation. The sand size affects the water conversion ratio and rate by affecting the specific surface of sand in unsaturated porous media. For the fine sand sample, the large specific surface causes a large gas-water contact area resulting in a higher water conversion rate, but causes a large water-sand contact area resulting in a low water conversion ratio (Cw=96.2%). The clay can reduce the water conversion rate and ratio, especially montmorillonite (Cw=95.8%). The crystal layer of montmorillonite affects the pore water conversion characteristics by hindering the conversion of interlayer water.

  • 加载中
  • Bu QT, Hu GW, Ye YG, Liu CL, Li CF, Wang JS. 2017. Experimental study on 2-D acoustic characteristics and hydrate distribution in sand. Geophysical Journal International, 211(2), 990–1004. doi: 10.1093/gji/ggx351.

    CrossRef Google Scholar

    Chen HL, Wei WF, Tian HH, Wei HZ. 2017. NMR relaxation response of CO2 hydrate formation and dissociation in sand. Acta Physico-Chimica Sinica, 33(08), 1599–1604. doi: 10.3866/PKU.WHXB201704194.

    CrossRef Google Scholar

    Coates G, Xiao LZ, Prammer M. 1999. NMR Logging: Principles And Applications. Houston, Halliburton Energy Services, 35‒50.

    Google Scholar

    Cowan B. 1997. Nuclear Magnetic Resonance and Relaxation. Cambridge, Cambridge University Press. 83‒123

    Google Scholar

    Ersland G, Husebø J, Graue A, Baldwin B, Howard J, Stevens J. 2010. Measuring gas hydrate formation and exchange with CO2 in Bentheim sandstone using MRI tomography. Chemical Engineering Journal, 158(1), 25–31. doi: 10.1016/j.cej.2008.12.028.

    CrossRef Google Scholar

    Ge XM, Fan YR, Liu JY, Zhang L, Han YJ, Xing DH. 2017. An improved method for permeability estimation of the bioclastic limestone reservoir based on NMR data. Journal of Magnetic Resonance, 283, 96–109. doi: 10.1016/j.jmr.2017.09.004.

    CrossRef Google Scholar

    Ge XM, Liu JY, Fan YR, Xing DH, Deng SG, Cai JC. 2018. Laboratory investigation into the formation and dissociation process of gas hydrate by low-field NMR technique. Journal of Geophysical Research:Solid Earth, 123(5), 3339–3346. doi: 10.1029/2017JB014705.

    CrossRef Google Scholar

    Grunewald E, Knight R. 2011. The effect of pore size and magnetic susceptibility on the surface NMR relaxation parameter T2. Near Surface Geophysics, 2(9), 169–178. doi: 10.3997/1873-0604.2010062.

    CrossRef Google Scholar

    Handa Y, Stupin D. 1992. Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-ANG-radius silica gel pores. The Journal of Physical Chemistry, 96(21), 8599–8603. doi: 10.1021/j100200a071.

    CrossRef Google Scholar

    Hou J, Ji YK, Zhou K, Liu YG, Wei B. 2018. Effect of hydrate on permeability in porous media: Pore-scale micro-simulation. International Journal of Heat and Mass Transfer, 126, 416–424. doi: 10.1016/j.ijheatmasstransfer.2018.05.156.

    CrossRef Google Scholar

    Ji YK, Hou J, Cui GD, Lu N, Zhao EM, Liu YL, Du QJ. 2019. Experimental study on methane hydrate formation in a partially saturated sandstone using low-field NMR technique. Fuel, 251, 82–90. doi: 10.1016/j.fuel.2019.04.021.

    CrossRef Google Scholar

    Ji YK, Hou J, Zhao EM, Liu CL, Guo TK, Liu YL, Wei B, Bai YJ. 2021. Pore-scale study on methane hydrate formation and dissociation in a heterogeneous micromodel. Journal of Natural Gas Science and Engineering, 95, 104230. doi: 10.1016/j.jngse.2021.104230.

    CrossRef Google Scholar

    Jia JL, Zhang Y, Li G, Chen ZY, Li XS, Wu HJ. 2013. Experimental study on formation behavior of methane hydrate in sea mud from South China Sea. Geoscience, 27(06), 1373–1378. doi: 10.3969/j.issn.1000-8527.2013.06.014.

    CrossRef Google Scholar

    Kenyon W. 1997. Petrophysical principles of applications of NMR logging. Log Analyst, 38(2), 21–40.

    Google Scholar

    Kleinberg R, Flaum C, Straley C, Brewer P, Malby G, Peltzer E, Friederich G, Yesinowski J. 2003. Seafloor nuclear magnetic resonance assay of methane hydrate in sediment and rock. Journal of Geophysical Research:Solid Earth, 108(B3), 2137. doi: 10.1029/2001JB000919.

    CrossRef Google Scholar

    Kleinberg R, Flaum C, Griffin D, Brewer P, Malby G, Peltzer E, Yesinowski J. 2003. Deep sea NMR: Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability. Journal of Geophysical Research:Solid Earth, 108(B10), 2508. doi: 10.1029/2003JB002389.

    CrossRef Google Scholar

    Kuang YM, Zhang LX, Song YC, Yang L, Zhao JF. 2020. Quantitative determination of pore‐structure change and permeability estimation under hydrate phase transition by NMR. AIChE Journal, 66, e16859. doi: 10.1002/aic.16859.

    CrossRef Google Scholar

    Li G, Li XS, Lv QN, Zhang Y. 2019. Permeability measurements of quartz sands with methane hydrate. Chemical Engineering Science, 193, 1–5. doi: 10.1016/j.ces.2018.08.055.

    CrossRef Google Scholar

    Li JF, Ye JL, Qin XW, Qiu HJ, Wu NY, Lu HL, Xie WW, Lu JA, Peng F, Xu ZQ, Lu C, Kuang ZG, Wei JG, Liang QY, Lu HF, Kou BB. 2018. The first offshore natural gas hydrate production test in South China Sea. China Geology, 1(1), 5–16. doi: 10.31035/cg2018003.

    CrossRef Google Scholar

    Li YL, Dong L, Wu NY, Nouri A, Liao HL, Chen Q, Sun JY, Liu CL. 2021. Influences of hydrate layered distribution patterns on triaxial shearing characteristics of hydrate-bearing sediments. Engineering Geology, 294, 106375. doi: 10.1016/j.enggeo.2021.106375.

    CrossRef Google Scholar

    Liang HY, Guan DW, Yang L, Zhang LX, Song YC, Zhao JF. 2021. Multi-scale characterization of shell thickness and effective volume fraction during gas hydrates formation: A kinetic study. Chemical Engineering Journal, 424, 130360. doi: 10.1016/j.cej.2021.130360.

    CrossRef Google Scholar

    Linga P, Daraboina N, Ripmeester J, Englezos P. 2012. Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel. Chemical Engineering Science, 68(1), 617–623. doi: 10.1016/j.ces.2011.10.030.

    CrossRef Google Scholar

    Liu LL, Zhang Z, Liu CL, Wu NY, Ning FL, Zhang YC, Meng QG, Li CF. 2021. Nuclear magnetic resonance transverse surface relaxivity in quartzitic sands containing gas hydrate. Energy & Fuels, 35(7), 6144–6152. doi: 10.1021/acs.energyfuels.1c00225.

    CrossRef Google Scholar

    Liu YZ, Zhang LX, Yang L, Dong HS, Zhao JF, Song YC. 2021. Behaviors of CO2 hydrate formation in the presence of acid-dissolvable organic matters. Environmental Science & Technology, 55(9), 6206–6213. doi: 10.1021/acs.est.0c06407.

    CrossRef Google Scholar

    Mekala P, Babu P, Sangwai J, Linga P. 2014. Formation and dissociation kinetics of methane hydrates in seawater and silica sand. Energy & Fuels, 28(4), 2708–2716. doi: 10.1021/ef402445k.

    CrossRef Google Scholar

    Minagawa H, Nishikawa Y, Ikeda I, Miyazaki K, Takahara N, Sakamoto Y, Komai T, Narita H. 2008. Characterization of sand sediment by pore size distribution and permeability using proton nuclear magnetic resonance measurement. Journal of Geophysical Research, 113(B7). doi: 10.1029/2007JB005403.

    Google Scholar

    Priegnitz M, Thaler J, Spangenberg E, Schicks J, Schrötter J, Abendroth S. 2015. Characterizing electrical properties and permeability changes of hydrate bearing sediments using ERT data. Geophysical Journal International, 202(3), 1599–1612. doi: 10.1093/gji/ggv245.

    CrossRef Google Scholar

    Siangsai A, Rangsunvigit P, Kitiyanan B, Kulprathipanja S, Linga P. 2015. Investigation on the roles of activated carbon particle sizes on methane hydrate formation and dissociation. Chemical Engineering Science, 126, 383–389. doi: 10.1016/j.ces.2014.12.047.

    CrossRef Google Scholar

    Sloan E, Koh C. 2008. Clathrate Hydrates of Natural Gases. Boca Raton, CRC Press, 156-168.

    Google Scholar

    Tohidi B, Anderson R, Clennell M, Burgass R, Biderkab A. 2001. Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels. Geology, 29(9), 867. doi: 10.1130/0091-7613(2001)029<0867:VOOGHF>2.0.CO;2.

    CrossRef Google Scholar

    Rouquerol J, Rodriguez-Reinoso F, Sing K, Unger KK. 1988. Characterization of Porous Solids. Amsterdam, Elsevier Science, 439–447.

    Google Scholar

    Wu Pe, Li YH, Sun X, Liu WG, Song YC. 2021. Mechanical characteristics of hydrate-bearing sediment: A review. Energy & Fuels, 35(2), 1041–1057. doi: 10.1021/acs.energyfuels.0c03995.

    CrossRef Google Scholar

    Yan KF, Li XS, Chen ZY, Zhang Y, Xu CG, Xia ZM. 2019. Methane hydrate formation and dissociation behaviors in montmorillonite. Chinese Journal of Chemical Engineering, 27(5), 1212–1218. doi: 10.1016/j.cjche.2018.11.025.

    CrossRef Google Scholar

    Ye JL, Qin XW, Xie WW, Lu HL, Ma BJ, Qiu HJ, Liang JQ, Lu JA, Kuang ZG, Lu C, Liang QY, Wei SP, Yu YJ, Liu CS, Li B, Shen KX, Shi HX, Lu QP, Li J, Kou BB, Song G, Li B, Zhang HE, Lu HF, Ma C, Dong YF, Bian H. 2020. The second natural gas hydrate production test in the South China Sea. China Geology, 3(2), 197–209. doi: 10.31035/cg2020043.

    CrossRef Google Scholar

    Yin ZY, Moridis G, Tan H, Linga P. 2018. Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium. Applied Energy, 220, 681–704. doi: 10.1016/j.apenergy.2018.03.075.

    CrossRef Google Scholar

    Zhan L, Wang Y, Li XS. 2018. Experimental study on characteristics of methane hydrate formation and dissociation in porous medium with different particle sizes using depressurization. Fuel, 230, 37–44. doi: 10.1016/j.fuel.2018.05.008.

    CrossRef Google Scholar

    Zhang YC, Liu LL, Wang DG, Chen PF, Zhang Z, Meng QG, Liu CL. 2021a. Application of low-field nuclear magnetic resonance (LFNMR) in characterizing the dissociation of gas hydrate in a porous media. Energy & Fuels, 35(3), 2174–2182. doi: 10.1021/acs.energyfuels.0c03855.

    CrossRef Google Scholar

    Zhang YC, Liu LL, Wang DG, Zhang Z, Li CF, Meng QG, Liu CL. 2021b. The interface evolution during methane hydrate dissociation within quartz sands and its implications to the permeability prediction based on NMR data. Marine and Petroleum Geology, 129, 105065. doi: 10.1016/j.marpetgeo.2021.105065.

    CrossRef Google Scholar

    Zhang Z, Liu LL, Li CF, Liu CL, Ning FL, Liu ZC, Meng QG. 2021. A testing assembly for combination measurements on gas hydrate-bearing sediments using X-ray computed tomography and low-field nuclear magnetic resonance. Review of Scientific Instruments, 92(8), 85108. doi: 10.1063/5.0040858.

    CrossRef Google Scholar

    Zhao EM, Hou J, Du QJ, Liu YG, Ji YK, Bai YJ. 2021. Numerical modeling of gas production from methane hydrate deposits using low-frequency electrical heating assisted depressurization method. Fuel, 290, 120075. doi: 10.1016/j.fuel.2020.120075.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views(2235) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint