Citation: | Huan-huan Yang, Qin Wang, Yan-bo Li, Bin Lin, Yang Song, Yi-yun Wang, Wen He, Hong-wei Li, She Li, Jian-li Li, Chang-cheng Liu, Shi-bin Feng, Tang Xin, Xue-lian Fu, Xin-juan Liang, Qi Zhang, Bei-qi Wang, Yang Li, 2022. Geology and mineralization of the Tiegelongnan supergiant porphyry-epithermal Cu (Au, Ag) deposit (10 Mt) in western Tibet, China: A review, China Geology, 5, 136-159. doi: 10.31035/cg2022001 |
The Tiegelongnan Cu (Au, Ag) deposit in central Tibet contains more than 10 Mt of copper ranking 29th in the world. It is characterized by typical porphyry-epithermal alteration and mineralization. In order to improve the understanding of porphyry-epithermal copper deposit in Tibet, new zircon U-Pb age and sulfur isotope data along with published data in the Tiegelongnan are presented to investigate the formation and preservation mechanism. Ore-related intrusive rocks in the Tiegelongnan including Early Cretaceous (about 120 Ma) granodiorite porphyry and diorite porphyry are closely related to the northward subduction of Bangongco-Nujiang ocean. Sulfur mainly comes from deep magma, and ore-forming fluid is affected by both magmatic and meteoric water. The metallogenic setting of Tiegelongnan is consistent with those of Andean porphyry copper deposits in South America. The cover of the Meiriqiecuo Formation volcanic rocks, Lhasa-Qiangtang collision and India-Eurasian collision have significance in the preservation and uplift of the deposit. The formation, preservation and discovery of Tiegelongnan play an important role in exploration of ancient porphyry-epithermal deposits in Tibet.
Barton PB Jr. 1970. Sulfide Petrology. Mineralogical Society of America, Special Paper, 3, 187–198. |
Barton PB Jr., Skinner BJ. 1979. Sulfide Mineral Stabilities, in Barnes, HL, (ed.), Geochemistry of Hydrothermal Ore Deposits, Second Edition. New York, Holt, John Wiley & Sons, 278–403. |
Baxter AT, Aitchison JC, Zyabrev SV. 2009. Radiolarian age constraints on Mesotethyan ocean evolution, and their implications for development of the Bangong–Nujiang suture, Tibet. Journal of the Geological Society, 166, 689–694. doi: 10.1144/0016-76492008-128. |
Braxton DP, Cooke DR, Dunlap J, Norman M, Reiners P, Stein H, Waters P. 2012. From crucible to graben in 2.3 Ma: A high-resolution geochronological study of porphyry life cycles, Boyongan-Bayugo copper-gold deposits, Philippines. Geology, 40, 471–474. doi: 10.1130/G33125.1. |
Bineli BT, Lentz D, McInnes B, Evans NJ. 2012. Emplacement ages and exhumation rates for intrusion-hosted Cu-Mo-Sb-Au mineral systems at Freegold Mountain (Yukon, Canada): Assessment from U-Pb, Ar-Ar, and (U-Th)/He geochronometers. Canadian Journal of Earth Sciences, 49(5), 653–670. doi: 10.1139/e2012-009. |
Chen JL, Xu JF, Yu HX, Wang BD, Wu B, Feng YX. 2015. Late Cretaceous high Mg# granitoids in southern Tibet: Implications for the early crustal thickening and tectonic evolution of the Tibetan Plateau? Lithos, 232, 12–22. doi: 10.1016/j.lithos.2015.06.020. |
Chuassidon M, Albarede F, Sheppard SMF. 1989. Sulphur isotope variarions in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth and Planetary Science Letters, 92, 144–156. doi: 10.1016/0012-821X(89)90042-3. |
Dilles JH, Kent AJ, Wooden JL, Tosdal RM, Koleszar A, Lee RG, Farmer LP. 2015. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Economic Geology, 110, 241–251. doi: 10.2113/econgeo.110.1.241. |
Einaudi MT, Hedenquist JW, Inan EE. 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions form porphyry to epithermal environments. Society of Economic Geologists, 285–313. doi: 10.5382/SP.10.15. |
Evans NJ, McInnes BIA, McDonald B, Danišík M, Jourdan F, Mayers C, Thern E, Corbett D. 2013. Emplacement age and thermal footprint of the diamondiferous Ellendale E9 lamproite pipe, Western Australia. Mineralium Deposita, 48, 413–421. doi: 10.1007/s00126-012-0430-7. |
Fan JJ, Li C, Xie CM, Wang M. 2014. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: Implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys. International Geology Review, 56, 1504–1520. doi: 10.1080/00206814.2014.947639. |
Fang X, Tang JX, Song Y, Yang C, Ding S, Wang YY, Wang Q, Sun XG, Li YB, Wei LJ, Zhang Z, Yang HH, Gao K, Tang P. 2015. Formation epoch of the South Tiegelong superlarge epithermal Cu (Au-Ag) deposit in Tibet and its geological implications. Acta Geoscientica Sinica, 36(2), 168–176 (in Chinese with English abstract). doi: 10.3975/cagsb.2015.02.05. |
Geng QR, Pan GT, Wang LQ, Peng ZM, Zhang Z. 2011. Tethyan evolution and metallogenic geological background of the BangongCo-Nujiang belt and the Qiangtang massif in Tibet. Geologicla Bulletin of China, 30(8), 1261–1274 (in Chinese with English abstract). doi: 10.1007/s12182-011-0118-0. |
Guynn JH, Kapp P, Pullen A, Heizler M, Gehrels G, Ding L. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34, 505–508. doi: 10.1130/G22453.1. |
Harris AC, Dunlap WJ, Reiners PW, Allen CM, Cooke DR, White NC, Campbell IH, Golding SD. 2008. Multimillion year thermal history of a porphyry copper deposit: Application of U-Pb, 40Ar/39Ar and (U-Th)/He chronometers, Bajo de la Alumbrera copper-gold deposit, Argentina. Mineralium Deposita, 43, 295–314. doi: 10.1007/s00126-007-0151-5. |
He W, Lin B, Yang HH, Fang X, Song YX, Wei SG, Hou L. 2017. Fluid inclusion feature and its internal relationship with mineralization and epithermal alteration of the Tiegelongnan Cu-Au Deposit. Acta Geoscientica Sinica, 38(5), 1–12 (in Chinese with English abstract). doi: 10.3975/cagsb.2017.05.05. |
Hedenquist JW, Lowenstern JB. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370, 519–527. doi: 10.1038/370519a0. |
Hedenquist JW, Arribas A, Reynolds J. 1998. Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4), 373–404. doi: 10.2113/gsecongeo.93.4.373. |
Kapp P, Yin A, Harrison TM, Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet: Geological Society of America Bulletin. 117, 865–878. doi: 10.1130/B25595.1. |
Lecumberri-Sanchez P, Steele-Macinnis M, Bodnar RJ. 2012. An numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochimica et Cosmochimica Acta, 92, 14–22. doi: 10.1016/j.gca.2012.05.044. |
Leng CB, Cooke DR, Hou ZQ, Evans NJ, Zhang XC, Chen WT, Danišík M, McInnes BIA, Yang JH. 2018. Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating. Economic Geology, 113(5), 1077–1092. doi: 10.5382/econgeo.2018.4582. |
Li C. 1987. The Longmucuo-Shuanghu-Langcangjiang plate suture and the north boundary of distribution of Gondwana facies Permo-Carboniferous system in Northern Xizang, China. Journal of Changchun College of Geology, 17, 155–166 (in Chinese with English abstract). |
Li C. 2008. A review on 20 years’ study of the Longmu Co-Shuanghu-Lancang river suture zone in Qinghai-Xizang (Tibet) Plateau. Geological Review, 54, 105–119 (in Chinese with English abstract). doi: 10.16509/j.georeview.2008.01.005. |
Li GM, Li JX, Qin KZ, Duo J, Zhang TP, Xiao B, and Zhao JX. 2011. Geology and hydrothermal alteration of the Duobuza gold-rich porphyry copper district in the Bangongco metallogenetic belt, northwestern Tibet. Resource Geology, 62(1), 99–118. doi: 10.1111/j.1751-3928.2011.00182.x. |
Li GM, Cao MJ, Qin KZ, Evans NJ, McInnes BI, Liu YS. 2014. Thermal-tectonic history of the Baogutu porphyry Cu deposit, West Junggar as constrained from zircon U-Pb, biotite Ar/Ar and zircon/apatite (U-Th)/He dating. Journal of Asian Earth Sciences, 79, 741–758. doi: 10.1016/j.jseaes.2013.05.026. |
Li GM, Qin KZ, Li JX, Evans NJ, Zhao JX, Cao MJ, Zhang XN. 2017. Cretaceous magmatism and metallogeny in the Bangong-Nujiang metallogenic belt, central Tibet: Evidence from petrogeochemistry, zircon U-Pb ages, and Hf-O isotopic compositions. Gondwana Research, 41, 110–127. doi: 10.1016/j.gr.2015.09.006. |
Li JX, Li GM, Qin KZ, Xiao B. 2008. Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Bangonghu belt, Tibet: Constraints on metallogenic tectonic settings. Acta Petrologica Sinica, 24, 531–543 (in Chinese with English abstract). |
Lin B, Chen Y, Tang J, Wang Q, Song Y, Yang C, Wang W, He W, Zhang L. 2017a. 40Ar/39Ar and Rb-Sr ages of the Tiegelongnan porphyry Cu-(Au) deposit in the Bangong Co-Nujiang Metallogenic Belt of Tibet, China: Implication for generation of super-large deposit. Acta Geologica Sinica (English Edition), 91,(2), 602–616. doi: 10.1111/1755-6724.13120. |
Lin B, Tang JX, Chen YC, Song Y, Hall G, Wang Q, Yang C, Fang X, Duan JL, Yang HH. 2017b. Geochronology and genesis of the Tiegelongnan porphyry Cu (Au) deposit in Tibet: Evidence from U-Pb, Re-Os dating and Hf, S, and H-O isotopes. Resource Geology, 67(1), 1–21. doi: 10.1111/rge.12113. |
Lin B. 2018. Alteration and mineralization of Tiegelongnan giant Cu (Au, Ag) deposit in Tibet. Beijing, Chinese Academy of Geological Sciences. Ph. D Thesis, 1–152 (in Chinese with English abstract). |
Lin B, Fang X, Wang YY, Yang HH, He W. 2019. Petrologic genesis of ore-bearing porphyries in Tiegelongnan giant Cu (Au, Ag) deposit, Tibet and its implications for the dynamic of Cretaceous mineralization, Duolong. Acta Petrologica Sinica, 35(3), 642–664 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.03. |
Loewen MW, Kent AJR. 2012. Sources of elemental fractionation and uncertainty during the analysis of semi-volatile metals in silicate glasses using LA-ICP-MS. Journal of Analytical and Atomic Spectrometry, 27(9), 1502–1508. doi: 10.1039/c2ja30075c. |
Liu DL, Huang QS, Fan SQ, Zhang LY, Shi RD, Ding L. 2014. Subduction of the Bangong-Nujiang Ocean: Constraints from granites in the Bangong Co area, Tibet. Geological Journal, 49, 188–206. doi: 10.1002/gj.2510. |
Liu DL, Shi RD, Ding L, Huang QS, Zhang XR, Yue YH, Zhang LY. 2017. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: Implications for the subduction of the Bangong–Nujiang Tethyan Ocean. Gondwana Research, 41, 157–172. doi: 10.1016/j.gr.2015.04.007. |
Liu X, Fan HR, Evans NJ, Yang KF, Danišík M, Mcinnes BIA, Qin KZ, Yu XF. 2017. Exhumation history of the Sanshandao Au deposit, Jiaodong: Constraints from structural analysis and (U-Th)/He thermochronology. Scientific Reports, 7, 7787. doi: 10.1038/s41598-017-08103-w. |
Liu WL, Xia B, Zhong Y, Cai JX, Li JF, Liu HF, Cai ZR, Sun ZL. 2014. Age and composition of the Rebang Co and Julu ophiolites, central Tibet: Implications for the evolution of the Bangong Meso-Tethys. International Geology Review, 56, 430–447. doi: 10.1080/00206814.2013.873356. |
Mariani ES, Toscani L, Boschetti D, Bersani D, Mattioli M. 2015. Gold mineralisations in the Canan area, Lepaguare District, east-central Honduras: Fluid inclusions and geochemical constraints on gold deposition. Journal of Geochemical Exploration, 158, 243–256. doi: 10.1016/j.gexplo.2015.08.003. |
McInnes BIA, Evans NJ, Fu FQ, Garwin S. 2005. Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy & Geochemistry, 58, 467–498. doi: 10.2138/rmg.2005.58.18. |
Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP, Wang BD. 2012. Tectonic evolution of the Qinghai–Tibet Plateau. Journal of Asian Earth Sciences, 53, 3–14. doi: 10.1016/j.jseaes.2011.12.018. |
Qu XM, Wang RJ, Dai JJ, Li YG, Qi X, Xin HB, Song Y, Du DD. 2012. Discovery of Xiongmei porphyry copper deposit in middle segment of Bangonghu-Nujiang suture zone and its significance. Mineral Deposits, 31(1), 1–12 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2012.01.001. |
Ren ZL, Cui JP, Liu CY, Li TJ, Chen G, Chen ZJ, Qi K, Dou S. 2016. Uplift and cooling history of Qiangtang basin and its significance. Petroleum Geology & Experiment, 38(1), 15–31 (in Chinese with English abstract). doi: 10.11781/sysydz201601015. |
Sui QL, Wang Q, Zhu DC, Zhao ZD, Chen Y, Santosh M, Hu ZC, Yuan HL, Mo XX. 2013. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent–continent collision zone. Lithos, 168–169, 144–159. doi:10.1016/j.lithos.2013.01.012 |
Shi RD. 2007. SHRIMP dating of the Bangong Lake SSZ-type ophiolite: Constraints on the closure time of ocean in the Bangong Lake-Nujiang River, northwestern Tibet. Chinese Science Bulletin, 52, 936–941. doi: 10.1007/s11434-007-0134-z. |
Shi RD, Yang JS, Xu ZQ, Qi XX. 2008. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong-Nujiang suture zone. Journal of Asian Earth Sciences, 32, 438–457. doi: 10.1016/j.jseaes.2007.11.011. |
Tang JX, Sun XG, Ding S, Wang Q, Wang YT, Yang C, Chen HQ, LI Y, Li YB, Wei LJ, Zhang Z, Song JL, Yang HH, Duan JL, Gao K, Fang X, Tan JY. 2014. Discovery of the epithermal deposit of Cu (Au-Ag) in the Duolong ore concentrating area, Tibet. Acta Geoscientica Sinica, 35(1), 6–10 (in Chinese with English abstract). doi: 10.3975/cagsb.2014.01.02. |
Tang JX, Ding S, Meng Z, Hu GY, Gao YM, Xie FW, Li Z, Yuan M, Yang ZY, Chen GR, Li YH, Yang HY, Fu YG. 2016a. The first discovery of the low sulfidation epithermal deposit in Linzizong volcanics, Tibet: a case study of the Sinongduo Ag polymetallic deposit. Acta Geoscientica Sinica, 33(4), 537–545 (in Chinese with English abstract). doi: 10.3975/cagsb.2016.04.08. |
Tang JX, Song Y, Wang Q, Lin B, Yang C, Guo N, Fang X, Yang HH, Wang YY, Gao K, Ding S, Zhang Z, Duan JL, Chen HQ, Su DK, Feng J, Liu ZB, Wei SG. He W, Song JL, Li YB, Wei LJ. 2016b. Geological characteristics and exploration model of the Tiegelongnan Cu (Au-Ag) deposit: The first ten million tons metal resources of a porphyry–epithermal deposit in Tibet. Acta Geoscientica Sinica, 37(6), 663–690 (in Chinese with English abstract). doi: 10.3975/cagsb.2016.06.03. |
Tang JX, Yang HH, Song Y, Wang LQ, Liu ZB, Li BL, Lin B, Peng B, Wang GH, Zeng QG, Wang Q, Chen W, Wang N, Li ZJ, Li YB, Li HF, Lei CY. 2021. The copper polymetallic deposits and resource potential in the Tibet Plateau. China Geology, 4, 1–16. doi: 10.31035/CG2021016. |
Wang BD, Wang LQ, Chung SL, Chen JL, Yin FG, Liu H, Li XB, Chen LK. 2015. Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos,doi:10.1016/j.lithos.2015.07.016 |
Wang CS, Zhao XX, Liu ZF, Lippert PC, Graham SA, Coe RS, Yi HS, Zhu LD, Liu S, Li YL. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of National Academy of Sciences, 105, 4987–4992. doi: 10.1073/pnas.0703595105. |
Wang Q, Wyman DA, Xu JF, Wan YS, Li C, Zi F, Jiang ZQ, Qiu HN, Chu ZY, Zhao ZH, Dong YH. 2007. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): Evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology, 115, 473–490. doi: 10.1007/s00410-007-0253-1. |
Wang Q, Tang JX, Fang X, Lin B, Song Y, Wang YY, Yang HH, Yang C. Li YB, Wei LJ, Feng J, Li L. 2015. Petrogenetic setting of andsites in Rongna ore block, Tiegelong Cu (Au-Ag) deposit, Duolong ore concentration area, Tibet: Evidence from zircon U-Pb LA-ICP-MS dating and petrogeochemistry of andsites. Geology in China, 42(5), 1324–1336 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2015.05.011. |
Wang Q, Tang JX, Xie FW, Lin B, Li YB, Guo XY. 2017. Copper resource on Qinghai-Tibet Plateau. Science and Technology review, 35(12), 89–95. doi: 10.3981/j.issn.1000-7857.2017.12.014. |
Wang Q. 2018. Porphyry copper (gold) system in Duolong district and its metallogenetic regularities. Chengdu, Chengdu University of Technology, Ph. D Thesis. 1–132 (in Chinese with English abstract). |
Wang R, Weinberg RF, Collins WJ, Richards JP, Zhu DC, 2018. Origin of post-collisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Science Reviews, 181, 122–143. doi: 10.1016/j.earscirev.2018.02.019. |
Wang R, Zhu DC, Wang Q, Hou ZQ, Yang ZM, Zhao ZD, Mo XX, 2020. Porphyry mineralization in the Tethyan orogen. Science China Earth Sciences, 63, 2029–2041. doi: 10.1007/s11430-019-9609-0. |
Wang YY, Tang JX, Song Y, Lin B, Yang C, Wang Q, Gao K, Ding S. 2017. Geochemical characteristics of sulfur and lead isotopes from the superlarge Tiegelongnan copper (gold-silver) deposit, Tibet. Acta Geoscientica Sinica. 38(5), 627–637 (in Chinese with English abstract). doi: 10.3975/cagsb.2017.05.04. |
Wang YY. 2018. Genesis of Tiegelongnan super-large copper (gold and silver) deposit in Tibet, China-mineralogy, alteration and mineralization. Chengdu, Chengdu University of Technology, Ph. D Thesis, 1–154 (in Chinese with English abstract). |
Wei SG, Song Y, Tang JX, Liu ZB, Wang Q, Lin B, Feng J, Hou L and Danzhen WX. 2017a. Geochronology, geochemistry, Sr-Nd-Hf isotopic compositions, and petrogenetic and tectonic implications of Early Cretaceous intrusions associated with the Duolong porphyry-epithermal Cu-Au deposit, central Tibet. International Geology Review, doi: 10.1080/00206814.2017.1369178. |
Wei SG, Tang JX, Song Y, Liu ZB, Wang Q, Lin B, He W, Feng J. 2017b. Petrogenesis, zircon U-Pb Geochronology and Sr-Nd-Hf Isotopes of the intermediate-felsic volcanic rocks from the Duolong deposit in the Bangonghu-Nujiang suture zone, Tibet, and its tectonic significance. Acta Geologica Sinica, 91(1), 132–150 (in Chinese with English abstract). |
Yang C, Tang JX, Wang YY, Yang HH, Wang Q, Sun XG, Feng J, Yin XB, Ding S, Fang X, Zhang Z, Li YB. 2014. Fluid and geological characteristics researches of Southern Tiegelong epithemal porphyry Cu-Au deposit in Tibet. Mineral Deposits, 33(6), 1287–1305 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2014.06.009. |
Yang C, Tang JX, Beaudoin G, Song Y, Lin B, Wang Q, Fang X. 2020. Geology and geochronology of the Tiegelongnan porphyry-epithermal Cu (Au) deposit, Tibet, China: Formation, exhumation and preservation history. Ore Geology Reviews, 123, 103575. doi: 10.1016/j.oregeorev.2020.103575. |
Yang HH, Song Y, Tang JX, Wang Q, Gao K, Wei SG. 2019. Low temperature history of the Tiegelongnan porphyry-epithermal Cu (Au) deposit in the Duolong ore district of northwest Tibet, China. Resource Geology, 70(2), 111–124. doi: 10.1111/rge.12221. |
Yang HH, Tang JX, Song Y, Dilles J, Sousa F, Lin B. 2020. Thermal study of the Duolong ore district in Tibet: Implications for the uplift history of the Qiangtang terrane. International Geology Review, doi: 10.1080/00206814.2020.1729256. |
Yang TN, Zhang HR, Liu YX, Wang ZL, Song YC, Yang ZS, Tian SH, Xie HQ, Hou KJ. 2011. Permo-Triassic arc magmatism in central Tibet: Evidence from zircon U-Pb geochronology, Hf isotopes, rare earth elements, and bulk geochemistry. Chemical Geology, 284, 270–282. doi: 10.1016/j.chemgeo.2011.03.006. |
Zhao JX, Qin KZ, Xiao B, McInnes B, Li GM, Evans N, Cao MJ, Li JX. 2016. Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet: Constraints on magmatic-hydrothermal evolution and exhumation. Gondwana Research, 36, 390–409. doi: 10.1016/j.gr.2015.07.005. |
Zhao YY, Cui YB, Lü LN, Shi DH. 2011. Chronology, geochemical characteristics and the significance of Shesuo copper polymetallic deposit, Tibet. Acta Petrologica Sinica, 27(7), 2132–2142 (in Chinese with English abstract). |
Zhang KJ, Zhang YX, Tang XC, Xia B. 2012. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth-Science Reviews, 114, 236–249. doi: 10.1016/j.earscirev.2012.06.001. |
Zhang Z, Yao XF, Tang JX, Li ZJ, Wang LQ, Yang Y, Duan JL, Song JL, Lin X. 2015. Lithogeochemical, Re-Os and U-Pb geochronological, Hf-Lu and S-Pb isotope data of the Ga'erqiong-Galale Cu-Au ore-concentrated area: evidence for the Late Cretaceous magmatism and metallogenic event in the Bangong-Nujiang suture zone, northwestern Tibet, China. Resource Geology, 65, 76–102. doi: 10.1111/rge.12064. |
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY. 2011. The Lhasa terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301, 241–255. doi: 10.1016/j.jpgl.2010.11.005. |
Zhu DC, Li SM, Cawood PA, Wang Q, Zhao ZD, Liu SA, Wang LQ. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245, 7–17. doi: 10.1016/j.lithos.2015.06.023. |
Regional geological map of Duolong ore district in central Tibet.
Schematic geological map of Tiegelongnan deposit in the Duolong ore district, Tibet (after Wang Q et al., 2018).
Typical petrography of intrusive rocks in Tiegelongnan mining area
Drill hole location (a), profile (b) and alteration zone (c) of drill holes in the Tiegelongnan deposit, Tibet (after Lin B, 2018)
Alteration characteristic in the Tiegelongnan deposit. a–potassic granodiorite with biotite altered sandstone breccia; b–biotite altered hornfel; c–potassic granodiorite; d–advanced argillic alteration; e–advanced argillic altered sandstone with digenite+enargite+chalcocite vein; f–silicified and sericitized granodiorite porphyry; g–sericitized granodiorite porphyry; h–propylitic granodiorite porphyry; i–argillic granodiorite porphyry; j–banded argillization in the sandstone; k, l–carbonated andesite.
Three dimensional model of orebody in the Tiegelongnan deposit, Tibet.
Cu grade distribution in east-west direction of Tiegelongnan deposit, Tibet.
Photos of typical ore minerals in the Tiegelongnan deposit, Tibet.
Micrograph of typical ore structure in Tiegelongnan mining area.
Characteristics of pyrite in the Tiegelongnan deposit.
Diagenetic and metallogenic periods of the Tiegelongnan deposit, Tibet (after Lin B, 2018).
Tera-Wasserburg concordia plots with 2σ error ellipses for samples from the Tiegelongnan igneous rocks. Red ellipses were included in the age calculation. Blue ellipses were excluded on the basis of inheritance, discordance, or Pb-loss.
Microphotographs of petrography of fluid inclusions (He W et al., 2017). a–liquid-rich inclusions with opaque mineral; b–liquid-rich inclusions with opaque mineral; c–high salinity liquid-rich inclusions and gas-rich inclusions in quartz phenocryst; d–primary fluid inclusions in Qz-Cpy vein; e–Sec FIA and psec FIA coexisting in quartz-Alunite-Pyrite-Covellite vein; f–liquid-rich inclusions in quartz vein; g–hematite bearing inclusions in quartz phenocryst; h–gas-rich fluid inclusions in secondary fluid inclusion assemblage. Hem–hematite; Op–opaque mineral; Psec FIA–pseudosecondary fluid inclusion assemblage; Sec FIA–secondary fluid inclusion assemblage dominated by VL fluid inclusions; LV–liquid-rich inclusions; VL–gas-rich inclusions; LVS–high salinity liquid-rich inclusions with or without metal minerals.
Sulfur isotopic composition histogram of sulfide and sulfate minerals in Tiegelongnan deposit, the sulfur isotope data are from Wang YY et al., (2017), Lin B et al., (2018) and this study.
The log fS2–1000/T diagram defining the relative sulfidation state of hydrothermal fluids (after Einaudi MT et al., 2003), the Main Line oreforming environment from Barton PB Jr. (1970), and the evolutionary path of fluids in porphyry copper and porphyry related vein deposits. Sulfidation reactions from Barton PB Jr. and Skinner BJ (1979).
Thermal model of AFT samples from the Duolong ore district, the data from Yang HH et al. (2019, 2020). The green area in each plot denotes the envelope for all acceptable time-temperature paths with a goodness fit of > 0.05, whereas the purple areas encompass all good time-temperature paths with a goodness fit of > 0.5. The blue line enveloped in the pink region depicts the weighted mean cooling path for each plot