2025 Vol. 8, No. 1
Article Contents

Poulami Roy, Bapi Goswami, Ankita Basak, Anwesa Sen, Chittaranjan Bhattacharyya, 2025. Geochemistry and petrogenesis of Mesoproterozoic mafic granulite and amphibolite dykes from Saltora, Bankura district, Chhotanagpur Gneissic Complex, eastern India: Implications for their emplacement in within-plate setting, China Geology, 8, 159-186. doi: 10.31035/cg20220082
Citation: Poulami Roy, Bapi Goswami, Ankita Basak, Anwesa Sen, Chittaranjan Bhattacharyya, 2025. Geochemistry and petrogenesis of Mesoproterozoic mafic granulite and amphibolite dykes from Saltora, Bankura district, Chhotanagpur Gneissic Complex, eastern India: Implications for their emplacement in within-plate setting, China Geology, 8, 159-186. doi: 10.31035/cg20220082

Geochemistry and petrogenesis of Mesoproterozoic mafic granulite and amphibolite dykes from Saltora, Bankura district, Chhotanagpur Gneissic Complex, eastern India: Implications for their emplacement in within-plate setting

More Information
  • Distinguishing high-grade mafic-ultramafic rocks originally crystallized from within-plate basaltic magmatism is challenging and crucial because the chemical composition of the igneous rocks has been modified during high-grade metamorphism, causing misidentification of the characters of the parental magma. Proterozoic metamorphosed mafic dykes occur throughout the Chhotanagpur Gneissic Complex (CGC) of eastern Indian shield. The E-W trending mafic dykes from the Saltora area in the southeastern CGC underwent metamorphism in two episodes: M1 ( 650 MPa; 770°C) and M2 (300 MPa; 744°C). The metamafics are enriched in LILE, depleted in HFSE, and display strong fractionation of LREE, nearly flat HREE patterns in a chondrite-normalized REE diagram, and show tholeiitic differentiation trend. Their geochemical affinity is towards rift-related, continental within-plate basalts. About 7%–10% melting of the carbonated spinel-peridotite sub-continental lithospheric mantle (SCLM) produced the parental mafic magma. The pre-existing SCLM was metasomatized by slab-derived fluid during the previous subduction. The upwelling of the asthenosphere in a post-collisional tectonic setting caused E-W trending fractures, lithospheric thinning, and gravitational collapse. These dykes were emplaced during crustal extension around 1070 Ma. The remarkable geochemical similarity between the mafic dykes of Saltora and Dhanbad, the ca. 1096 Ma Mahoba (Bundelkhand craton), and the ca. 1070 Ma Alcurra mafic dykes in Australia supports a genetic link.

  • 加载中
  • Abdel-Rahman AFM, Nassar PE. 2004. Cenozoic volcanism in the Middle East: Petrogenesis of alkali basalts from northern Lebanon. Geological Magazine, 141(5), 545–563. doi: 10.1017/S0016756804009604.

    CrossRef Google Scholar

    Acharya A, Ray S, Jana P. 2005. Integrated mineral search in the eastern sector of North Purulia Shear Zone (NPSZ) between Raghunathpur and Santuri-Saltora (P-II). Record, Geological Survey of India, 136(3), 61–64.

    Google Scholar

    Acharyya SK. 2003. The nature of Mesoproterozoic Central Indian Tectonic Zone with exhumed and reworked older granulites. Gondwana Research, 6, 197–214. doi: 10.1016/S1342-937X(05)70970-9.

    CrossRef Google Scholar

    Ague JJ. 2017. Element mobility during regional metamorphism in crustal and subduction zone environments with a focus on the rare earth elements (REE). American Mineralogist:Journal of Earth and Planetary Materials, 102(9), 1796–1821. doi: 10.2138/am-2017-6130.

    CrossRef Google Scholar

    Aitken AR, Smithies RH, Dentith MC, Joly A, Evans S, Howard HM. 2013. Magmatism-dominated intracontinental rifting in the Mesoproterozoic: The Ngaanyatjarra Rift, central Australia. Gondwana Research, 24(3–4), 886–901. doi: 10.1016/j.gr.2012.10.003.

    CrossRef Google Scholar

    Aldanmaz E, Yaliniz MK, Guctekin A, Goncuoglu MC. 2008. Geochemical characteristics of mafic lavas from the Neotethyanophiolites in western Turkey: implications for heterogeneous source contribution during variable stages of ocean crust generation. Geological Magazine, 145(1), 37–54. doi: 10.1017/S0016756807003986.

    CrossRef Google Scholar

    Aldanmaz E. 2002. Mantle source characteristics of alkali basalts and basanites in an extensional intracontinental plate setting, western Anatolia, Turkey: implications for multi-stage melting. International Geology Review, 44(5), 440–457. doi: 10.2747/0020-6814.44.5.440.

    CrossRef Google Scholar

    Allegre CJ, Minster JF. 1978. Quantitative method of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 38, 1–25. doi: 10.1016/0012-821X(78)90123-1.

    CrossRef Google Scholar

    Babechuk MG, Widdowson M, Murphy M, Kamber BS. 2014. A combined Y/Ho, high field strength element (HFSE) and Nd isotope perspective on basalt weathering, Deccan Traps, India. Chemical Geology.

    Google Scholar

    Basak A, Goswami B, Singha A, Das S, Bhattacharyya C. 2019. Magmatic epidote in the Grenvillian granitoids of North Purulia Shear Zone, Chhotanagpur Gneissic Complex, India and its significance; Current Science, (00113891), 117(2).

    Google Scholar

    Basak A, Goswami B. 2020. The physico-chemical conditions of crystallization of the Grenvillian arfvedsonite granite of Dimra Pahar, Hazaribagh, India: constraints on possible source regions. Mineralogy and Petrology, 114, 329–356. doi: 10.1007/s00710-020-00708-w.

    CrossRef Google Scholar

    Bhattacharya DK, Mukherjee D, Barla VC. 2010. Komatiite within Chhotanagpur Gneissic Complex at Semra, Palamau district, Jharkhand: petrological and geochemical fingerprints. Journal of the Geological Society of India, 76(6), 589–606. doi: 10.1007/s12594-010-0120-y.

    CrossRef Google Scholar

    Bhattacharyya PK, Mukherjee S. 1987. Granulites in and around the Bengal anorthosite, eastern India: genesis of coronal garnet and evolution of the granulite–anorthosite complex. Geological Magazine, 124, 21–32. doi: 10.1017/S0016756800015752.

    CrossRef Google Scholar

    Bhowmik SK, Wilde SA, Bhandari A, Pal T, Pant NC. 2012. Growth of the Greater Indian Landmass and its assembly in Rodinia: geochronological evidence from the Central Indian Tectonic Zone. Gondwana Research, 22, 54–72. doi: 10.1016/j.gr.2011.09.008.

    CrossRef Google Scholar

    Blundy JD, Holland TJB. 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104(2), 208–224. doi: 10.1007/BF00306444.

    CrossRef Google Scholar

    Brandl PA, Genske FS, Beier C, Haase KM, Sprung P, Krumm SH. 2015. Magmatic evidence for carbonate metasomatism in the lithospheric mantle underneath the Ohře (Eger) Rift. Journal of Petrology, 56(9), 1743–1774. doi: 10.1093/petrology/egv052.

    CrossRef Google Scholar

    Bright RM, Amato JM, Denyszyn SW, Ernst RE. 2014. U-Pb geochronology of 1. 1 Ga diabase in the southwestern United States:Testing models for the origin of a post-Grenville large igneous province. Lithosphere, 6(3), 135–156.

    Google Scholar

    Chatterjee N, Crowley JL, Ghose NC. 2008. Geochronology of the 1.55 Ga Bengal anorthosite and Grenvillian metamorphism in the Chotanagpur gneissic complex, eastern India. Precambrian Research, 161, 303–316.

    Google Scholar

    Chen G, Sun D, Hui'an Yin. 1988. Genetic mineralogy and prospecting mineralogy. Chongqing Publishing House.

    Google Scholar

    Choudhary BR, Ernst RE, Xu YG, Evans DA, de Kock MO, Meert JG, Ruiz AS, Lima GA. 2019. Geochemical characterization of a reconstructed 1110 Ma large igneous province. Precambrian Research, 332, 105382. doi: 10.1016/j.precamres.2019.105382.

    CrossRef Google Scholar

    Claiborne LL, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea F. 2006. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineralogical Magazine, 70(5), 517–543. doi: 10.1180/0026461067050348.

    CrossRef Google Scholar

    Condie KC. 1997. Sources of Proterozoic mafic dyke swarms: constraints from ThTa and LaYb ratios. Precambrian Research, 81(1-2), 3–14. doi: 10.1016/S0301-9268(96)00020-4.

    CrossRef Google Scholar

    Connolly JAD. 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modelling and its application to subduction zone decarbonation. Earth and Planetary Science Letters, 236, 524–541. doi: 10.1016/j.jpgl.2005.04.033.

    CrossRef Google Scholar

    Correa-Gomes LC, Oliveira EP. 2000. Radiating 1. 0 Ga mafic dyke swarms of eastern Brazil and western Africa:evidence of post-assembly extension in the Rodinia supercontinent?. Gondwana Research, 3(3), 325–332.

    Google Scholar

    Cox K, G Bell, JD Pankhurst, RJ. 1979. The interpretation of igneous rocks. London: Allen and Unwin.

    Google Scholar

    Currie KL, Williams PR. 1993. An Archeancalc-alkaline lamprophyre suite, northeasternYilgarn Block, western Australia. Lithos, 31(1-2), 33–50. doi: 10.1016/0024-4937(93)90031-7.

    CrossRef Google Scholar

    Das S, Goswami B, Basak A, Bhattacharyya C. 2020. A Grenvillian magmatic almandine garnet-bearing ferroan granite intrusion in the Chhotanagpur Gneissic complex, Eastern India; Petrology, petrochemistry, petrogenesis and geodynamic implications. Lithos, 376, 105749.

    Google Scholar

    Dasgupta R, Hirschmann MM, Smith ND. 2007. Partial melting experiments of peridotite+ CO2 at 3 GPa and genesis of alkalic ocean island basalts. Journal of Petrology, 48(11), 2093–2124. doi: 10.1093/petrology/egm053.

    CrossRef Google Scholar

    Deer WA, Howie RA, Zussman J. 1992. An introduction to the rock-forming minerals. Longman, London, 696.

    Google Scholar

    Dey A, Karmakar S, Mukherjee S, Sanyal S, Dutta U, Sengupta P. 2019. High pressure metamorphism of mafic granulites from the Chotanagpur Granite Gneiss Complex, India: Evidence for collisional tectonics during assembly of Rodinia. Journal of Geodynamics, 129, 24–43. doi: 10.1016/j.jog.2019.03.005.

    CrossRef Google Scholar

    Elburg MA, Van Bergen M, Hoogewerff J, Foden J, Vroon P, Zulkarnain I, Nasution A. 2002. Geochemical trends across an arc-continent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochimica et Cosmochimica Acta, 66(15), 2771–2789. doi: 10.1016/S0016-7037(02)00868-2.

    CrossRef Google Scholar

    Elling R, Stein S, Stein CA, Gefeke K. 2022. Three Major Failed Rifts in Central North America: Similarities and Differences. GSA Today, 32(6), 4–11. doi: 10.1130/GSATG518A.1.

    CrossRef Google Scholar

    Erlank AJ, Duncan AR, Marsh JS, Sweeney RJ, Hawkesworth CJ, Milner SC, Miller RM, Rogers NW. 1988. A laterally extensive geochemical discontinuity in the subcontinental Gondwana lithosphere. Proceedings of the V Conference on Geochemical Evolution of the Continental Crust, Brazil, 1–10.

    Google Scholar

    Ernst RE, Buchan KL. 2001. The use of mafic dyke swarms in identifying and locating mantle plumes. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Special Paper of the Geological Society of America, 352, 247–265.

    Google Scholar

    Ernst RE. 2014. Large igneous provinces. Cambridge University Press, 653.

    Google Scholar

    Evans DAD. 2013. Reconstructing pre-Pangean supercontinents. Bulletin of the Geological Society of America, 125, 1735–1751. doi: 10.1130/B30950.1.

    CrossRef Google Scholar

    Evins PM, Smithies RH, Howard HM, Kirkland CL, Wingate MT, Bodorkos S. 2010. Devil in the detail: The 1150–1000 Ma magmatic and structural evolution of the Ngaanyatjarra Rift, west Musgrave Province, Central Australia. Precambrian Research, 183(3), 572–588. doi: 10.1016/j.precamres.2010.02.011.

    CrossRef Google Scholar

    Ferry JT, Spear FS. 1978. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology, 66(2), 113–117. doi: 10.1007/BF00372150.

    CrossRef Google Scholar

    Floyd PA, Kelling G, Gökçen SL, Gökçen N. 1991. Geochemistry and tectonic environment of basaltic rocks from the Misis ophiolitic mélange, south Turkey. Chemical Geology, 89(3-4), 263–280. doi: 10.1016/0009-2541(91)90020-R.

    CrossRef Google Scholar

    Fuhrman ML, Lindsley DH. 1988 Ternary-Feldspar Modeling and Thermometry. American Mineralogist, 73, 201–15.

    Google Scholar

    Furman T, Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. In:Developments in Geotectonics, Elsevier, 24,237–262.

    Google Scholar

    Gale A, Dalton CA, Langmuir CH, Su Y, Schilling JG. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3), 489–518.

    Google Scholar

    Gasparik T. 1984. Experimental study of subsolidus phase relations and mixing properties of pyroxene in the system CaO-Al2O3-SiO2. Geochimica et Cosmochimica Acta, 48, 2537–45. doi: 10.1016/0016-7037(84)90304-1.

    CrossRef Google Scholar

    Gasparik T. 1985. Experimental study of subsolidus phase relations and mixing properties of pyroxene and plagioclase in the system Na2O-CaO-Al2O3-SiO2. Contributions to Mineralogy and Petrology, 89, 346–57. doi: 10.1007/BF00381556.

    CrossRef Google Scholar

    Ghatak A, Basu AR, Wakabayashi J. 2012. Elemental mobility in subduction metamorphism: Insight from metamorphic rocks of the Franciscan Complex and the Feather River ultramafic belt, California. International Geology Review, 54(6), 654–685. doi: 10.1080/00206814.2011.567087.

    CrossRef Google Scholar

    Ghose NC, Chatterjee N. 2008. Petrology, tectonic setting and source of dykes and related magmatic bodies in Chotanagpur gneissic complex, eastern India. In: Srivastava RK, Sivaji C, ChalapathiRao NV (Eds.), Indian Dyke: Geochemistry, Geophysics and Geochronology. Narosa Publishing House Private Limited, New Delhi, 471–493.

    Google Scholar

    Ghose NC, Mukherjee D, Chatterjee N. 2005. Plume generated Mesoproterozoic mafic-ultramafic magmatism in the Chotanagpur mobile belt of Eastern Indian shield margin. Journal of the Geological Society of India, 66, 725–740.

    Google Scholar

    Ghose NC. 1983. Geology, tectonics and evolution of the Chotanagpur granite gneiss complex, Eastern India. In: Sinha Roy, S. (Ed.); Recent Researches in Geology, 10 211-247.

    Google Scholar

    Giuseppe P Di, Agostini S, Manetti P, Savaşçın MY, Conticelli S. 2018. Sub-lithospheric origin of Na-alkaline and calc-alkaline magmas in a post-collisional tectonic regime: Sr-Nd-Pb isotopes in recent monogenetic volcanism of Cappadocia, Central Turkey. Lithos, 316, 304–322.

    Google Scholar

    Goswami B, Bhattacharyya C. 2008. Metamorphism of nepheline syenite gneisses from chhotanagpur granite gneiss complex, Northeastern Puruliya district, Eastern India. Journal Geological Society of India. 71(2), 209–213.

    Google Scholar

    Goswami B, Bhattacharyya C. 2010. Tectonothermal evolution of Chhotanagpur granite gneiss complex from northeastern part of Puruliya district, West Bengal, eastern Indian. Indian Journal of Geosciences, 80(1–4), 41–54.

    Google Scholar

    Goswami B, Bhattacharyya C. 2014. Petrogenesis of shoshonitic granitoids, eastern India: implications for the late Grenvillian post-collisional magmatism. Geoscience Frontier, 5, 21–43.

    Google Scholar

    Goswami B, Roy P, Basak A, Das S, Bhattacharyya C. 2018. Physicochemical conditions of four calc-alkaline granitoid plutons of Chhotanagpur Gneissic Complex, Eastern India: tectonic implications. Journal of Earth System Sciences, 127, 1–33. doi: 10.1007/s12040-017-0916-x.

    CrossRef Google Scholar

    Hammarstrom JM, Zen EA. 1986 Aluminum-in-hornblende: An empirical igneous geobarometer. American Mineralogist, 71(11–12), 1297–1313

    Google Scholar

    Han S, Li M, Zhang Q, Song L. 2020. An Automated Method to Generate and Evaluate Geochemical Tectonic Discrimination Diagrams Based on Topological Theory. Minerals, 10(1), 62. doi: 10.3390/min10010062.

    CrossRef Google Scholar

    Hanson RE, Crowley JL, Bowring SA, Ramezani J, Gose WA, Dalziel IW, Pancake JA, Seidel EK, Blenkinsop TG, Mukwakwami J. 2004. Coeval large-scale magmatism in the Kalahari and Laurentian cratons during Rodinia assembly. Science, 304(5674), 1126–1129. doi: 10.1126/science.1096329.

    CrossRef Google Scholar

    Harlov DE. 2012. The potential role of fluids during regional granulite-facies dehydration in the lower crust. Geoscience Frontier, 3(6), 813–827. doi: 10.1016/j.gsf.2012.03.007.

    CrossRef Google Scholar

    Hart WK, Wolde GC, Walter RC, Mertzman SA. 1989. Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions. Journal of geophysical research, 94, 7731–7748. doi: 10.1029/JB094iB06p07731.

    CrossRef Google Scholar

    Hawkesworth CJ, Turner SP, McDermott F, Peate DW, Van Calsteren P. 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276(5312), 551–555. doi: 10.1126/science.276.5312.551.

    CrossRef Google Scholar

    Hill IG, Worden RH, Meighan IG. 2000. Geochemical evolution of a palaeolaterite: The Inter basaltic Formation, Northern Ireland. Chemical Geology, 166, 65–84. doi: 10.1016/S0009-2541(99)00179-5.

    CrossRef Google Scholar

    Hirose K, Kushiro I. 1993. Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters, 114(4), 477–489. doi: 10.1016/0012-821X(93)90077-M.

    CrossRef Google Scholar

    Hoisch TD. 1990. Empirical calibration of six geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contributions to Mineralogy and Petrology, 104(2), 225–234. doi: 10.1007/BF00306445.

    CrossRef Google Scholar

    Holland TJB, Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4), 433–447. doi: 10.1007/BF00310910.

    CrossRef Google Scholar

    Holland TJB, Powell R. 1996. Thermodynamics of order-disorder in minerals: II. Symmetric formalism applied to solid solutions. American Mineralogist, 81(11–12), 1425–1437.

    Google Scholar

    Holland TJB, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of metamorphic Geology, 29(3), 333–383. doi: 10.1111/j.1525-1314.2010.00923.x.

    CrossRef Google Scholar

    Holland TJB, Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309–43.

    Google Scholar

    Hollister LS, Grissom GC, Peters EK, Stowell HH, Sisson VB. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, l 72 (3–4), 231–239

    Google Scholar

    Holmes A. 1955. Dating the Precambrian of Peninsular India and Ceylon. Proceedings of the Geologists Association of Canada, 7, 81–106.

    Google Scholar

    Hoskin PW, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in mineralogy and geochemistry, 53(1), 27–62. doi: 10.2113/0530027.

    CrossRef Google Scholar

    Howard HM, Smithies RH, Kirkland CL, Evins PM, Wingate MTD. 2009. Age and geochemistry of the Alcurra Suite in the west Musgrave Province and implications for orthomagmatic Ni–Cu–PGE mineralization during the Giles Event. Geological Survey of Western Australia, Record, 16,16.

    Google Scholar

    Hu Y, Zhao X, Peng P, Yang F, D'Agrella-Filho MS, Chen W, Xu M. 2022. Paleomagnetic Constraints From 925 Ma Mafic Dykes in North China and Brazil: Implications for the Paleogeography of Rodinia. Journal of Geophysical Research:Solid Earth, 127(9), 2022JB025079. doi: 10.1029/2022JB025079.

    CrossRef Google Scholar

    Irvine TNJ, Baragar WRAF. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5), 523–548. doi: 10.1139/e71-055.

    CrossRef Google Scholar

    Jin SQ. 1991. Compositional characteristics of calcareous amphibole from metamorphic facies in different regions. Chinese Science Bulletin 36, 851–854 (in Chinese).

    Google Scholar

    Johnson MC, Rutherford MJ. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17(9), 837–841. https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2.

    Google Scholar

    Jourdan F, Bertrand H, Féraud G, Le Gall B, Watkeys MK. 2009. Lithospheric mantle evolution monitored by overlapping large igneous provinces: case study in southern Africa. Lithos, 107, 257–268. doi: 10.1016/j.lithos.2008.10.011.

    CrossRef Google Scholar

    Karmakar S, Bose S, Sarbadhikari AB, Das K. 2011. Evolution of granulite enclaves and associated gneisses from Purulia, Chhotanagpur Granite Gneiss Complex, India: evidence for 990–940 Ma tectonothermal event(s) at the eastern India cratonic fringe zone. Journal of Asian Earth Sciences, 41, 69–88. doi: 10.1016/j.jseaes.2010.12.006.

    CrossRef Google Scholar

    Klein EM. 2003. Geochemistry of the Igneous oceanic rocks. The crust, 3, 433.

    Google Scholar

    Kretz R. 1982. Transfer and exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data. Geochimica et Cosmochimica Acta, 46(3), 411–421. doi: 10.1016/0016-7037(82)90232-0.

    CrossRef Google Scholar

    Krishnan MS. 1961. Tectonics with special reference to India. Proceedings of the Indian Academy of Sciences Section B, 53, 49–72. doi: 10.1007/BF03050924.

    CrossRef Google Scholar

    Kumar A, Ahmad T. 2007. Geochemistry of the mafic dykes in parts of Chotanagpur gneissic complex: petrogenetic and tectonic implications. Geochemical Journal, 41, 173–186. doi: 10.2343/geochemj.41.173.

    CrossRef Google Scholar

    Kumar D, Rao NC, Prabhat P, Chatterjee A, Rahaman W. 2022. Petrochemistry and Sr-Nd isotopes of post-collisional Neoproterozoic (ca. 950 Ma) amphibolite dykes of continental flood basalt affinity from the Simdega area: Implications for the geodynamic evolution of the Chhotanagpur Gneissic Complex, Eastern India. Lithos. 1;428: 106810.

    Google Scholar

    La Flèche MR, Camire G, Jenner GA. 1998. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen islands, Quebec, Canada. Chemical Geology, 148, 115–136. doi: 10.1016/S0009-2541(98)00002-3.

    CrossRef Google Scholar

    Langmuir CH, Klein EM, Plank T. 1992. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. Mantle flow and melt generation at mid-ocean ridges. Geophysical Monograph- American Geophysical Union, 71, 183–280.

    Google Scholar

    Le Cheminant AN, Heaman LM. 1989. Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening. Earth and Planetary Science Letters, 96, 38–48. doi: 10.1016/0012-821X(89)90122-2.

    CrossRef Google Scholar

    Li ZX, Bogdanova S, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian research, 160(1–2), 179–210. doi: 10.1016/j.precamres.2007.04.021.

    CrossRef Google Scholar

    Luttinen AV. 2018. Bilateral geochemical asymmetry in the Karoo large igneous province. Scientific reports, 8(1), 5223. doi: 10.1038/s41598-018-23661-3.

    CrossRef Google Scholar

    Mahadevan TM. 2002. Geology of Bihar and Jharkhand. Geological Society of India Bangalore, 563.

    Google Scholar

    Maji AK, Goon S, Bhattacharya A, Mishra B, Mahato S, Bernhardt HJ. 2008. Proterozoic polyphase metamorphism in the Chhotanagpur Gneissic Complex (India), and implication for trans-continental Gondwanaland correlation. Precambrian Research, 162(3), 385–402.

    Google Scholar

    Martinez-serrano R, Schaaf P, Solís-Pichardo G, Hernández-Bernal MD, Hernández-Treviño T, Morales-Contreras J, Macías JL. 2004. Sr, Nd and Pb isotope and geochemical data from the Quaternary Nevado de Toluca volcano, a source of recent adakiticmagmatism, and the Tenango Volcanic Field, Mexico. Journal of Volcanology and Geothermal Research, 138, 77–110. doi: 10.1016/j.jvolgeores.2004.06.007.

    CrossRef Google Scholar

    Maruyama S, Liou JG, Terabayashi M. 1996. Blueschists and eclogites of the world and their exhumation. International Geology Review. 38(6), 485–594.

    Google Scholar

    Mason B, Moore CB. 1982. Principles of Geochemistry. Wiley, New York.

    Google Scholar

    Mamouda Aliou, Ganno Sylvestre, Bertin Guy Tchoupe Takam, Steven Arnold Mbita Motto, Fossi Hermann Donald, Nzenti Jean Paul, Ondoa Joseph Mvondo. 2022. Origin and intraplate tectonic setting of mafic magmatic enclaves from the Ngaoundal area, Adamawa-Cameroon: Insights from petrography and geochemistry. China Geology, 5(4), 579–594. doi: 10.31035/cg2022041.

    CrossRef Google Scholar

    Mazumdar SK. 1988. Crustal evolution of Chhotanagpur gneissic complex and the mica belt of Bihar. In: Mukhopadhyay, D. (Ed.), Precambrian of the Eastern Indian Shield. Memoirs, Geological Society of India, 8, 49–83.

    Google Scholar

    McDonough WF, Sun SS. 1995. The composition of the earth. Chemical Geology, 120, 223–53. doi: 10.1016/0009-2541(94)00140-4.

    CrossRef Google Scholar

    Mertanen S, Pesonen LJ, Huhma H. 1996. Palaeomagnetism and Sm-Nd ages of the Neoproterozoic diabase dykes in Laanila and Kautokeino, northern Fennoscandia. Geological Society, London, Special Publications, 112(1), 331–358.

    Google Scholar

    Miyashiro A. 1975. Volcanic rock series and tectonic setting. Annual Review of Earth and Planetary Sciences, 3(1), 251–269. doi: 10.1146/annurev.ea.03.050175.001343.

    CrossRef Google Scholar

    Mukherjee S, Dey A, Ibanez-Mejia M, Sanyal S, Sengupta P. 2018. Geochemistry, U–Pb geochronology and Lu–Hf isotope systematics of a suite of ferroan (A-type) granitoids from the CGGC: Evidence for Mesoproterozoic crustal extension in the East Indian shield. Precambrian Research, 305, 40–63. doi: 10.1016/j.precamres.2017.11.018.

    CrossRef Google Scholar

    Mukherjee S, Dey A, Sanyal S, Ibanez‐Mejia, M, Dutta U, Sengupta P. 2017. Petrology and U–Pb geochronology of zircon in a suite of charnockitic gneisses from parts of the Chotanagpur Granite Gneiss Complex (CGGC): Evidence for the reworking of a Mesoproterozoic basement during the formation of the Rodinia supercontinent. Geological Society, London, Special Publication, l457, 457–456.

    Google Scholar

    Naganjaneyulu K, Santosh M. 2010. The Central India Tectonic Zone: a geophysical perspective on continental amalgamation along a Mesoproterozoic suture. Gondwana Research, 18(4), 547–564. doi: 10.1016/j.gr.2010.02.017.

    CrossRef Google Scholar

    Otten MT. 1984. The origin of brown hornblende in the Artfjället gabbro and dolerites. Contributions to Mineralogy and Petrology, 86(2), 189–199. doi: 10.1007/BF00381846.

    CrossRef Google Scholar

    Pearce JA, Ernst RE, Peate DW, Rogers C. 2021. LIP printing: Use of immobile element proxies to characterize Large Igneous Provinces in the geologic record. Lithos, 392–393, 106068.

    Google Scholar

    Pearce JA. 1996. A user’s guide to basalt discrimination diagrams. Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, 12(79), 113.

    Google Scholar

    Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14–48. doi: 10.1016/j.lithos.2007.06.016.

    CrossRef Google Scholar

    Philpotts A, Ague J. 2009. Principles of igneous and metamorphic petrology. Cambridge University Press.

    Google Scholar

    Polat A, Hofmann AW, Rosing MT. 2002. Boninite-like volcanic rocks in the 3.7–3.8 GaIsua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology, 184(3–4), 231-254.

    Google Scholar

    Polat A, Hofmann AW. 2003. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Research, 126(3–4), 197–218.

    Google Scholar

    Pradhan VR, Meert JG, Pandit MK, Kamenov G, Mondal ME A. 2012. Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India. Precambrian Research, 305, 40–63.

    Google Scholar

    Radhakrishna BP. 1989. Suspect tectono-stratigraphic terrane elements in the Indian subcontinent. The Journal of the Geological Society of India, 34, 1–24.

    Google Scholar

    Ray Barman T, Bishui PK, Mukhopadhyay K, Ray JN. 1994. Rb-Sr geochronology of the high grade rocks from Purulia, West Bengal and Jamua-Dumka sector, Bihar. Indian Minerals, 48, 45–60.

    Google Scholar

    Rekha S, Upadhyay D, Bhattacharya A, Kooijman E, Goon S, Mahato S, Pant NC. 2011. Lithostructural and chronological constraints for tectonic restoration of Proterozoic accretion in the Eastern Indian Precambrian shield. Precambrian Research, 187, 313–33. doi: 10.1016/j.precamres.2011.03.015.

    CrossRef Google Scholar

    Ridolfi F, Renzulli A, Puerini M. 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1), 45–66. doi: 10.1007/s00410-009-0465-7.

    CrossRef Google Scholar

    Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Wiley New York.

    Google Scholar

    Roy AK. 1977. Structural and metamorphic evolution of the Bengal anorthosites and associated rocks. Journal of the Geological Society of India, 203–223.

    Google Scholar

    Roy P, Goswami B, Dutta S, Bhattacharyya C. 2020. Petrogenesis of the post-collisional porphyritic granitoids from Jhalida, Chhotanagpur Gneissic Complex, eastern India. Geological Magazine, 158(4), 598–634.

    Google Scholar

    Saccani E. 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers, 6(4), 481–501. doi: 10.1016/j.gsf.2014.03.006.

    CrossRef Google Scholar

    Sanyal S, Sengupta P. 2012. Metamorphic evolution of the Chotanagpur Granite Gneiss Complex of the East Indian Shield: current status. In: Mazumder, R. , Saha, D. (Eds.), Palaeoproterozoic of India. Geological Society, London, Special Publication, 365, 117–145.

    Google Scholar

    Schmidt M. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110(2), 304–310.

    Google Scholar

    Schweitzer J, Kröner A. 1985. Geochemistry and petrogenesis of early Proterozoic intracratonic volcanic rocks of the Ventersdorp Supergroup, South Africa. Chemical Geology, 51(3–4), 265–288. doi: 10.1016/0009-2541(85)90137-8.

    CrossRef Google Scholar

    Sen SK, Bhattacharya A. 1986. Fluid induced metamorphic changes in the Bengal anorthosite around Saltora, West Bengal, India. Indian Journal of Earth Sciences, 13, 45–64.

    Google Scholar

    Sen SK, Bhattacharya A. 1993. Post peak pressure-temperature-fluid history of the granulites around Saltora, West Bengal. Proceedings of the National Academy of Sciences, India, 63(A)(1), 280–306.

    Google Scholar

    Sequeira N, Mahato S, Rahl JM, Sarkar S, Bhattacharya A, Nance D. 2020. The Anatomy and Origin of a Syn convergent Grenvillian-Age Metamorphic Core Complex, Chottanagpur Gneiss Complex, Eastern India. Lithosphere, 2020(1).

    Google Scholar

    Sharma RS 2009. Cratons and Fold belts of India. Springer, 304.

    Google Scholar

    Sharma RS, Sills JD, Joshi M. 1987. Mineralogy and metamorphic history of norite dykes within granulite facies gneisses from Sand Mata, Rajasthan, NW India. Mineralogical Magazine, 51(360), 207–215. doi: 10.1180/minmag.1987.051.360.03.

    CrossRef Google Scholar

    Shervais JW. 1982. Ti–V plots and petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59, 101–118. doi: 10.1016/0012-821X(82)90120-0.

    CrossRef Google Scholar

    Singh Y, Krishna V. 2009. Rb-Sr geochronology and petrogenesis of granitoids from the Chhotanagpur granite gneiss complex of Raikera-Kunkuri region, Central India. Journal of the Geological Society of India, 74(2), 200–208. doi: 10.1007/s12594-009-0122-9.

    CrossRef Google Scholar

    Singh Y, Rai SD. 1992. Yttrium-europium-erbium geochemistry of granitic soils of Kunkuri area, Raigarh district, M. P. , India. Journal of the Geological Society of India, 40, 347–358.

    Google Scholar

    Smith EI, Sanchez A, Walker JD, Wang K. 1999. Geochemistry of mafic magmas in the Hurricane Volcanic field, Utah: implications for small-and large-scale chemical variability of the lithospheric mantle. The Journal of Geology, 107(4), 433–448. doi: 10.1086/314355.

    CrossRef Google Scholar

    Srivastava RK, Sinha AK, Kumar S. 2012. Geochemical characteristics of Mesoproterozoic metabasite dykes from the Chhotanagpur Gneissic Terrain, eastern India: implications for their emplacement in a plate margin tectonic environment. Journal of Earth System Sciences, 121, 509–523. doi: 10.1007/s12040-012-0172-z.

    CrossRef Google Scholar

    Stein S, Stein CA, Elling R, Kley J, Keller GR, Wysession M, Rooney T, Frederiksen A, Moucha R. 2018. Insights from North America's failed Midcontinent Rift into the evolution of continental rifts and passive continental margins. Tectonophysics, 744, 403–421. doi: 10.1016/j.tecto.2018.07.021.

    CrossRef Google Scholar

    Su X, Peng P, Foley S, Teixeira W, Zhai MG. 2021. Initiation of continental breakup documented in evolution of the magma plumbing system of the ca. 925 Ma Dashigou large igneous province, North China. Lithos, 384, 105984.

    Google Scholar

    Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Special Publications. In: Saunders, A. D.

    Google Scholar

    Unrug R. 1996. The assembly of Gondwanaland. Episodes, 19, 11–20. doi: 10.18814/epiiugs/1996/v19i1.2/004.

    CrossRef Google Scholar

    Wang L, Kusky TM, Polat A, Wang S, Jiang X, Zong K, Wang J, Deng H, Fu J. 2014. Partial melting of deeply subducted eclogite from the Sulu orogen in China. Nature communications, 5(1), 5604. doi: 10.1038/ncomms6604.

    CrossRef Google Scholar

    Wang P, Ren Y, Shan X, Sun S, Wan C, Bian W 2002 The Cretaceous volcanic succession around the Songliao Basin, NE China: relationship between volcanism and sedimentation. Geological Journal, 37(2), 97–115.

    Google Scholar

    Weaver BL, Tarney J. 1981. Chemical changes during dyke metamorphism in high-grade basement terrains. Nature, 289(5793), 47–49. doi: 10.1038/289047a0.

    CrossRef Google Scholar

    Wells PRA. 1977. Pyroxene thermometry in simple and complex system. Contribution to Mineralogy and Petrology, 62, 129–139. doi: 10.1007/BF00372872.

    CrossRef Google Scholar

    Whitney DL, Evans BW. 2010. Abbreviations for names of rock-forming minerals. American mineralogist, 95(1), 185–187. doi: 10.2138/am.2010.3371.

    CrossRef Google Scholar

    Wingate MT, Pirajno F, Morris PA. 2004. Warakurna large igneous province: A new Mesoproterozoic large igneous province in west-central Australia. Geology, 32(2), 105–108. doi: 10.1130/G20171.1.

    CrossRef Google Scholar

    Xie Hong-zhe, Zhu Xiang-kun, Wang Xun, He Yuan, Shen Wei-bing. 2023. Petrological and geochemical characteristics of mafic rocks from the Neoproterozoic Sugetbrak Formation in the northwestern Tarim Block, China. China Geology, 6(1), 85–99. doi: 10.31035/cg2021067.

    CrossRef Google Scholar

    Xu YG. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9–10), 747–757.

    Google Scholar

    Xue JZ, Bai XR, Chen W. 1986. Genetic mineralogy. China University of Geosciences Press, Wuhan (in Chinese).

    Google Scholar

    Zeng G, Chen LH, Xu XS, Jiang SY, Hofmann AW. 2010. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chemical Geology, 273(1–2), 35–45. doi: 10.1016/j.chemgeo.2010.02.009.

    CrossRef Google Scholar

    Zhang X, Su Y, Zheng J, Liu P, Griffin WL, Ping X, Wang J, Zhou L. 2021. Metamorphic history and Neoarchean–Paleoproterozoic crustal growth of the central Trans-North China Orogen: Evidence from granulite-to amphibolite-facies rocks of the Hengshan complex. Gondwana Research, 93, 162–183. doi: 10.1016/j.gr.2021.02.004.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(9)

Article Metrics

Article views(61) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint