Citation: | Poulami Roy, Bapi Goswami, Ankita Basak, Anwesa Sen, Chittaranjan Bhattacharyya, 2025. Geochemistry and petrogenesis of Mesoproterozoic mafic granulite and amphibolite dykes from Saltora, Bankura district, Chhotanagpur Gneissic Complex, eastern India: Implications for their emplacement in within-plate setting, China Geology, 8, 159-186. doi: 10.31035/cg20220082 |
Distinguishing high-grade mafic-ultramafic rocks originally crystallized from within-plate basaltic magmatism is challenging and crucial because the chemical composition of the igneous rocks has been modified during high-grade metamorphism, causing misidentification of the characters of the parental magma. Proterozoic metamorphosed mafic dykes occur throughout the Chhotanagpur Gneissic Complex (CGC) of eastern Indian shield. The E-W trending mafic dykes from the Saltora area in the southeastern CGC underwent metamorphism in two episodes: M1 ( 650 MPa; 770°C) and M2 (300 MPa; 744°C). The metamafics are enriched in LILE, depleted in HFSE, and display strong fractionation of LREE, nearly flat HREE patterns in a chondrite-normalized REE diagram, and show tholeiitic differentiation trend. Their geochemical affinity is towards rift-related, continental within-plate basalts. About 7%–10% melting of the carbonated spinel-peridotite sub-continental lithospheric mantle (SCLM) produced the parental mafic magma. The pre-existing SCLM was metasomatized by slab-derived fluid during the previous subduction. The upwelling of the asthenosphere in a post-collisional tectonic setting caused E-W trending fractures, lithospheric thinning, and gravitational collapse. These dykes were emplaced during crustal extension around 1070 Ma. The remarkable geochemical similarity between the mafic dykes of Saltora and Dhanbad, the ca. 1096 Ma Mahoba (Bundelkhand craton), and the ca. 1070 Ma Alcurra mafic dykes in Australia supports a genetic link.
Abdel-Rahman AFM, Nassar PE. 2004. Cenozoic volcanism in the Middle East: Petrogenesis of alkali basalts from northern Lebanon. Geological Magazine, 141(5), 545–563. doi: 10.1017/S0016756804009604. |
Acharya A, Ray S, Jana P. 2005. Integrated mineral search in the eastern sector of North Purulia Shear Zone (NPSZ) between Raghunathpur and Santuri-Saltora (P-II). Record, Geological Survey of India, 136(3), 61–64. |
Acharyya SK. 2003. The nature of Mesoproterozoic Central Indian Tectonic Zone with exhumed and reworked older granulites. Gondwana Research, 6, 197–214. doi: 10.1016/S1342-937X(05)70970-9. |
Ague JJ. 2017. Element mobility during regional metamorphism in crustal and subduction zone environments with a focus on the rare earth elements (REE). American Mineralogist:Journal of Earth and Planetary Materials, 102(9), 1796–1821. doi: 10.2138/am-2017-6130. |
Aitken AR, Smithies RH, Dentith MC, Joly A, Evans S, Howard HM. 2013. Magmatism-dominated intracontinental rifting in the Mesoproterozoic: The Ngaanyatjarra Rift, central Australia. Gondwana Research, 24(3–4), 886–901. doi: 10.1016/j.gr.2012.10.003. |
Aldanmaz E, Yaliniz MK, Guctekin A, Goncuoglu MC. 2008. Geochemical characteristics of mafic lavas from the Neotethyanophiolites in western Turkey: implications for heterogeneous source contribution during variable stages of ocean crust generation. Geological Magazine, 145(1), 37–54. doi: 10.1017/S0016756807003986. |
Aldanmaz E. 2002. Mantle source characteristics of alkali basalts and basanites in an extensional intracontinental plate setting, western Anatolia, Turkey: implications for multi-stage melting. International Geology Review, 44(5), 440–457. doi: 10.2747/0020-6814.44.5.440. |
Allegre CJ, Minster JF. 1978. Quantitative method of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 38, 1–25. doi: 10.1016/0012-821X(78)90123-1. |
Babechuk MG, Widdowson M, Murphy M, Kamber BS. 2014. A combined Y/Ho, high field strength element (HFSE) and Nd isotope perspective on basalt weathering, Deccan Traps, India. Chemical Geology. |
Basak A, Goswami B, Singha A, Das S, Bhattacharyya C. 2019. Magmatic epidote in the Grenvillian granitoids of North Purulia Shear Zone, Chhotanagpur Gneissic Complex, India and its significance; Current Science, (00113891), 117(2). |
Basak A, Goswami B. 2020. The physico-chemical conditions of crystallization of the Grenvillian arfvedsonite granite of Dimra Pahar, Hazaribagh, India: constraints on possible source regions. Mineralogy and Petrology, 114, 329–356. doi: 10.1007/s00710-020-00708-w. |
Bhattacharya DK, Mukherjee D, Barla VC. 2010. Komatiite within Chhotanagpur Gneissic Complex at Semra, Palamau district, Jharkhand: petrological and geochemical fingerprints. Journal of the Geological Society of India, 76(6), 589–606. doi: 10.1007/s12594-010-0120-y. |
Bhattacharyya PK, Mukherjee S. 1987. Granulites in and around the Bengal anorthosite, eastern India: genesis of coronal garnet and evolution of the granulite–anorthosite complex. Geological Magazine, 124, 21–32. doi: 10.1017/S0016756800015752. |
Bhowmik SK, Wilde SA, Bhandari A, Pal T, Pant NC. 2012. Growth of the Greater Indian Landmass and its assembly in Rodinia: geochronological evidence from the Central Indian Tectonic Zone. Gondwana Research, 22, 54–72. doi: 10.1016/j.gr.2011.09.008. |
Blundy JD, Holland TJB. 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104(2), 208–224. doi: 10.1007/BF00306444. |
Brandl PA, Genske FS, Beier C, Haase KM, Sprung P, Krumm SH. 2015. Magmatic evidence for carbonate metasomatism in the lithospheric mantle underneath the Ohře (Eger) Rift. Journal of Petrology, 56(9), 1743–1774. doi: 10.1093/petrology/egv052. |
Bright RM, Amato JM, Denyszyn SW, Ernst RE. 2014. U-Pb geochronology of 1. 1 Ga diabase in the southwestern United States:Testing models for the origin of a post-Grenville large igneous province. Lithosphere, 6(3), 135–156. |
Chatterjee N, Crowley JL, Ghose NC. 2008. Geochronology of the 1.55 Ga Bengal anorthosite and Grenvillian metamorphism in the Chotanagpur gneissic complex, eastern India. Precambrian Research, 161, 303–316. |
Chen G, Sun D, Hui'an Yin. 1988. Genetic mineralogy and prospecting mineralogy. Chongqing Publishing House. |
Choudhary BR, Ernst RE, Xu YG, Evans DA, de Kock MO, Meert JG, Ruiz AS, Lima GA. 2019. Geochemical characterization of a reconstructed 1110 Ma large igneous province. Precambrian Research, 332, 105382. doi: 10.1016/j.precamres.2019.105382. |
Claiborne LL, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea F. 2006. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineralogical Magazine, 70(5), 517–543. doi: 10.1180/0026461067050348. |
Condie KC. 1997. Sources of Proterozoic mafic dyke swarms: constraints from ThTa and LaYb ratios. Precambrian Research, 81(1-2), 3–14. doi: 10.1016/S0301-9268(96)00020-4. |
Connolly JAD. 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modelling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236, 524–541. doi: 10.1016/j.jpgl.2005.04.033. |
Correa-Gomes LC, Oliveira EP. 2000. Radiating 1. 0 Ga mafic dyke swarms of eastern Brazil and western Africa:evidence of post-assembly extension in the Rodinia supercontinent?. Gondwana Research, 3(3), 325–332. |
Cox K, G Bell, JD Pankhurst, RJ. 1979. The interpretation of igneous rocks. London: Allen and Unwin. |
Currie KL, Williams PR. 1993. An Archeancalc-alkaline lamprophyre suite, northeasternYilgarn Block, western Australia. Lithos, 31(1-2), 33–50. doi: 10.1016/0024-4937(93)90031-7. |
Das S, Goswami B, Basak A, Bhattacharyya C. 2020. A Grenvillian magmatic almandine garnet-bearing ferroan granite intrusion in the Chhotanagpur Gneissic complex, Eastern India; Petrology, petrochemistry, petrogenesis and geodynamic implications. Lithos, 376, 105749. |
Dasgupta R, Hirschmann MM, Smith ND. 2007. Partial melting experiments of peridotite+ CO2 at 3 GPa and genesis of alkalic ocean island basalts. Journal of Petrology, 48(11), 2093–2124. doi: 10.1093/petrology/egm053. |
Deer WA, Howie RA, Zussman J. 1992. An introduction to the rock-forming minerals. Longman, London, 696. |
Dey A, Karmakar S, Mukherjee S, Sanyal S, Dutta U, Sengupta P. 2019. High pressure metamorphism of mafic granulites from the Chotanagpur Granite Gneiss Complex, India: Evidence for collisional tectonics during assembly of Rodinia. Journal of Geodynamics, 129, 24–43. doi: 10.1016/j.jog.2019.03.005. |
Elburg MA, Van Bergen M, Hoogewerff J, Foden J, Vroon P, Zulkarnain I, Nasution A. 2002. Geochemical trends across an arc-continent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochimica et Cosmochimica Acta, 66(15), 2771–2789. doi: 10.1016/S0016-7037(02)00868-2. |
Elling R, Stein S, Stein CA, Gefeke K. 2022. Three Major Failed Rifts in Central North America: Similarities and Differences. GSA Today, 32(6), 4–11. doi: 10.1130/GSATG518A.1. |
Erlank AJ, Duncan AR, Marsh JS, Sweeney RJ, Hawkesworth CJ, Milner SC, Miller RM, Rogers NW. 1988. A laterally extensive geochemical discontinuity in the subcontinental Gondwana lithosphere. Proceedings of the V Conference on Geochemical Evolution of the Continental Crust, Brazil, 1–10. |
Ernst RE, Buchan KL. 2001. The use of mafic dyke swarms in identifying and locating mantle plumes. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Special Paper of the Geological Society of America, 352, 247–265. |
Ernst RE. 2014. Large igneous provinces. Cambridge University Press, 653. |
Evans DAD. 2013. Reconstructing pre-Pangean supercontinents. Bulletin of the Geological Society of America, 125, 1735–1751. doi: 10.1130/B30950.1. |
Evins PM, Smithies RH, Howard HM, Kirkland CL, Wingate MT, Bodorkos S. 2010. Devil in the detail: The 1150–1000 Ma magmatic and structural evolution of the Ngaanyatjarra Rift, west Musgrave Province, Central Australia. Precambrian Research, 183(3), 572–588. doi: 10.1016/j.precamres.2010.02.011. |
Ferry JT, Spear FS. 1978. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology, 66(2), 113–117. doi: 10.1007/BF00372150. |
Floyd PA, Kelling G, Gökçen SL, Gökçen N. 1991. Geochemistry and tectonic environment of basaltic rocks from the Misis ophiolitic mélange, south Turkey. Chemical Geology, 89(3-4), 263–280. doi: 10.1016/0009-2541(91)90020-R. |
Fuhrman ML, Lindsley DH. 1988 Ternary-Feldspar Modeling and Thermometry. American Mineralogist, 73, 201–15. |
Furman T, Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. In:Developments in Geotectonics, Elsevier, 24,237–262. |
Gale A, Dalton CA, Langmuir CH, Su Y, Schilling JG. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3), 489–518. |
Gasparik T. 1984. Experimental study of subsolidus phase relations and mixing properties of pyroxene in the system CaO-Al2O3-SiO2. Geochimica et Cosmochimica Acta, 48, 2537–45. doi: 10.1016/0016-7037(84)90304-1. |
Gasparik T. 1985. Experimental study of subsolidus phase relations and mixing properties of pyroxene and plagioclase in the system Na2O-CaO-Al2O3-SiO2. Contributions to Mineralogy and Petrology, 89, 346–57. doi: 10.1007/BF00381556. |
Ghatak A, Basu AR, Wakabayashi J. 2012. Elemental mobility in subduction metamorphism: Insight from metamorphic rocks of the Franciscan Complex and the Feather River ultramafic belt, California. International Geology Review, 54(6), 654–685. doi: 10.1080/00206814.2011.567087. |
Ghose NC, Chatterjee N. 2008. Petrology, tectonic setting and source of dykes and related magmatic bodies in Chotanagpur gneissic complex, eastern India. In: Srivastava RK, Sivaji C, ChalapathiRao NV (Eds.), Indian Dyke: Geochemistry, Geophysics and Geochronology. Narosa Publishing House Private Limited, New Delhi, 471–493. |
Ghose NC, Mukherjee D, Chatterjee N. 2005. Plume generated Mesoproterozoic mafic-ultramafic magmatism in the Chotanagpur mobile belt of Eastern Indian shield margin. Journal of the Geological Society of India, 66, 725–740. |
Ghose NC. 1983. Geology, tectonics and evolution of the Chotanagpur granite gneiss complex, Eastern India. In: Sinha Roy, S. (Ed.); Recent Researches in Geology, 10 211-247. |
Giuseppe P Di, Agostini S, Manetti P, Savaşçın MY, Conticelli S. 2018. Sub-lithospheric origin of Na-alkaline and calc-alkaline magmas in a post-collisional tectonic regime: Sr-Nd-Pb isotopes in recent monogenetic volcanism of Cappadocia, Central Turkey. Lithos, 316, 304–322. |
Goswami B, Bhattacharyya C. 2008. Metamorphism of nepheline syenite gneisses from chhotanagpur granite gneiss complex, Northeastern Puruliya district, Eastern India. Journal Geological Society of India. 71(2), 209–213. |
Goswami B, Bhattacharyya C. 2010. Tectonothermal evolution of Chhotanagpur granite gneiss complex from northeastern part of Puruliya district, West Bengal, eastern Indian. Indian Journal of Geosciences, 80(1–4), 41–54. |
Goswami B, Bhattacharyya C. 2014. Petrogenesis of shoshonitic granitoids, eastern India: implications for the late Grenvillian post-collisional magmatism. Geoscience Frontier, 5, 21–43. |
Goswami B, Roy P, Basak A, Das S, Bhattacharyya C. 2018. Physicochemical conditions of four calc-alkaline granitoid plutons of Chhotanagpur Gneissic Complex, Eastern India: tectonic implications. Journal of Earth System Sciences, 127, 1–33. doi: 10.1007/s12040-017-0916-x. |
Hammarstrom JM, Zen EA. 1986 Aluminum-in-hornblende: An empirical igneous geobarometer. American Mineralogist, 71(11–12), 1297–1313 |
Han S, Li M, Zhang Q, Song L. 2020. An Automated Method to Generate and Evaluate Geochemical Tectonic Discrimination Diagrams Based on Topological Theory. Minerals, 10(1), 62. doi: 10.3390/min10010062. |
Hanson RE, Crowley JL, Bowring SA, Ramezani J, Gose WA, Dalziel IW, Pancake JA, Seidel EK, Blenkinsop TG, Mukwakwami J. 2004. Coeval large-scale magmatism in the Kalahari and Laurentian cratons during Rodinia assembly. Science, 304(5674), 1126–1129. doi: 10.1126/science.1096329. |
Harlov DE. 2012. The potential role of fluids during regional granulite-facies dehydration in the lower crust. Geoscience Frontier, 3(6), 813–827. doi: 10.1016/j.gsf.2012.03.007. |
Hart WK, Wolde GC, Walter RC, Mertzman SA. 1989. Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions. Journal of geophysical research, 94, 7731–7748. doi: 10.1029/JB094iB06p07731. |
Hawkesworth CJ, Turner SP, McDermott F, Peate DW, Van Calsteren P. 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276(5312), 551–555. doi: 10.1126/science.276.5312.551. |
Hill IG, Worden RH, Meighan IG. 2000. Geochemical evolution of a palaeolaterite: The Inter basaltic Formation, Northern Ireland. Chemical Geology, 166, 65–84. doi: 10.1016/S0009-2541(99)00179-5. |
Hirose K, Kushiro I. 1993. Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters, 114(4), 477–489. doi: 10.1016/0012-821X(93)90077-M. |
Hoisch TD. 1990. Empirical calibration of six geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contributions to Mineralogy and Petrology, 104(2), 225–234. doi: 10.1007/BF00306445. |
Holland TJB, Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4), 433–447. doi: 10.1007/BF00310910. |
Holland TJB, Powell R. 1996. Thermodynamics of order-disorder in minerals: II. Symmetric formalism applied to solid solutions. American Mineralogist, 81(11–12), 1425–1437. |
Holland TJB, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of metamorphic Geology, 29(3), 333–383. doi: 10.1111/j.1525-1314.2010.00923.x. |
Holland TJB, Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309–43. |
Hollister LS, Grissom GC, Peters EK, Stowell HH, Sisson VB. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, l 72 (3–4), 231–239 |
Holmes A. 1955. Dating the Precambrian of Peninsular India and Ceylon. Proceedings of the Geologists Association of Canada, 7, 81–106. |
Hoskin PW, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in mineralogy and geochemistry, 53(1), 27–62. doi: 10.2113/0530027. |
Howard HM, Smithies RH, Kirkland CL, Evins PM, Wingate MTD. 2009. Age and geochemistry of the Alcurra Suite in the west Musgrave Province and implications for orthomagmatic Ni–Cu–PGE mineralization during the Giles Event. Geological Survey of Western Australia, Record, 16,16. |
Hu Y, Zhao X, Peng P, Yang F, D'Agrella-Filho MS, Chen W, Xu M. 2022. Paleomagnetic Constraints From 925 Ma Mafic Dykes in North China and Brazil: Implications for the Paleogeography of Rodinia. Journal of Geophysical Research:Solid Earth, 127(9), 2022JB025079. doi: 10.1029/2022JB025079. |
Irvine TNJ, Baragar WRAF. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5), 523–548. doi: 10.1139/e71-055. |
Jin SQ. 1991. Compositional characteristics of calcareous amphibole from metamorphic facies in different regions. Chinese Science Bulletin 36, 851–854 (in Chinese). |
Johnson MC, Rutherford MJ. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17(9), 837–841. https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2. |
Jourdan F, Bertrand H, Féraud G, Le Gall B, Watkeys MK. 2009. Lithospheric mantle evolution monitored by overlapping large igneous provinces: case study in southern Africa. Lithos, 107, 257–268. doi: 10.1016/j.lithos.2008.10.011. |
Karmakar S, Bose S, Sarbadhikari AB, Das K. 2011. Evolution of granulite enclaves and associated gneisses from Purulia, Chhotanagpur Granite Gneiss Complex, India: evidence for 990–940 Ma tectonothermal event(s) at the eastern India cratonic fringe zone. Journal of Asian Earth Sciences, 41, 69–88. doi: 10.1016/j.jseaes.2010.12.006. |
Klein EM. 2003. Geochemistry of the Igneous oceanic rocks. The crust, 3, 433. |
Kretz R. 1982. Transfer and exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data. Geochimica et Cosmochimica Acta, 46(3), 411–421. doi: 10.1016/0016-7037(82)90232-0. |
Krishnan MS. 1961. Tectonics with special reference to India. Proceedings of the Indian Academy of Sciences Section B, 53, 49–72. doi: 10.1007/BF03050924. |
Kumar A, Ahmad T. 2007. Geochemistry of the mafic dykes in parts of Chotanagpur gneissic complex: petrogenetic and tectonic implications. Geochemical Journal, 41, 173–186. doi: 10.2343/geochemj.41.173. |
Kumar D, Rao NC, Prabhat P, Chatterjee A, Rahaman W. 2022. Petrochemistry and Sr-Nd isotopes of post-collisional Neoproterozoic (ca. 950 Ma) amphibolite dykes of continental flood basalt affinity from the Simdega area: Implications for the geodynamic evolution of the Chhotanagpur Gneissic Complex, Eastern India. Lithos. 1;428: 106810. |
La Flèche MR, Camire G, Jenner GA. 1998. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen islands, Quebec, Canada. Chemical Geology, 148, 115–136. doi: 10.1016/S0009-2541(98)00002-3. |
Langmuir CH, Klein EM, Plank T. 1992. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. Mantle flow and melt generation at mid-ocean ridges. Geophysical Monograph- American Geophysical Union, 71, 183–280. |
Le Cheminant AN, Heaman LM. 1989. Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening. Earth and Planetary Science Letters, 96, 38–48. doi: 10.1016/0012-821X(89)90122-2. |
Li ZX, Bogdanova S, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian research, 160(1–2), 179–210. doi: 10.1016/j.precamres.2007.04.021. |
Luttinen AV. 2018. Bilateral geochemical asymmetry in the Karoo large igneous province. Scientific reports, 8(1), 5223. doi: 10.1038/s41598-018-23661-3. |
Mahadevan TM. 2002. Geology of Bihar and Jharkhand. Geological Society of India Bangalore, 563. |
Maji AK, Goon S, Bhattacharya A, Mishra B, Mahato S, Bernhardt HJ. 2008. Proterozoic polyphase metamorphism in the Chhotanagpur Gneissic Complex (India), and implication for trans-continental Gondwanaland correlation. Precambrian Research, 162(3), 385–402. |
Martinez-serrano R, Schaaf P, Solís-Pichardo G, Hernández-Bernal MD, Hernández-Treviño T, Morales-Contreras J, Macías JL. 2004. Sr, Nd and Pb isotope and geochemical data from the Quaternary Nevado de Toluca volcano, a source of recent adakiticmagmatism, and the Tenango Volcanic Field, Mexico. Journal of Volcanology and Geothermal Research, 138, 77–110. doi: 10.1016/j.jvolgeores.2004.06.007. |
Maruyama S, Liou JG, Terabayashi M. 1996. Blueschists and eclogites of the world and their exhumation. International Geology Review. 38(6), 485–594. |
Mason B, Moore CB. 1982. Principles of Geochemistry. Wiley, New York. |
Mamouda Aliou, Ganno Sylvestre, Bertin Guy Tchoupe Takam, Steven Arnold Mbita Motto, Fossi Hermann Donald, Nzenti Jean Paul, Ondoa Joseph Mvondo. 2022. Origin and intraplate tectonic setting of mafic magmatic enclaves from the Ngaoundal area, Adamawa-Cameroon: Insights from petrography and geochemistry. China Geology, 5(4), 579–594. doi: 10.31035/cg2022041. |
Mazumdar SK. 1988. Crustal evolution of Chhotanagpur gneissic complex and the mica belt of Bihar. In: Mukhopadhyay, D. (Ed.), Precambrian of the Eastern Indian Shield. Memoirs, Geological Society of India, 8, 49–83. |
McDonough WF, Sun SS. 1995. The composition of the earth. Chemical Geology, 120, 223–53. doi: 10.1016/0009-2541(94)00140-4. |
Mertanen S, Pesonen LJ, Huhma H. 1996. Palaeomagnetism and Sm-Nd ages of the Neoproterozoic diabase dykes in Laanila and Kautokeino, northern Fennoscandia. Geological Society, London, Special Publications, 112(1), 331–358. |
Miyashiro A. 1975. Volcanic rock series and tectonic setting. Annual Review of Earth and Planetary Sciences, 3(1), 251–269. doi: 10.1146/annurev.ea.03.050175.001343. |
Mukherjee S, Dey A, Ibanez-Mejia M, Sanyal S, Sengupta P. 2018. Geochemistry, U–Pb geochronology and Lu–Hf isotope systematics of a suite of ferroan (A-type) granitoids from the CGGC: Evidence for Mesoproterozoic crustal extension in the East Indian shield. Precambrian Research, 305, 40–63. doi: 10.1016/j.precamres.2017.11.018. |
Mukherjee S, Dey A, Sanyal S, Ibanez‐Mejia, M, Dutta U, Sengupta P. 2017. Petrology and U–Pb geochronology of zircon in a suite of charnockitic gneisses from parts of the Chotanagpur Granite Gneiss Complex (CGGC): Evidence for the reworking of a Mesoproterozoic basement during the formation of the Rodinia supercontinent. Geological Society, London, Special Publication, l457, 457–456. |
Naganjaneyulu K, Santosh M. 2010. The Central India Tectonic Zone: a geophysical perspective on continental amalgamation along a Mesoproterozoic suture. Gondwana Research, 18(4), 547–564. doi: 10.1016/j.gr.2010.02.017. |
Otten MT. 1984. The origin of brown hornblende in the Artfjället gabbro and dolerites. Contributions to Mineralogy and Petrology, 86(2), 189–199. doi: 10.1007/BF00381846. |
Pearce JA, Ernst RE, Peate DW, Rogers C. 2021. LIP printing: Use of immobile element proxies to characterize Large Igneous Provinces in the geologic record. Lithos, 392–393, 106068. |
Pearce JA. 1996. A user’s guide to basalt discrimination diagrams. Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, 12(79), 113. |
Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14–48. doi: 10.1016/j.lithos.2007.06.016. |
Philpotts A, Ague J. 2009. Principles of igneous and metamorphic petrology. Cambridge University Press. |
Polat A, Hofmann AW, Rosing MT. 2002. Boninite-like volcanic rocks in the 3.7–3.8 GaIsua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology, 184(3–4), 231-254. |
Polat A, Hofmann AW. 2003. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Research, 126(3–4), 197–218. |
Pradhan VR, Meert JG, Pandit MK, Kamenov G, Mondal ME A. 2012. Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India. Precambrian Research, 305, 40–63. |
Radhakrishna BP. 1989. Suspect tectono-stratigraphic terrane elements in the Indian subcontinent. The Journal of the Geological Society of India, 34, 1–24. |
Ray Barman T, Bishui PK, Mukhopadhyay K, Ray JN. 1994. Rb-Sr geochronology of the high grade rocks from Purulia, West Bengal and Jamua-Dumka sector, Bihar. Indian Minerals, 48, 45–60. |
Rekha S, Upadhyay D, Bhattacharya A, Kooijman E, Goon S, Mahato S, Pant NC. 2011. Lithostructural and chronological constraints for tectonic restoration of Proterozoic accretion in the Eastern Indian Precambrian shield. Precambrian Research, 187, 313–33. doi: 10.1016/j.precamres.2011.03.015. |
Ridolfi F, Renzulli A, Puerini M. 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1), 45–66. doi: 10.1007/s00410-009-0465-7. |
Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Wiley New York. |
Roy AK. 1977. Structural and metamorphic evolution of the Bengal anorthosites and associated rocks. Journal of the Geological Society of India, 203–223. |
Roy P, Goswami B, Dutta S, Bhattacharyya C. 2020. Petrogenesis of the post-collisional porphyritic granitoids from Jhalida, Chhotanagpur Gneissic Complex, eastern India. Geological Magazine, 158(4), 598–634. |
Saccani E. 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers, 6(4), 481–501. doi: 10.1016/j.gsf.2014.03.006. |
Sanyal S, Sengupta P. 2012. Metamorphic evolution of the Chotanagpur Granite Gneiss Complex of the East Indian Shield: current status. In: Mazumder, R. , Saha, D. (Eds.), Palaeoproterozoic of India. Geological Society, London, Special Publication, 365, 117–145. |
Schmidt M. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110(2), 304–310. |
Schweitzer J, Kröner A. 1985. Geochemistry and petrogenesis of early Proterozoic intracratonic volcanic rocks of the Ventersdorp Supergroup, South Africa. Chemical Geology, 51(3–4), 265–288. doi: 10.1016/0009-2541(85)90137-8. |
Sen SK, Bhattacharya A. 1986. Fluid induced metamorphic changes in the Bengal anorthosite around Saltora, West Bengal, India. Indian Journal of Earth Sciences, 13, 45–64. |
Sen SK, Bhattacharya A. 1993. Post peak pressure-temperature-fluid history of the granulites around Saltora, West Bengal. Proceedings of the National Academy of Sciences, India, 63(A)(1), 280–306. |
Sequeira N, Mahato S, Rahl JM, Sarkar S, Bhattacharya A, Nance D. 2020. The Anatomy and Origin of a Syn convergent Grenvillian-Age Metamorphic Core Complex, Chottanagpur Gneiss Complex, Eastern India. Lithosphere, 2020(1). |
Sharma RS 2009. Cratons and Fold belts of India. Springer, 304. |
Sharma RS, Sills JD, Joshi M. 1987. Mineralogy and metamorphic history of norite dykes within granulite facies gneisses from Sand Mata, Rajasthan, NW India. Mineralogical Magazine, 51(360), 207–215. doi: 10.1180/minmag.1987.051.360.03. |
Shervais JW. 1982. Ti–V plots and petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59, 101–118. doi: 10.1016/0012-821X(82)90120-0. |
Singh Y, Krishna V. 2009. Rb-Sr geochronology and petrogenesis of granitoids from the Chhotanagpur granite gneiss complex of Raikera-Kunkuri region, Central India. Journal of the Geological Society of India, 74(2), 200–208. doi: 10.1007/s12594-009-0122-9. |
Singh Y, Rai SD. 1992. Yttrium-europium-erbium geochemistry of granitic soils of Kunkuri area, Raigarh district, M. P. , India. Journal of the Geological Society of India, 40, 347–358. |
Smith EI, Sanchez A, Walker JD, Wang K. 1999. Geochemistry of mafic magmas in the Hurricane Volcanic field, Utah: implications for small-and large-scale chemical variability of the lithospheric mantle. The Journal of Geology, 107(4), 433–448. doi: 10.1086/314355. |
Srivastava RK, Sinha AK, Kumar S. 2012. Geochemical characteristics of Mesoproterozoic metabasite dykes from the Chhotanagpur Gneissic Terrain, eastern India: implications for their emplacement in a plate margin tectonic environment. Journal of Earth System Sciences, 121, 509–523. doi: 10.1007/s12040-012-0172-z. |
Stein S, Stein CA, Elling R, Kley J, Keller GR, Wysession M, Rooney T, Frederiksen A, Moucha R. 2018. Insights from North America's failed Midcontinent Rift into the evolution of continental rifts and passive continental margins. Tectonophysics, 744, 403–421. doi: 10.1016/j.tecto.2018.07.021. |
Su X, Peng P, Foley S, Teixeira W, Zhai MG. 2021. Initiation of continental breakup documented in evolution of the magma plumbing system of the ca. 925 Ma Dashigou large igneous province, North China. Lithos, 384, 105984. |
Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Special Publications. In: Saunders, A. D. |
Unrug R. 1996. The assembly of Gondwanaland. Episodes, 19, 11–20. doi: 10.18814/epiiugs/1996/v19i1.2/004. |
Wang L, Kusky TM, Polat A, Wang S, Jiang X, Zong K, Wang J, Deng H, Fu J. 2014. Partial melting of deeply subducted eclogite from the Sulu orogen in China. Nature communications, 5(1), 5604. doi: 10.1038/ncomms6604. |
Wang P, Ren Y, Shan X, Sun S, Wan C, Bian W 2002 The Cretaceous volcanic succession around the Songliao Basin, NE China: relationship between volcanism and sedimentation. Geological Journal, 37(2), 97–115. |
Weaver BL, Tarney J. 1981. Chemical changes during dyke metamorphism in high-grade basement terrains. Nature, 289(5793), 47–49. doi: 10.1038/289047a0. |
Wells PRA. 1977. Pyroxene thermometry in simple and complex system. Contribution to Mineralogy and Petrology, 62, 129–139. doi: 10.1007/BF00372872. |
Whitney DL, Evans BW. 2010. Abbreviations for names of rock-forming minerals. American mineralogist, 95(1), 185–187. doi: 10.2138/am.2010.3371. |
Wingate MT, Pirajno F, Morris PA. 2004. Warakurna large igneous province: A new Mesoproterozoic large igneous province in west-central Australia. Geology, 32(2), 105–108. doi: 10.1130/G20171.1. |
Xie Hong-zhe, Zhu Xiang-kun, Wang Xun, He Yuan, Shen Wei-bing. 2023. Petrological and geochemical characteristics of mafic rocks from the Neoproterozoic Sugetbrak Formation in the northwestern Tarim Block, China. China Geology, 6(1), 85–99. doi: 10.31035/cg2021067. |
Xu YG. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9–10), 747–757. |
Xue JZ, Bai XR, Chen W. 1986. Genetic mineralogy. China University of Geosciences Press, Wuhan (in Chinese). |
Zeng G, Chen LH, Xu XS, Jiang SY, Hofmann AW. 2010. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chemical Geology, 273(1–2), 35–45. doi: 10.1016/j.chemgeo.2010.02.009. |
Zhang X, Su Y, Zheng J, Liu P, Griffin WL, Ping X, Wang J, Zhou L. 2021. Metamorphic history and Neoarchean–Paleoproterozoic crustal growth of the central Trans-North China Orogen: Evidence from granulite-to amphibolite-facies rocks of the Hengshan complex. Gondwana Research, 93, 162–183. doi: 10.1016/j.gr.2021.02.004. |
(a) Map showing the disposition of the major cratonic blocks and tectonic elements within Peninsular India. AFB–Aravalli Fold Belt; BBG–Bhandara-Balaghat granulite; CGC–Chhotanagpur Gneissic Complex; NSMB–North Singhbhum Mobile Belt; EGB–Eastern Ghats Belt; RKG–Ramakona-Katangi granulite; SPGC–Shillong Plateau Gneissic Complex. Archaean cratons: BK–Bundelkhand; BS–Bastar; KR–Karnataka, SB–Singhbhum. (b) Generalized geological map of the Chhotanagpur Gneissic Complex, showing the distribution of major granitoid plutons and lineaments (modified from Mazumdar SK, 1988). SSZ– Singhbhum Shear Zone; SPSZ–South Purulia Shear Zone; NPSZ–North Purulia Shear Zone; SNNF–Son-Narmada North Fault; SNSF–Son-Narmada South Fault; BTF–Balarampur-Tatapani Fault; DVSF–Damodar Valley South Fault. The area of study is marked by the rectangle, lying north-east of Purulia town. (c) Simplified geological map around Santuri-Saltora area, Purulia and Bankura districts, West Bengal, India after Roy AK (1977), Acharya A et al. (2005) and modified by the present authors.
Field photographs: (a) mafic granulites occurring as enclave within enderbite, Sarpahari, 4 km NNE of Saltora town. (b) Overturned D2-antiform in the migmatitic granite gneiss, quarry section, Murlu, 3 km west of Saltora town. (c) Overturned D2-antiform in the mafic granulite, north of Murlu. (d) Mafic granulite showing cross-cutting relation with the granite gneiss, quarry section, Murlu. Length of white scale = 14 cm.
Photomicrographs of amphibolite (a-b) and mafic granulite (c-f). (a) General schistose texture of brown Hbl-rich amphibolite. (b) Biotitization of Opx in amphibolite. (c) The megacrysts of Pl in mafic granulites show deformational features like shadowy extinction, bending of twin lamellae and marginal granulation to medium sized grains. (d) Tabular Pl occur as criss-cross aggregates within the ferromagnesian mineral aggregates. (e) Replacement of Opx by brown and greenish brown Hbl occasionally preserving Opx relicts in mafic granulite. Locally the plagioclase grains show preferred orientation along the general gneissosity in mafic granulite. (f) Coarse elongate Qz in gneissic mafic granulite runs parallel to the gneissic trend. (Mineral abbreviations after Whitney DL and Evans BW, 2010).
Classification diagrams: (a) Nb/Y vs. Zr/Ti diagram (after Pearce JA, 1996); (b) SiO2 vs. Total alkali diagram (after Cox K et al., 1979); (c) (FeOT+TiO2)–Al2O3–MgO diagram; (d) AFM ternary plot of Irvine TNJ and Baragar WRAF (1971).
(a) Chondrite normalized REE diagram of Saltora mafic granulite. Normalization values after McDonough WF and Sun SS (1995). (b) Primitive mantle-normalized spider diagram of Saltora mafic granulite. Normalization values after Sun SS and McDonough WF (1989). (c) Chondrite-normalized REE diagram of Saltora amphibolite. Normalization values after McDonough WF and Sun SS (1995). (d) Primitive mantle-normalized spider diagram of Saltora mafic granulite. Normalization values after Sun SS and McDonough WF (1989).
Plots of amphibolites and mafic granulites in tectonic discrimination diagrams. (a) Ti/1000 vs. V diagram of Shervais JW (1982); (b) Y vs. La/Nb diagram of Floyd PA et al. (1991); (c) N-MORB-normalized Th vs. Nb diagram of Saccani E (2015); (d) Sc/Ba vs. Nb/Sc diagram of Han S et al. (2020). Abbreviations: MORB–Mid-oceanic ridge basalt; OIB–Ocean island basalt; OCTZ–Ocean-continent transition zone.
Temperature (oC) vs. Pressure (MPa) pseudosection of stable mineral assemblages of garnetiferous mafic granulite (PR-TB5) from Saltora area.
Plots of trace element ratios of amphibolites and mafic granulites of Saltora in various diagrams. (a) Th/Nd vs. Ba/La diagram showing subducted slab-derived fluid and melt-derived enrichment trends. (b) La/Nb vs. La/Ba diagram. Fields of Thabazinbi sill, Karoo dolerite, OIB (Ocean Island basalt), Deccan basalt and MORB (Mid-oceanic ridge basalt) are after Ernst RE (2014). (c) (Ta/La) vs. (Hf/Sm) diagram after La Flèche MR et al. (1998). Normalization values of primitive mantle after Sun SS and McDonough WF (1989). (d) TiO2/Yb vs. Th/Nb diagram of Pearce JA et al. (2021) showing principal types of LIP basalt dispersion. Type I: plume array; Type II: SZLM array; and Type III: plume-SZLM interactions. Type IIIa: MORB+OPB-SZLM interractions; Type IIIb: OIB+OPB-SZLM interractionsi; Type IIIab: SZLM-MORB+OPB+OIB interractions. HIMU–High-μ mantle; SZLM–subduction-modified lithospheric mantle; EM–Enriched Mantle; OIB–Ocean Island basalt; OPB–Oceanic plateau basalt.
Plots of amphibolites and mafic granulites in discrimination diagrams to identify the source mantle. (a) La/Yb vs. Nb/La diagram (after, Abdel-Rahman AFM and Nassar PE, 2004). (b) (La/Sm)N vs. (Tb/Yb)N diagram (normalized to primitive mantle values of Sun SS and McDonough WF, 1989). The boundary between products of spinel- and garnet-dominated melting is from Wang P et al. (2002) and references therein; OIB from Sun SS and McDonough WF (1989). (c) Dy/Yb vs. Yb diagram. Partial melting lines are drawn by Giuseppe PDi et al. (2018) for garnet and spinel-bearing lherzolite sources. (d) MgO (wt %) vs. CaO/Al2O3 diagram of Brandl PA et al. (2015). (e) TiO2 vs. (Na2O+K2O) diagram of Zeng G et al. (2010). (f) Ba/Rb vs. Rb/Sr diagram of Furman T and Graham D (1999) showing controls of phlogopite and amphibole of mantle source. Sp–spinel; Gt–garnet; Ol–olivine; Cpx–clinopyroxene.
Spider diagrams for the (a) average of amphibolite and mafic granulite dykes of Saltora (b) Mahoba dolerite dykes, Bundelkhand; (c) Type-1 and Type-3 amphibolite dykes of Dhanbad (data from Kumar A and Ahmad T, 2007); (d) range and average composition of mafic sills, dykes and basalts of Warakurna large igneous province, Australia (data from Wingate MT et al., 2004). MORB (mid-ocean-ridge basalt) normalization values after Sun SS and McDonough WF (1989).