Citation: | Shi-mian Yu, Xu-dong Ma, Yan-chun Hu, Wei Chen, Qing-ping Liu, Yang Song, Ju-xing Tang, 2022. Post-subdution evolution of the Northern Lhasa Terrane, Tibet: Constraints from geochemical anomalies, chronology and petrogeochemistry, China Geology, 5, 84-95. doi: 10.31035/cg2021045 |
Bangong-Nujiang collisional zone (BNCZ) is an older one in Qinghai-Tibet Plateau and resulted in the famous Bangong-Nujiang metallogenic belt, which plays an important role in evaluating the formation and uplift mechanism of plateau. The northern and central Lhasa Terrane composed the southern part of the BNCZ. Since ore deposits can be used as markers of geodynamic evolution, the authors carried 1∶50000 stream sedimental geochemical exploration in the Xiongmei area in the Northern Lhasa Terrane to manifest the mineralization, and based on this mineralization with geochemical and chronological characteristics of related magmatic rocks to constrain their geodynamics and connection with the evolution of the Lhasa Terrane. The authors find Early Cretaceous magma mainly resulted in Cu, Mo mineralization, Late Cretaceous magma mainly resulted in Cu, Mo, and W mineralization in the studying area. The results suggest a southward subduction, slab rolling back and break-off, and thickened lithosphere delamination successively occurred within the Northern Lhasa Terrane.
Chen W, Song Y, Liu HZ, Sun M, Ma XD, Ding JS, Li XY. 2019. MMEs formed by magma mixing of different episodes of the same sourced magma: A case study of the Late Cretaceous Sangxinri pluton in the middle part of the northern Lhasa Block. Acta Petrologica Sinica, 35(7), 2143–2157 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.12. |
Chen W, Song Y, Qu XM, Sun M, Ding JS, Ma XD. 2020. MMEs in the Tangjiangqiongguo pluton in the North Lhasa Block formed by magma mixing of different episodes of the same sourced magma: A new petrogenetic model for the MMEs. Earth Science, 45(1), 17–30 (in Chinese with English abstract). doi: 10.3799/dqkx.2018.263. |
Chen Y, Zhu DC, Zhao ZD, Meng FY, Wang Q, Santosh M, Wang LQ, Dong GC, Mo XX. 2014. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2), 449–463. doi: 10.1016/j.gr.2013.06.005. |
Ding JS, Chen W, Zhou H, Guo QQ, Sun M, Zhang Y. 2019. Geochemical characteristics from 1:50000 survey data of stream sediments and ore–search prospects in the Xiongmei area, Tibet. Geology and Exploration, 55(1), 48–63 (in Chinese with English abstract). doi: 10.12134/j.dzykt.2019.01.005. |
Fan JJ, Li C, Sun ZM, Xu W, Wang M, Xie CM. 2018. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong–Nujiang Tethyan ocean. Journal of Asian Earth Sciences, 154, 187–201. doi: 10.1016/j.jseaes.2017.12.020. |
Hou ZQ, Zhang HR. 2015. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain. Ore Geology Reviews, 70, 346–384. doi: 10.1016/j.oregeorev.2014.10.026. |
Hou ZQ, Yang ZM, Lu YJ, Kemp A, Zheng YC, Li QY, Tang JX, Yang ZS, Duan LF. 2015. A genetic linkage between subduction and collision-related porphyry Cu deposits in continental collision zones. Geology, 43(3), 247–250. doi: 10.1130/G36362.1. |
Hu PY, Zhai QG, Jahn BM, Wang J, Li C, Chung SL, Lee HY, Tang SH. 2017. Late Early Cretaceous magmatic rocks (118-113 Ma) in the middle segment of the Bangong-Nujiang suture zone, Tibetan Plateau: Evidence of lithospheric delamination. Gondwana Research, 44, 116–138. doi: 10.1016/j.gr.2016.12.005. |
James DE, Sacks IS. 1999. Cenozoic formation of the Central Andes: A geophysical perspective, in Skinner B (ed), Geology and Ore Deposits of the Central Andes: Society of Economic Geologists Special Publication 7, l–25. |
Kapp P, DeCelles PG. 2019. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. American Journal of Science, 319(3), 159–254. doi: 10.2475/03.2019.01. |
Kay SM, Mpodozis C, Coira B. 1999. Magmatism, tectonism, and mineral deposits of the Central Andes (22°–33°S), in Skinner B (ed), Geology and Ore Deposits of the Central Andes: Society of Economic Geologists Special Publication 7, 27–59. |
Lehmann B. 2004. Metallogeny of the Central Andes: Geotectonic framework and geochemical evolution of porphyry systems in Bolivia and Chile during the last 40 million years. Metallogeny of the Pacific Northwest: Tectonics, Magmatism and Metallogeny of Active Continental Margins, 118–122. |
Lei M, Chen JL, Xu JF, Zeng YC, Xiong QW. 2020. Late Cretaceous magmatism in the NW Lhasa Terrane, southern Tibet: Implications for crustal thickening and initial surface uplift. GSA Bulletin, 132(1–2), 334–352. doi: 10.1130/B31915.1. |
Li C, Wang GH, Zhao ZB, Du JX, Ma XX, Zheng YL. 2020. Late Mesozoic tectonic evolution of the central Bangong-Nujiang Suture Zone, central Tibetan Plateau. International Geology Review, 62(18), 2300–2323. doi: 10.1080/00206814.2019.1697859. |
Li XY, Qu XM, Ma XD, Chen W, Sun M. 2020. Chronology, types and genesis of post-collisional copper bearing magmatic rocks in the Xiongmei area, the middle part of Bangong Co-Nujiang metallogenic belt. Acta Geological Sinica, 94(4), 1264–1281 (in Chinese with English abstract). |
Li S, Yin C, Guilmette C, Ding L, Zhang J. 2019. Birth and demise of the Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet. Earth-Science Reviews, 198, 102907. doi: 10.1016/j.earscirev.2019.102907. |
Li SM, Wang Q, Zhu DC, Stern RJ, Cawood PA, Sui QL, Zhao Z. 2018. One or two Early Cretaceous arc systems in the Lhasa Terrane, southern Tibet. Journal of Geophysical Research: Solid Earth, 123(5), 3391–3413. doi: 10.1002/2018JB015582. |
Li XK, Chen J, Wang RC, Li C. 2018. Temporal and spatial variations of Late Mesozoic granitoids in the SW Qiangtang, Tibet: Implications for crustal architecture, Meso-Tethyan evolution and regional mineralization. Earth-Science Reviews, 185, 374–396. doi: 10.1016/j.earscirev.2018.04.005. |
Li GM, Qin KZ, Li JX, Evans NJ, Zhao JX, Cao MJ, Zhang XN. 2017. Cretaceous magmatism and metallogeny in the Bangong-Nujiang metallogenic belt, central Tibet: Evidence from petrogeochemistry, zircon U-Pb ages, and Hf-O isotopic compositions. Gondwana Research, 41, 110–127. doi: 10.1016/j.gr.2015.09.006. |
Li YL, He J, Han ZP, Wang CS, Ma PF, Zhou A, Liu SA, Xu M. 2016. Late Jurassic sodium-rich adakitic intrusive rocks in the southern Qiangtang terrane, central Tibet, and their implications for the Bangong–Nujiang Ocean subduction. Lithos, 245, 34–46. doi: 10.1016/j.lithos.2015.10.014. |
Li XF, Yasushi W, Hua RM, Mao JW. 2008. Mesozoic Cu-Mo-W-Sn mineralization and ridge/triple subduction in South China. Acta Geologica Sinica, 82(5), 625–640 (in Chinese with English abstract). |
Lin B, Chen L, Liu ZY, Tang JX, Zou B, He W. 2020. Constrains on the geochronology of porphyry-skarn copper deposit from U-Pb dating of garnet: A case study of the Sangri copper deposit, Tibet. Acta Geological Sinica, 94(10), 2883–2892 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2020030. |
Liu DL, Huang QS, Fan SQ, Zhang LY, Shi RD, Ding L. 2014. Subduction of the Bangong–Nujiang Ocean: Constraints from granites in the Bangong Co area, Tibet. Geological Journal, 49(2), 188–206. doi: 10.1002/gj.2510. |
Liu YM, Wang M, Li C, Xie CM, Chen HQ, Li YB, Fan JJ, Li XK, Xu W, Sun ZM. 2017. Cretaceous structures in the Duolong region of central Tibet: Evidence for an accretionary wedge and closure of the Bangong–Nujiang Neo-Tethys Ocean. Gondwana Research, 48, 110–123. doi: 10.1016/j.gr.2017.04.026. |
Luo AB, Wang M, Zeng XW, Hao YJ, Li H. 2021. An extensional collapse model for the Lhasa-Qiangtang orogen in Central Tibet. Gondwana Research, 89, 66–87. doi: 10.1016/j.gr.2020.08.016. |
Ma XD, Song Y, Tang JX, Chen W. 2020. Newly identified rhyolite-biotite monzogranite (A2-type granite)-norite belt from the Bangong-Nujiang collision zone in Tibet Plateau: Evidence for the slab break-off beneath the Lhasa Terrane. Lithos, 366, 105565. doi: 10.1016/j.lithos.2020.105565. |
Mao JW, Zheng W, Xie GQ, Lehmann B, Goldfarb R. 2021. Recognition of a Middle-Late Jurassic arc-related porphyry copper belt along the southeast China coast: Geological characteristics and metallogenic implications. Geology, 49(5), 592–596. doi: 10.1130/G48615.1. |
Marchev P, Kaiser-Rohrmeier M, Heinrich C, Ovtcharova M, von Quadt A, Raicheva R. 2005. 2: Hydrothermal ore deposits related to post-orogenic extensional magmatism and core complex formation: The Rhodope Massif of Bulgaria and Greece. Ore Geology Reviews, 27(1–4), 53–89. doi: 10.1016/j.oregeorev.2005.07.027. |
Moyen JF. 2009. High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”. Lithos, 112(3–4), 556–574. doi: 10.1016/j.lithos.2009.04.001. |
Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR, Liao ZL. 2006. Spatial–temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3), 521–533 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2006.03.001. |
Peng B, Li BL, Liu HY, Qin GZ, Gong FZ, Zhou L. 2019. Main collisional mineralization of Bangong-Nujiang metallogenic belt, Tibet: Geochronological, geochemical and isotopic evidence from Rongga molybdenum deposit. Acta Petrological Sinica, 35(3), 705–723 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.06. |
Rapp RP, Watson EB. 1995. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4), 891–931. doi: 10.1093/petrology/36.4.891. |
Richards JP. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8), 1515–1533. doi: 10.2113/gsecongeo.98.8.1515. |
Richards JP. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology, 37(3), 247–250. doi: 10.1130/G25451A.1. |
Richards JP. 2014. Porphyry and related deposits in subduction and post-subduction settings. Acta Geologica Sinica-English Edition, 88(s2), 535–537. doi: 10.1111/1755-6724.12374_19. |
Richards JP. 2011. High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: Just add water. Economic Geology, 106(7), 1075–1081. doi: 10.2113/econgeo.106.7.1075. |
Shafiei B, Haschke M, Shahabpour J. 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44(3), 265–283. doi: 10.1007/s00126-008-0216-0. |
Sillitoe RH. 2010. Porphyry copper systems. Economic geology, 105(1), 3–41. doi: 10.2113/gsecongeo.105.1.3. |
Sui QL, Wang Q, Zhu DC, Zhao ZD, Chen Y, Santosh M, Hu ZC, Yuan HL, Mo XX. 2013. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent-continent collision zone. Lithos, 168–169, 144–159. doi: 10.1016/j.lithos.2013.01.012. |
Sun JD, Liu WC, Ren GS, Zhan LQ. 2018. Discussion on ore-forming material sources of Haobugao Pb-Zn deposit in Chifeng, Inner Mongolia. Advances in Geosciences, 8(8), 1330–1337 (in Chinese with English abstract). doi: 10.12677/AG.2018.88145. |
Sun M, Tang JX, Chen W, Ma XD, Qu XM, Song Y, Li XY, Ding JS. 2020. Process of lithospheric delamination beneath the Lhasa-Qiangtang collision orogen: Constraints from the geochronology and geochemistry of Late Cretaceous volcanic rocks in the Lhasa terrane, central Tibet. Lithos, 105219, 356–357. doi: 10.1016/j.lithos.2019.105219. |
Sun M, Tang JX, Chen W, Ma XD, Song Y, Zhang ZB, Liu QP. 2021. Timing and origin of the Shesuo skarn Cu-polymetallic deposit in the northern Lhasa subterrane, central Tibet: Implications for Early Cretaceous Cu (Mo) metallogenesis in the Bangong-Nujiang metallogenic belt. Ore Geology Reviews, 129, 103919. doi: 10.1016/j.oregeorev.2020.103919. |
Tang JX, Yang HH, Song Y, Wang LQ, Liu ZB, Li BL, Lin B, Peng B, Wang GH, Zeng QG, Wang Q, Chen W, Wang N, Li ZJ, Li YB, Li YB, Li HF, Lei CY. 2021. The copper polymetallic deposits and resource potential in the Tibet Plateau. China Geology, 4(1), 1–16. doi: 10.31035/cg2021016. |
Wan B, Deng C, Najafi A, Hezareh MR, Talebian M, Dong LL, Chen L, Xiao WJ. 2018. Fertilizing porphyry Cu deposits through deep crustal hot zone melting. Gondwana Research, 60, 179–185. doi: 10.1016/j.gr.2018.04.006. |
Wang ZL, Fan JJ, Wang Q, Hu WL, Yang ZY, Wang J. 2021. Reworking of juvenile crust beneath the Bangong–Nujiang suture zone: Evidence from Late Cretaceous granite porphyries in Southern Qiangtang, Central Tibet. Lithos, 390–391, 106097. doi: 10.1016/j.lithos.2021.106097. |
Wang W, Wang M, Zhai QG, Xie CM, Hu PY, Li C, Liu JH, Luo AB. 2020. Transition from oceanic subduction to continental collision recorded in the Bangong-Nujiang suture zone: Insights from Early Cretaceous magmatic rocks in the north-central Tibet. Gondwana Research, 78, 77–91. doi: 10.1016/j.gr.2019.09.008. |
Wang Y, Ma XD, Qu XM, Chen W. 2019. Geochronology and petrogenesis of the Xiongmei Cu-bearing granodiorite porphyry in North Lhasa subterrane, central Tibet: Implication for the evolution of Bangong-Nujiang metallogenic belt. Ore Geology Reviews, 114, 103119. doi: 10.1016/j.oregeorev.2019.103119. |
Wang Q, Tang JX, Chen YC, Hou JF, Li YB. 2019. The metallogenic model and prospecting direction for the Duolong super large copper (gold) district, Tibet. Acta Petrologica Sinica, 35(3), 879–896 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.16. |
Wang Y, Tang JX, Wang LQ, Li S, Danzhen WX, Li Z, Zheng SL, Gao T. 2019. Magmatism and metallogenic mechanism of the Ga’erqiong and Galale Cu-Au deposits in the west central Lhasa subterrane, Tibet: Constraints from geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes. Ore Geology Reviews, 105, 616–635. doi: 10.1016/j.oregeorev.2019.01.015. |
Wang Y, Ma XD, Chen W, Zeng YJ, Qu XM. 2018. The discovery of the tungsten mineralization in the middle part of the Bangonghu-Nujiang metallogenic belt and its significance. Mineral Deposits, 37(4), 885–888. |
Wang Q, Zhu DC, Zhao ZD, Liu SA, Chung SL, Li SM, Liu D, Dai JG, Wang LQ, Mo XX. 2014. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SW Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone. Lithos, 198–199, 24–37. doi: 10.1016/j.lithos.2014.03.019. |
Wu H, Li C, Hu PY, Li XK. 2015a. Early Cretaceous (100–105 Ma) adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: implications for the Bangong-Nujiang Ocean subduction and slab break-off. International Geology Review, 57(9–10), 1172–1188. doi: 10.1080/00206814.2014.886152. |
Wu H, Li C, Xu MJ, Li XK. 2015b. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean. Journal of Asian Earth Sciences, 97, 51–66. doi: 10.1016/j.jseaes.2014.10.014. |
Yazdi Z, Jafari Rad A, Aghazadeh M, Afzal P. 2019. Porphyry copper prospectivity mapping using fuzzy and fractal modeling in Sonajeel area, NW Iran. Bulletin of the Mineral Research and Exploration, 158, 235–250. doi: 10.19111/bulletinofmre.451565. |
Yu SM, Ma XD, Song Y, Tang JX, Qu XM. 2020. Origin of Early Cretaceous Cu-bearing magmas associated with slab break-off in Northern Lhasa subterrane: Implications for the multisource of the postcollisional magma. Geological Journal, 55(6), 4642–4655. doi: 10.1002/gj.3659. |
Yuan SD, Mao JW, Zhao PL, Yuan YB. 2018. Geochronology and petrogenesis of the Qibaoshan Cu-polymetallic deposit, northeastern Hunan Province: Implications for the metal source and metallogenic evolution of the intracontinental Qinhang Cu-polymetallic belt, South China. Lithos, 302–303, 519–534. doi: 10.1016/j.lithos.2018.01.017. |
Zhao YY, Cui YB, Lv LN, Shi DH. 2011. Chronology, geochemical characteristics and the significance of Shesuo copper polymetallic deposit, Tibet. Acta Petrologica Sinica, 27(7), 2132–2142 (in Chinese with English abstract). |
Zhao ZB, Li C, Ma XX. 2021. How does the elevation changing response to crustal thickening process in the central Tibetan Plateau since 120 Ma? China Geology, 4(1), 32–43. doi: 10.31035/cg2021013. |
Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1), 211–280. doi: 10.1146/annurev.earth.28.1.211. |
Zhu DC, Li SM, Cawood PA, Wang Q, Zhao ZD, Liu SA, Wang LQ. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245, 7–17. doi: 10.1016/j.lithos.2015.06.023. |
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ, Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4), 1429–1454. doi: 10.1016/j.gr.2012.02.002. |
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1–2), 241–255. doi: 10.1016/j.jpgl.2010.11.005. |
Zhu DC, Mo XX, Niu YL, Zhao ZD, Wang LQ, Liu YS, Wu FY. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 268(3–4), 298–312. doi: 10.1016/j.chemgeo.2009.09.008. |
Zhu XS, Lu MJ, Cheng WJ, Song YC, Zhang C. 2017. Comparison of geological mineralogy and geochemical characteristics between ore-bearing porphyries of porphyry deposits in the Andean and the Gandise metallogenic belts. Geological Bulletin of China, 36(12), 2143–2153 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2017.12.007. |
Tectonic framework of the Tibetan Plateau showing the studying area (Modified from Yin A and Harrison TM, 2000; Zhu DC et al., 2016; Tang JX et al., 2021).
Distribution map of the magmatic rocks and geochemical element anomalies in the studying area.
Zircon 206Pb/207Pb age vs. εHf(t) values diagram for the magmatic rocks.
Some discrimination diagrams for the magmatic rocks.
Chondrite-normalized REE diagrams and primitive mantle (PM) normalized trace element diagrams. The scope for the Gangdese and Andean are modified from Zhu XS et al., 2017.
a–Sr/Y vs. Y and b–(La/Yb)N vs. YbN diagrams.
Schematic illustration shows the geodynamic evolution of the NLT.