Citation: | Hong-wei Sun, Jun-ping Ren, Jie Wang, A-lei Gu, Xing-yuan Wu, Fu-qing He, Li-bo Zuo, Chipilauka Mukofu, Alphet Phaskani Dokowe, Ezekiah Chikambwe, Zi-jiang Liu, Shi Xing, 2021. Age and geochemistry of the granitoid from the Lunte area, Northeastern Zambia: Implications for magmatism of the Columbia supercontinent, China Geology, 4, 658-672. doi: 10.31035/cg2021048 |
The Paleoproterozoic tectonic evolution of the Bangweulu Block has long been controversial. Paleoproterozoic granites consisting of the basement complex of the Bangweulu Block are widely exposed in northeastern Zambia, and they are the critical media for studying the tectonic evolution of the Bangweulu Block. This study systematically investigated the petrography, zircon U-Pb chronology, and petrogeochemistry of the granitoid extensively exposed in the Lunte area, northeastern Zambia. The results show that the granitoid in the area formed during 2051±13–2009±20 Ma as a result of Paleoproterozoic magmatic events. Geochemical data show that the granites in the area mainly include syenogranites and monzogranites of high-K calc-alkaline series and are characterized by high SiO2 content (72.68%‒73.78%) and K2O/Na2O ratio (1.82‒2.29). The presence of garnets, the high aluminum saturation index (A/CNK is 1.13‒1.21), and the 1.27%‒1.95% of corundum molecules jointly indicate that granites in the Lunte area are S-type granites. Rare earth elements in all samples show a rightward inclination and noticeably negative Eu-anomalies (δEu = 0.16‒0.40) and are relatively rich in light rare earth elements. Furthermore, the granites are rich in large ion lithophile elements such as Rb, Th, U, and K and are depleted in Ba, Sr, and high field strength elements such as Ta and Nb. In addition, they bear low contents of Cr (6.31×10−6‒10.8×10−6), Ni (2.87×10−6‒4.76×10−6), and Co (2.62×10−6‒3.96×10−6). These data lead to the conclusion that the source rocks are meta-sedimentary rocks. Combining the above results and the study of regional tectonic evolution, the authors suggest that granitoid in the Lunte area were formed in a tectonic environment corresponding to the collision between the Tanzania Craton and the Bangweulu Block. The magmatic activities in this period may be related to the assembly of the Columbia supercontinent.
Altherr R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges and northern Schwarzwald. Lithos, 50(1/3), 51–73. doi: 10.1016/S0024-4937(99)00052-3. |
Armstrong RA, Master S, Robb LJ. 2005. Geochronology of the Nchanga granite, and constraints on the maximum age of the Katanga Supergroup, Zambian Copperbelt. Journal of African Earth Sciences, 42(1/5), 32–40. doi: 10.1016/j.jafrearsci.2005.08.012. |
Andersen LS, Unrug R. 1984. Geodynamic evolution of the Bangweulu Block, northern Zambia. Precambrian Research, 25(1/3), 187–212. |
Belousova EA, Griffin WL, Reilly SY, Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143, 602–622. doi: 10.1007/s00410-002-0346-7. |
Brewer MS, Haslam HW, Darbyshire DPF, Davis AE. 1979. Rb-Sr age determination in the Bangweulu Block, Luapula Province, Zambia. Institute of Geological Science, 79(5), 11. |
Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3), 605–626. doi: 10.1016/S0024-4937(98)00085-1. |
Batchelor RA, Bowden P. 1985. Petrogenetic interpretation of granitoid rock seires using multicationic parameters. Chemical Geology, 48, 43–55. doi: 10.1016/0009-2541(85)90034-8. |
Boniface N, Schenk V. 2012. Neoproterozoic eclogites in the Paleoproterozoic Ubendian Belt of Tanzania: Evidence for a Pan-African suture between the Bang-Weulu Block and the Tanzania Craton. Precambrian Research, 208/211, 72–89. doi: 10.1016/j.precamres.2012.03.014. |
Chappell BW, White AJR. 1974. Two contrasting granite types. Pacific Geology, 8, 173–174. |
Chappell BW. 1999. Aluminium saturation in I- and -S type granites and the characterization of fractionated haplogranites. Lithos, 46(3), 535–551. doi: 10.1016/S0024-4937(98)00086-3. |
Cooper MR. 1990. Tectonic cycles in southern Africa. Earth Science Reviews, 28(4), 321–364. doi: 10.1016/0012-8252(90)90053-X. |
De Waele B, Johnson SP, Nkemba S, Tembo F. 2005. High-temperature, low-pressure tectono-thermal evolution of the Irumide belt, central, Southern Africa: Lithosphere delamination during arc-accretion. Frontier Research on Earth Evolution Report, 2004(2), 1–9. |
De Waele B, Liégeois JP, Nemchin AA, Tembo F. 2006a. Isotopic and geochemical evidence of Proterozoic episodic crustal reworking within the Irumide Belt of south-central Africa, the southern metacratonic boundary of an Archaean Bangweulu Craton. Precambrian Research, 148(3), 225–256. doi: 10.1016/j.precamres.2006.05.006. |
De Waele B, Kampunzu AB, Mapani BSE, Tembo F. 2006b. The Mesoproterozoic Irumide belt of Zambia. Journal of African Earth Sciences, 46(1), 36–70. |
De Waele B, Johnson SP, Pisarevsky SA. 2008. Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton: Its role in the Rodinia puzzle. Precambrian Research, 160(1), 127–141. |
Debruyne D, Van Wilderode J, Balcaen L, Vanhaecke F, Muchez P. 2014. Geochemistry and isotopic evolution of the central African Domes, Bangweulu and Irumide regions: Evidence for cryptic Archean sources and a Paleoproterozoic continental arc. Journal of African Earth Sciences, 100, 145–163. doi: 10.1016/j.jafrearsci.2014.06.013. |
Daly M, Unrug R. 1982. The Muva Supergroup of northern Zambia: A craton to orogenic belt sedimentary sequence. Geological Society of South Africa, 85(3), 155–165. |
Drysdall AR, Johnson RL, Moore TA, Thieme JG. 1972. Outline of the geology of Zambia. Geology Mijnbouw, 51, 265–276. |
Irvine TH, Baragar WR. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523–548. doi: 10.1139/e71-055. |
Gu AL, Wang J, Ren JP, Zuo LB, Sun HW, Xing S, Liu ZJ, Chikambwe EM. 2020. Geological characteristics and mineralization potential analysis for the Pan-African Hook Batholith in Central Zambia. Geological Survey and Research, 43(1), 63–71 (in Chinese with English abstract). |
Gu AL, Wang J, Ren JP, Zuo LB, Sun HW, Wu XY, Xing S, Liu ZJ, Zhang JD, Chikambwe EM, Kasumba E. 2021. Petrogenesis of the Paleoproterozoic granitoids in Kapatu, northern Zambia: Constraints from geochemistry, zircon U-Pb chronology and Hf isotopes. Acta Geologica Sinica, 95(4), 999–1018 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021030. |
Kazimoto EO, Schenk V, Appel P. 2015. Granulite-facies metamorphic events in the northwestern Ubendian Belt of Tanzania: Implications for the Neoarchean to Paleoproterozoic crustal evolution. Precambrian Research, 256, 31–47. doi: 10.1016/j.precamres.2014.10.016. |
Kabengele M, Lubala RT, Cabanis B. 1991. Caractérisation pétrologique et géochimique du magmatisme ubendien du secteur de Pepa-Lubumba, sur le plateau des Marungu (Nord-Est du Shaba, Zaire). Signification géodynamique dans l'évolution de la chaî ne ubendienne. Journal of African Earth Science, 13(2), 243–265. |
Li HK, Geng JZ, Hao S, Zhang YQ, Li HM. 2009. Study on the determination of U-Pb isotopic age in zircons by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS). Acta Mineralogica Sinica, 29(S1), 600–601 (in Chinese with English abstract). doi: 10.16461/j.cnki.1000-4734.2009.s1.014. |
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010. Continental and oceanic crust recyclinginduced melt- peridotite interactions in the Trans- North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1/2), 537–571. |
Ludwig KR. 2003. User's manual for a geochronological toolkit for Microsoft Excel (Isoplot/Ex version 3. 0). Berkeley Geochronology Center Special Publication, 4, 1–76. |
Lenoir JL, JP Liégeois, Theunissen K, Klerkx J. 1994. The Palaeoproterozoic Ubendian shear belt in Tanzania: geochronology and structure-ScienceDirect. Journal of African Earth Sciences, 19(3), 169–184. doi: 10.1016/0899-5362(94)90059-0. |
Master S, Rainaud C, Armstrong RA, Phillips D, Robb LJ. 2005. Provenance ages of the Neoproterozoic Katanga Supergroup (Central African Copperbelt), with implications for basin evolution. Journal of African Earth Sciences, 42(1), 41–60. |
Maniar PD, Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5), 635–643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2. |
Möller A, Appel P, Mezger K, Schenk V. 1995. Evidence for a 2 Ga subduction zone: eclogites in the Usagaran Belt of Tanzania. Geology, 23(12), 1067–1070. doi: 10.1130/0091-7613(1995)023<1067:EFAGSZ>2.3.CO;2. |
Pearce JA, Harris NBW, Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983. doi: 10.1093/petrology/25.4.956. |
Rainaud CL, Armstrong RA, Master S, Robb LJ, Mumba PACC. 2002. Contributions to the geology and mineralisation of the central African copperbelt: I. Nature and geochronology of the pre-Katangan basement. In: Geological Survey of Namibia (Ed. ), 11th IAGOD Quadrennial Symposium and Geocongress, Windhoek, Namibia, 5. |
Rollinson HR. 1993. Using Geochemical Data: Evaluation, presentation, interpretation. New York, Longman Scientific and Technical, 1–352. doi: 10.1180/minmag.1994.058.392.25. |
Rogers JJW, Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwanna Research, 5(1), 5–22. doi: 10.1016/S1342-937X(05)70883-2. |
Ren JP, Wang J, Liu XY, He SF, He FQ, Xu KK. 2013. Research progresses on the Cu-Co deposits of Lufilian Area in the Mid-Southern Africa. Geological Science and Technology Information, 32(5), 142–152 (in Chinese with English abstract). |
Ren JP, Zuo LB, Xu KK, Wang J, Liu XY, He SF, Liu Y, He FQ. 2016. Geodynamic evolution and mineral resources present research in Bangweulu Block, Northern Zambia. Geological Review, 4, 979–996 (in Chinese with English abstract). doi: 10.16509/j.georeview.2016.04.015. |
Ren JP, Wang J, Gu AL, Zuo LB, Xu KK, Sun HW, Liu XY, He SF, He FQ. 2017a. Research status and prospecting potential of mineral resources in Lufilian Arc, Zambia. China Mining Magazine, 26(11), 139–144 (in Chinese with English abstract). |
Ren JP, Wang J, Gu AL, Zuo LB, Sun HW, He FQ, Wang SY, Mukofu C, Dokowe AP, Chikambwe EM, Canisius C, Malunga D. 2018a. Detrital zircon fission track thermochronology in Kasama-Nondo, Northeastern Zambia. Atomic Energy Science and Technology, 52(12), 2275–2282 (in Chinese with English abstract). doi: 10.7538/yzk.2018.youxian.0252. |
Ren JP, Wang J, Zhang DH, Dokowe AP, Chikambwe EM, Zuo LB, Xu KK, Liu XY, He FQ. 2018b. Reactivation of Lufilian Arc in Zambia: Zircon and apatite fission track chronology. Earth Science, 43(6), 1850–1860 (in Chinese with English abstract). |
Ren JP, Wang J, Zuo LB, Gu AL, Sun HW, Xu KK, Mukofu C, Dokowe AP, Chikambwe E, Canisius C, Malunga D. 2019a. Zircon U-Pb geochronology, Lu-Hf isotopic compositions and geochemical characteristics of the quartz diorities from western Kasama in northern Zambia. Acta Geologica Sinica, 93(11), 2832–2846 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2019128. |
Ren JP, Wang J, Gu AL, Sun HW, Xu KK, Wu XY. 2019b. U-Pb age and Lu-Hf isotopic characteristics of zircons from syenogranite in northeastern Zambia. Geological Survey and Research, 42(3), 161–165. |
Ren JP, Wang J, Sun HW, Feng L, Zuo LB, Gu AL, He FQ, Mukofu C, Dokowe AP, Chikambwe EM, Canisius C, Malunga D. 2019c. Depositional environment of the Kasama Group, northeastern Zambia: Evidence from detrital zircon U-Pb-Hf isotopic compositions. Geology in China, 46(3), 575–586 (in Chinese with English abstract). doi: 10.12029/gc20190309. |
Ren JP, Wang J, Zuo LB, Gu AL, Sun HW, Xu KK, He FQ, Mukofu C, Dokowe AP, Chikambwe EM, Cao SP, Cheng XJ. 2020. Enrichment characteristics of Cu and Co displayed by low-density geochemical mapping in Zambia. Journal of Geochemical Exploration, 219(2), 106634. |
Ren JP, Wang J, Gu AL, Sun HW, Zuo LB, He FQ, Mukofu C, Dokowe AP, Chikambwe EM, Kasumba E. 2021a. Constraints of fission track dating after the Pan-African tectonic evolution of the Bangweulu Block, northeastern Zambia. Acta Geologica Sinica, 95(4), 1072–1081 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021018. |
Ren JP, Wang J, Gu AL, Zuo LB, Sun HW, Xu KK, He FQ, Mukofu C, Dokowe AP, Chikambwe EM, 2021b. Study on gold enrichment characteristics in Zambia: Based on 1∶1000000 geochemical mapping. China Geology. doi: 10.31035/cg2021034. |
Schandelmeier H. 1980. Regionale Gliederung des Prkambriums and Aspeckte der Krustenentwicklung um Mambwe / Nordost-Zambia. Giessener Geologische Schriftten 23. Lenz-Verlag, Giessen, 111. |
Saviaro K. 1979. Preliminary analysis of airborne magnetic surveys in Zambia. In: G McEven (Editor), The Proceedings of a Seminar on Geophysics and the Exploration of the Kalahari. Bull. Geology Survey. Botswana, 22, 159–183. |
Smit CA, VanReenen DD, Roering C. 2014. Role of fluids in the exhumation of the southern marginal zone of the Limpopo complex, South Africa. Precambrian Research, 253, 81–95. doi: 10.1016/j.precamres.2014.07.002. |
Sun HW, Wang J, Ren JP, Gu AL, Zuo LB. 2019. Sedimentary stratigraphic characteristics of the Mporokoso Basin in the North-eastern Zambia. Geological Review, 65(1), 232–245 (in Chinese with English abstract). doi: 10.16509/j.georeview.2019.01.016. |
Sun HW, Wang J, Ren JP, Gu AL, Zuo LB, Liu ZJ, Xing S, Su XY, Dokowe AP, Chikambwe EM. 2021. Study of U-Pb chronology and Hf isotopes of detrital zircons from metamorphic supracrustal rocks in the central part of the Bangweulu Block and its tectonic significance. Acta Geologica Sinica, 95(4), 1245–1259 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021019. |
Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1/4), 29–44. |
Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications of mantle composition and processes. In: Saunders AD and Norry MJ (Eds. ). Magmatism in the Ocean Basins. Geological Society of London, Special Publication, 42, 313–345. |
Sun K, Zhang LL, Zhao ZD, He FQ, He SF, Wu XY, Qiu L, Ren XD. 2018. Episodic crustal growth in the Tanzania Craton: Evidence from Nd isotope compositions. China Geology, 1, 210–224. doi: 10.31035/cg2018025. |
Taylor SR, McLennan SM. 1985. The continental crust: Its composition and evolution. Oxford, UK, Blackwell Scientific Publications, 1–312. |
Wu YB, Zheng YF. 2004. Zircon genetic mineralogy and its constraints on U-Pb age interpretation. Chinese Science Bulletin, 49(16), 1589–1604 (in Chinese with English abstract). doi: 10.1360/csb2004-49-16-1589. |
Whalen JB, Currie KL, Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4), 407–419. doi: 10.1007/BF00402202. |
White AKR, Chappell BW. 1977. Ultrametamorphism and granitoid genesis. Tectonophysics, 43, 7–22. doi: 10.1016/0040-1951(77)90003-8. |
Xing S, Ji SQ, Wang J, Ren JP, Liu ZJ, Gu AL, Sun HW, Zhang JD, Liu C, Zhang DL. 2021. Detrital zircon U-Pb dating and Hf isotope analyses of the Kabwelumu Formation, northeastern Zambia. Acta Geologica Sinica, 95(4), 1191–1211 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021023. |
Zhao GC, Cawood PA, Wilde SA, Sun M. 2002. Review of global 2. 1–1. 8 Ga orogens:Implications for a Pre-Rodinia Supercontinent. Earth Science Reviews, 59, 125–162. |
Zhai MG. 2010. Tectonic evolution and metallogenesis of North China Craton. Mineral Deposits, 29(1), 24–36 (in Chinese with English abstract). doi: 10.16111/j.0258-7106.2010.01.006. |
Zhou TF, Yuan F, Zhang DY, Fan Y, Liu S, Peng MX, Zhang JD. 2010. Geochronology, tectonic setting and mineralization of granitoids in Jueluotage area, eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 26(2), 478–502 (in Chinese with English abstract). |
Zuo LB, Ren JP, Wang J, Gu AL, Sun HW, Xu KK. 2020. Geochemical characteristics, Zircon U-Pb ages and Lu-Hf isotopic composition of granites in Bangweulu Block, Zambia. Geological Survey and Research, 43(1), 30–41 (in Chinese with English abstract). |
Zuo LB, Ren JP, Qiu L, Wang J, Gu AL, Sun HW, Xu KK, Dokowe AP, Mukangwa A, Malunga D, Mwansa C, Chipumbu P. 2021. Zircon U-Pb geochronology, geochemical characteristics and petrogenesis of the gneisses in the eastern Isoka, Zambia. Acta Geologica Sinica, 95(4), 1144–1158 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2021037. |
Tectonic map (a, modified from De Waele B et al., 2008), location map (b) and regional geological map (c) of the Lunte area in northeastern Zambia.
Hand specimen (a‒D3052, c‒D4353, e‒YPM078, g‒YPM075) and photomicrographs (b‒D3052, d‒D4353, f‒YPM078, h‒YPM075; crossed nicols) of granites from the Lunte area in northeastern Zambia. Q‒quartz, Pl‒plagioclase, Bt‒biotite, Pth‒perthite, Kfs‒K-feldspar, Phl‒phlogopite, Mc‒microcline, Grt‒garnet.
Cathodoluminescence (CL) images and analytical spots of zircons from granites in the Lunte area in northeastern Zambia.
Zircon LA-MC-ICP-MS U-Pb concordia diagrams for granites from the Lunte area in northeastern Zambia.
TAS diagram (a, after Irvine TH and Baragar WR, 1971) and K2O-SiO2 diagram (b, after Rollinson HR, 1993) of granites from the Lunte area in northeastern Zambia. 1‒foidolite, 2‒foid syenite, 3‒foid monzosyenite, 4‒syenite, 5‒foid monzodiorite, 6‒monzonite, 7‒foid gabbro, 8‒monzogabbro, 9‒monzodiorite, 10‒quartz monzonite, 11‒granite, 12‒peridotgabbro, 13‒gabbro, 14‒gabbroic diorite, 15‒diorite, 16‒granodiorite.
A/NK vs. A/CNK diagram of granites from the Lunte area in northeastern Zambia (after Maniar PD and Piccoli PM, 1989; data of the Kapatu area from Gu AL et al., 2021).
Chondrite-normalized REE element patterns (a) and primitive mantle-normalized trace element spidergram (b) of granites from the Lunte area in northeastern Zambia (chondrite and primitive mantle normalizing values from Sun SS and McDonough WF, 1989, crust contents after Taylor SR and McLennan SM, 1985).
10000×Ga/Al vs. Nb (a, modified from Whalen JB et al., 1987), Al2O3-(K2O+Na2O) vs. CaO‒TFeO+MgO (b, modified from White AKR and Chappell BW, 1977), Rb vs. Th (c) and Rb‒Y (d; c and d after Chappell BW and White AJR, 1999) diagrams of granites from the Lunte area in northeastern Zambia (data of the Kapatu from Gu AL et al., 2021).
A/MF vs. C/MF diagram (a) and Rb/Ba vs. Rb/Sr diagram (b) of granites from the Lunte area in northeastern Zambia (a, after Altherr R et al., 2000; b, after Sylvester PJ, 1998; data of the Kapatu area are quoted from Gu AL et al., 2021).
R1 vs. R2 diagram (a) and Rb vs. (Y+Nb) diagram (b) of granites from the Lunte area in northeastern Zambia (a, after Batchelor RA and Bowden P, 1985; b, after Pearce JA et al., 1984; data of the Kapatu area from Gu AL et al., 2021).