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Bangong-Nujiang collisional zone (BNCZ) is an older one in Qinghai-Tibet Plateau and resulted in the
famous Bangong-Nujiang metallogenic belt, which plays an important role in evaluating the formation and
uplift mechanism of plateau. The northern and central Lhasa Terrane composed the southern part of the
BNCZ. Since ore deposits can be used as markers of geodynamic evolution, the authors carried 1 © 50000
stream sedimental geochemical exploration in the Xiongmei area in the Northern Lhasa Terrane to
manifest the mineralization, and based on this mineralization with geochemical and chronological
characteristics of related magmatic rocks to constrain their geodynamics and connection with the evolution
of the Lhasa Terrane. The authors find Early Cretaceous magma mainly resulted in Cu, Mo mineralization,
Late Cretaceous magma mainly resulted in Cu, Mo, and W mineralization in the studying area. The results
suggest a southward subduction, slab rolling back and break-off, and thickened lithosphere delamination
successively occurred within the Northern Lhasa Terrane.

Geological survey engineering
Tibet

©2022 China Geology Editorial Office.

1. Introduction

Qinghai-Tibet Plateau is a prominent continent-continent
collisional zone, where a series of W-E trending blocks
collided and amalgamated along several sutures (Fig. 1; Yin
A and Harrison TM, 2000). Among these collisional zones,
Bangong-Nujiang collisional zone (BNCZ) is an older one
and resulted in the famous Bangong-Nujiang metallogenic
belt (Li GM et al., 2017; Li XK et al., 2018b). BNCZ plays an
important role in evaluating the formation and uplift
mechanism of Tibetan Plateau ( Zhu DC et al., 2016; Zhao ZB
et al., 2021). Northern and Central Lhasa Terrane composed
the southern part of the BNCZ, they experienced the evolution
from subduction, collision to intracontinental (Fig. 1b).
Several models were proposed for the complex geological
processes in Northern and Central Lhasa Terrane, involving
southward or northward subduction during subduction ( Zhu

* Corresponding author: E-mail address: 2644775407 (@qq.com (Shi-mian Yu); maxudong201 1@
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DC et al., 2009, 2011, 2013; Kapp P and DeCelles PG, 2019;
Liu YM et al., 2017), slab rolling back and/or sequential
break-off during Lhasa-Qiangtang collision (Zhu DC et al.,
2011, 2016; Chen Y et al., 2014; Li XK et al., 2018b; Wang Y
et al.,, 2019a), and lithospheric delamination after crustal
thickening (Hu PY et al., 2017; Sun M et al., 2020) and some
details in these geological processes. These arguments
complicate the evolution of the BNCZ, which resulted in the
details of evolution in this collisional zone are ongoing
debated ( Zhu DC et al., 2009, 2011, 2016).

Since deposits always formed in a specific tectonic
setting, ore deposits can be used as markers of geodynamic
evolution (Mao JW et al., 2021). One of the classic examples
is the Central Andes, where Cenozoic porphyry copper
deposits in Chile are representative of an active continental
margin setting, and the Bolivian tin belt is indicative of a
back-arc setting. Both metal belts formed in specific and
relatively narrow time windows at 10 Ma scale, which was
modulated by periods of flat-slab subduction ( James DE and
Sacks IS, 1999; Kay SM et al., 1999; Lehmann B, 2004). One
more similar example is the southeast China coast, where a
Middle to Late Jurassic magmatic arc associated with a ca.
171-153 Ma porphyry copper belt, coupled with the 165-150
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Fig. 1. Tectonic framework of the Tibetan Plateau showing the studying area (Modified from Yin A and Harrison TM, 2000; Zhu DC et al.,

2016; Tang JX et al., 2021). LSSZ—Longmu Tso-Shuanghu Suture Zone; BNSZ-Bangong-Nujiang Suture Zone; SNMZ—Shiquan River-Nam
Tso Mélange Zone; LMF-Luobadui-Milashan Fault; IYSZ-Indus-Yarlung Zangbo Suture Zone; STDS—South Tibetan Detachment System.

Ma tin-tungsten province in the Nanling region within an
associated back-arc setting (Mao JW et al., 2021).

Geochemical anomalies are the most direct manifestation
of mineralization in a region, which are used as an effective
tool for deposit prospecting (Ding JS et al., 2019). Here, the
authors use 1 :50000 stream sedimental geochemical
exploration results for the Xiongmei area in the Northern
Lhasa subterrane to reflect the mineralization anomalies
arising from magmatism. These new results with the
published geochemical and chronological data together, are
used to constrain their geodynamics and connection with the
evolution of the Northern Lhasa Terrane in BNCZ.

2. Geological background

Qinghai-Tibetan Plateau consists of the Himalaya, Lhasa,
Qiangtang, and Songpan-Ganze terranes from south to north,
which are separated by Indus-Yarlung Tsangpo, Bangong-
Nuyjiang and Jinsha Suture Zones, respectively (Yin A and
Harrison TM, 2000). The Lhasa Terrane (LT) and Qiangtang
Terrane (QT) are located in the central Tibetan Plateau. They
converged into BNCZ along the Bangong-Nujiang suture. The
Bangong-Nujiang suture is characterized by a >1200 km-long
east-west belt of mainly Jurassic-Cretaceous flysch, mélange,
and ophiolitic fragments (Yin A and Harrison TM, 2000).
Bangong-Nujiang Cu-polymetallic metallogenic belt is
situated within the BNCZ, and composes a part of Tethyan
metallogenic domain (Hou ZQ and Zhang HR, 2015; Li GM
et al.,, 2017; Li XK et al., 2018b). As a famous metallogenic
belt, various metal deposits were also found, such as Dulong
giant porphyry Cu-Au deposit, Galale skarn Cu (Au) deposit,
Jiaoxi W deposit, Shesuo skarn Cu-polymetallic deposit and
Rongga Porphyry Mo deposit (Zhao YY et al., 2011; Wang Q
et al., 2019b; Wang Y et al., 2019¢; Peng B et al., 2019; Tang
JXetal., 2021; Sun M et al., 2021; Fig. 1).

LT was further divided into the northern (NLT), central
(CLT), and southern (SLT) subterranes, with the Shiquanhe-
Nam Tso Mélange Zone (SNMZ) and the Luobadui-Milashan
Fault (LMF) as boundaries, respectively (Fig. 1; Zhu DC et
al., 2013). The study area is located in the middle segment
and belonged to the NLT.

The points for the evolution of NLT can be summarized as
below. One point of view is that: Before the Late Jurassic-Early
Cretaceous, the Bangong-Nujiang Tethyan oceanic slab
subducted to LT (Zhu DC et al., 2016); during the Late
Jurassic-Early Cretaceous, Bangong-Nujiang Tethyan ocean
closed through divergent subduction and resulted in the final
arc-arc “soft ” collision. In this stage, the cold and dense
Bangong-Nujiang oceanic lithosphere below the “soft” arc-arc
collision zone is rolled back (Zhu DC et al., 2016; Fan JJ et al.,
2018; Li SM et al., 2018a), continued sinking resulted in the
lithosphere beyond LT rupturing through gravitational
instability (Wu H et al., 2015a, 2015b; Ma XD et al., 2020);
During 87-76 Ma, the thickened lithospheric keel became
gravitational instability and ultimately delaminated after long-
term compression (Wang Q et al., 2014; Sun M et al., 2020).
Another points of view are quite opposite, that the Bangong-
Nujiang Tethyan oceanic slab only northward subducted (Li C
et al., 2020a), and Early Cretaceous intense magmatism in the
NLT resulted from the northward subducted slab break-off (Li
S et al., 2019), intra-oceanic subduction (Liu DL et al., 2014),
ridge-subduction (Li YL et al., 2016) or thickened lithospheric
delaminated (Hu PY et al., 2017), and even Late Cretaceous
intense magmatism was triggered by the far-field rollback of
the northwards subducted Neo-Tethys oceanic slab (Wang ZL
et al.,, 2021) or slab break-off (Li GM et al., 2017). And an
earlier point is that Early Cretaceous intense magmatism in the
NLT was the produce of the northward subduction of the Neo-
Tethyan Yarlung Zangbo Ocean lithosphere (Pan GT et al.,
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2006; Yin A and Harrison TM, 2000).
3. Geological features of the study area

The 1 : 50000 stream sedimental geochemical exploration
was carried in the Xiongmei area (Figs. 1, 2a). The strata in
the study area include Early Devonian Daerdong Formation
(D,d), Early Devonian to Early Carboniferous Chaguoluoma
Formation (D,C,¢), Carboniferous Yongzhu Formation (C;.

,»), Jurassic-Early Cretaceous Rila Formation (J;K,r), Early
Cretaceous Duoni (K;d) and Langshan Formation (K,/). D;d
is composed of thin layer limestone and bioclastic limestone;
D,C,¢ is composed of limestone; C,_,y is composed of quartz
sandstone, shale and interbedded with limestone or calcareous
sandstone; J;K;» is composed of thin layer limestone and
bioclastic limestone; Kd is composed of a series of volcanic-
sedimentary rocks, including sandstone and argillaceous
limestone interlayer, bimodal volcanics; K,/ is mainly
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Fig. 2. Distribution map of the magmatic rocks and geochemical element anomalies in the studying area. [-Shesuo granodiorite-monzogranite
plutons; II-Xiongmei granodiorite porphyries; III-Tangjiang granodiorite pluton; IV—Sangri granodiorite pluton; V—-Gonggiong granodiorite-
monzogranite complex massif; VI-Jiangba volcanics. The ages (Ma) of Fig. 2a are summarized in Table 1.
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composed of limestone, marl limestone, and a few siltstone to
silty mudstone interlayer.

Magmatic rocks mainly formed in two periods of
magmatism during Early Cretaceous and Late Cretaceous
respectively (Table 1; Figs. 2a, 3). Early Cretaceous
magmatism was recorded by Shesuo monzogranite pluton
(112-110 Ma; Yu SM et al., 2020; Sun M et al., 2021),
Xiongmei granodiorite porphyry veins (110 Ma; Wang Y et
al., 2019a; Yu SM et al., 2020) and Tangjiang granodiorite
pluton (114 Ma; Chen W et al., 2020), while Late Cretaceous
magmatism was recorded by Jiangba felsic volcanics (8785
Ma; Sun M et al, 2020), Gongqgiong granodiorite-
monzogranite complex massif (82-76 Ma; Chen W et al.,
2019), Sangri granodiorite pluton (79-78 Ma, Li XY et al.,
2020b, or 83.242.3 Ma, Lin B et al., 2020).

These magmatic rocks resulted in obvious mineralization
phenomena (Table 1). For example, Shesuo monzogranite
intruded K/, and resulted in intense skarn alteration and Cu
(+Mo) deposit (Sun M et al., 2021); Xiongmei granodiorite

porphyry are Cu-bearing (Wang Y et al., 2019a); Tangjiang
granodiorite pluton intruded into Dd, D,C,é, C,y, and
J;Kyr, and resulted in skarnization and Cu mineralization
(Chen W et al., 2020). Gongqiong granodiorite-monzogranite
complex massif intruded into D,;C,é, accompanied by
skarnization and greisenization, the quartz veins containing
scheelite, pyrite and chalcopyrite were found in the skarn
zone; the wolframite gains were found in the greisen zone
(Wang Y et al., 2018).

4. Geological features of the magmatic rocks
4.1. Early Cretaceous magmatism

Zircon U-Pb dating and Hf-isotope studies indicate that
the study area experienced a magmatic flare-up with strong
input of mantle-derived components at ca. 114-110 Ma (Fig.
3). These magmatic rocks are characterized by high Al,0O3 and
K,O contents, and moderate MgO content (Figs. 4a, b, ¢ and
d). The Chondrite-normalized REE patterns display right

Table 1. Age, geochemical feature and mineralization phenomena of the magmatic rocks in Xiongmei area, Tibet.

Pluton Lithology Age/Ma Geochemical characteristic Mineralization Geochemical References
phenomena, sized anomaly
Xiongmei Granodiorite 110-105 Si0,: 64.5%-68.5%; Al,05: 15.0%—17.1%; MgO: Porphyry Cu Cu, Mo Wang Y et
porphyry (Zrn); 1.6%-1.9%; K,0 : 0.6%—4.7%; St/Y: 12.7-30.9; Y: deposit; small- anomaly al., 2019a; Yu
108.4+0.7 9.7x107°-12.7x107% (La/Yb)y. 8.0-11.8; Yy : 5.9-8.2; sized SM et al.,
(Zrn) enrichment in Rb, K, Th, U; depletion in Ba, Nb, Ta, Sr, Ti, 2020
eyf(?) : —15.4—+3.2.
Shesuo Granodiorite, 112.1£0.6  SiO,: 68.9%—-75.8%; Al,O5: 13.1%—15.4 %; MgO: Skarn Cu-Mo Cu, Mo Yu SM et al.,
monzogranite  (Zrn); 0.3%-1.4%; K,0: 2.6%—4.9%; Sr/Y: 2.6-13.0; Y: deposit; anomaly 2020; Sun M
110.1+£8.5 14.5x107°-38.1 x107; (La/Yb)y . 6.1-10.5; Yy: 8.1-21.7; small-sized etal., 2021
(Zrn), enrichment in LILE; depletion in Nb, Ta and Ti; ey(?):
1152+1.6 -153-+5.8
(Mo)
Tangjiang  Granodiorite 110.5+ 1.5 SiO;: 67.0%—64.5%; Al,05: 17.0%-16.1%; MgO: Skarn Cu deposit; Cuanomaly  Chen W et al.,
(Zrn); 1.6%-2.1%; K,0: 2.9%-2.5%; Sr/Y: 12.8-16.1; Y: top to small sized 2020
1100+ 1.1 18.4x10°-14.3x107%; (La/Yb)y. 7.8-10.1; Yy: 8.6-11.9;
(Zrn), enrichment in LILE; depletion in Nb, Ta and Ti; eyq?):
1139+1.0 -3.69—+0.91.
(Zm);
Sangri Granodiorite 79.2+03  SiO;y: 65.2%-69.6%; Al,O5: 15.0 %—15.9%; MgO: Skarn Cu deposit; Cu, Mo Li XY et al.,
(Zrn), 1.0%—-1.6%; K,0: 2.1%-3.7%; Sr/Y: 29.8-41.0; Y: unknown anomaly 2020; Lin B
771£0.6  22.0x10°-35.7x107% (La/Yb)y. 10.2-23.4; Yy: 6.5-8.3; etal., 2020
(Zrn); enrichment in LILE; depletion in Nb, Ta and Ti.
83.2+23
(Grt)
Gonggiong  Granodiorite, 71.8+0.6 Si0,: 67.8%-73.1%; Al,05: 13.1%—-15.1%; MgO: Scheelite-bearing W anomaly Wang Y et
monzogranite  (Zrn), 0.5%—2.0%; K,0: 3.8%—5.1%; Sr/Y: 5.3-8.1; Y: quartz veins; al., 2018;
75.6+1.2 12.0x107°-14.4x107%; (La/Yb)y. 14.0-32.7; Yy: 12.2-20.8;  wolframite in the Chen W et al.,
(Zrn) enrichment in Rb, K, Th, U; depletion in Ba, Nb, Ta, Sr, Ti; greisen; 2019
ef(f): —0.5—+2.5. mineralization
point
Jiangba Andesite, 87.1+1.1 Si0,: 61.4%-70.8%; Al,05: 13.4%—-17.4%; MgO: No found Pb, Zn Sun M et al.,
dacite, (Zm), 1.4%-2.8%; K,0: 1.9%-3.0%; Sr/Y: 30.0-63.6; Y: anomaly 2020
85.1+1.0 8.7x107°-19.3x10°%; (La/Yb)y. 17.9-24.3; Yy : 4.6-9.3;
(Zrn), enrichment in LILE; depletion in Nb, Ta and Ti; ey(?):
+2.7-+7.1.
Jiangba Rhyolite 81.6+£0.5  SiO,: 74.6%—76.4%; Al,053: 12.0%—13.6%; MgO: No found Sun M et al.,
(Zm) 0.2%-0.5%; K,0: 3.2%—7.2%; Sr/Y: 30.0-63.6; Y: 2020

0.7x107°=3.0x107%; (La/Yb)y. 3.8-5.6; Yy: 22.5-25.3;
enrichment in LILE; depletion in Nb, Ta and Ti; ey(?):

+1.0—3.5.

Notes: Zrn means zircon U-Pb dating; Mo means molybdenite Re-Os isochron age; Grt means garnet U-Pb dating.
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eHf(t) values (Table 1; Xiongmei: —15.4—+3.2; Shesuo:
—15.3—+5.8; Tangjiang: —3.69—+0.91).

4.2. Late Cretaceous magmatism

Zircon U-Pb dating indicates a intense magmatism
occurred during 87-76 Ma, which lasted 11 m.y., and the Hf-
isotope from these magmatic rocks implies that strong input
of mantle-derived components and juvenile crust remelt (Fig.
3). They have similar geochemical features as Early
Cretaceous magmatism, with high Al,O; and K,O contents,
moderate MgO content (Figs. 4a, b, ¢ and d), fractionated
REE patterns and depletion in HFSEs as well as enrichment in
LILEs (Figs. 5¢c, d).

These Late Cretaceous magmatic rocks display varied
egft) values (Table 1; Gonggiong: —0.5—+2.5; Jiangba
andesite-dacite: +2.7—+7.1; Jiangba rhyolite: +1.0—+3.5)

5. Geochemical anomalies associate with magmatism

Determining threshold is one of fundamental tasks for
analyzing the geochemical data of stream sediments, then
delineate geochemical anomalies, analyze and identify the

3
r : ° (b)
- e%¢® ¢ ° °
Metaluminous ) Peraluminous
A |
L ® H
M + @ - )
< o 5
< a
1
Peralkaline
0 . . ; . . . .
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
A/CNK
20
Subducted (d)
| oceanic
crust-deriyed ,-=---No___ \ Pure slab melt
18 | melt <
//
/
/
/
& |
S 16 - \
Delaminated lower
14 } crust-derived melt
Thick lower “ :
crust-derived =
adakites =
12 . . . . .
50 60 70 80
Si0,/%
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diagram; c-MgO and SiO, diagram (modified from Rapp PR and Watson EB, 1995); d —Al,05 and SiO, diagram. The legend was same as the

Fig. 3.
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mineralization anomalies, so as to provide an effective basis
for further prospecting. Geochemical anomalies for the
metallogenic elements of Cu, Mo, W, Pb and Zn were
circumscribed in geochemical exploration area. The sampling
area is about 1600 km? and 6586 valid samples were
obtained, the sampling density is 4.1 piece/km® Detailed
sampling and data processing procedures have been described
in Ding JS et al. (2019) and it was reworded in Appendix 1.

In this paper, the average content and standard deviation
of five ore-forming elements in Xiongmei area are obtained
by iterative elimination of outlier-data-points and statistical
analysis. The theoretical anomaly lower limit is obtained
according to the sum of the average content and 1.65 times
the standard deviation, and then the actual anomaly lower
limit is determined in combination with the actual geology
and mineral resources in the area. The abnormal outer, middle
and inner band of each element are respectively delineated by
1, 2 and 4 times of the lower limit, and the abnormal map of
each element is made using the DTM analysis module of the
MapGIS platform (Fig. 2). After calculation, single element
anomaly lower limit are as below: Cu (x10°%): 30; Mo
(x107%): 1; W (x107%): 4; Pb (x107%): 60; Zn (x10%): 120.

As shown in Fig. 2, the circled geochemical anomalies are
almost around the pluton and volcanics. Considering that
there is less rainfall in the studying area, the factors causing
geochemical anomalies are basically in situ. The highly
coupling between the geochemical anomalies and the pluton

and volcanics suggest that these anomalies resulted from the
related magmatisms. The coupling relations are regular as
below (Table 2): Cu element geochemical anomalies are
spatial coincidence with Early Cretaceous Shesuo
granodiorite-monzogranite plutons (Peak value: 99x107;
Average value: 31x107%), Xiongmei granodiorite porphyries
plutons (Peak value: 216x10°% Average value: 56x10°°),
Tangjiang granodiorites plutons (Peak value: 98x107;
Average value: 29x10°%) and Late Cretaceous Sangri
granodiorite plutons (Peak value: 154x107% Average value:
45x107%) (Fig. 2b); Mo element geochemical anomalies are
spatial coincidence with Shesuo granodiorite-monzogranite
(Peak value: 3.5x107% Average value: 0.6x10°%, Xiongmei
granodiorite porphyries (Peak value: 3.3x107% Average
value: 1.0x107®, Late Cretaceous Sangri granodiorite plutons
(Peak value: 13x10°%; Average value: 1.5x10°®, part of the
Gonggiong granodiorite-monzogranite complex massif (Peak
value: 12x107%; Average value: 1.7x107%) (Fig. 2¢); Tungsten
element geochemical anomalies are spatial coincidence with
Late Cretaceous Gongqgiong granodiorite-monzogranite
complex massif (Peak value: 751x107% Average value:
69x107° (Fig. 2d); Pb and Zn element geochemical
anomalies are spatial coincidence with the Late Cretaceous
Jiangba dacite-andesite volcanics and one unknown volcanics
(Peak value: Pb: 619x107°, Zn: 427x107°; Average value: Pb:
167x10°%, Zn: 137x10°%) (Figs. 2e, f).


http://dx.doi.org/10.31035/cg2021045

90 Yu et al. / China Geology 5 (2022) 84-95

Table 2. Peak and average value of the geochemical anomalies
arising from pluton and volcanics.

Pluton Peak/10° Average Background Intensity of
/1076 (lower anomaly
value)/10°®  (Peak/
Background)
Abnormal element: Cu
Shesuo 99 31 30 33
Xiongmei 216 56 30 7.2
Tangjiang 98 29 30 32
Sangri 154 45 30 5.1
Abnormal element: Mo
Shesuo 35 0.6 1 35
Xiongmei 33 1.0 1 33
Sangri 13 1.5 1 13
Gonggiong 12 1.7 1 12
Abnormal element: W
Gonggiong 751 69 4 187.8
Abnormal element: Pb
Jiangba 619 167 60 10.3
Abnormal element: Zn
Jiangba 427 137 120 35

6. Discussion
6.1. Constrains on the evolution of BNCZ

Xiongmei area is located to the northern side of the
Shiquanhe-Nam Tso M¢élange Zone (Fig. 1). If Early
Cretaceous magmatism in the NLT was the produce of the
northward subduction of the Yarlung Zangbo Ocean
lithosphere, and Shiquanhe-Nam Tso Mélange Zone
represents back-arc basin (Pan GT et al., 2006; Yin A and
Harrison TM, 2000), the mineralization in Xiongmei area
should be tin-tungsten belt (Mao JW et al., 2021). Actually,
Early Cretaceous magma mainly resulted in Cu, Mo
mineralization the studying area (Figs. 2a—c).

Cu mineralization are associated with Cretaceous
granodiorite or granodiorite porphyry, monzogranite in
Xiongmei area, these Cu mineralization are like porphyry-
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skarn Cu deposits (Wang Y et al., 2019a; Lin B et al., 2020;
Sun M et al., 2021). Typical porphyry-skarn Cu deposits
(PCD) are always found in island- and continental-arc, post-
collisional  setting and sometimes intracontinental
environment (Richards JP, 2003, 2009; Sillitoe RH, 2010;
Yuan SD et al., 2018; Yazdi Z et al., 2019). Compared the
PCDs in Gangdise metallogenic belt (typical collision-type)
with the Andean metallogenic belt (typical subduction-type),
the collision-type have higher Sr/Y and (La/Yb)y values,
K,0, SiO,, and relative lower Y and Yb contents, than the
subduction-type (Figs. 4a, 5a, ¢, 6; Zhu XS et al., 2017), since
the collision-type PCDs result from remelting of sulfide-
bearing cumulates inherited from arc magma by
asthenosphere upwelling and post-collisional thickening
(Richards JP, 2014; Hou ZQ et al., 2015; Wan B et al., 2018).
Some geochemical features of Early Cretaceous Xiongmei,
Shesuo and Tangjiang pluton and Late Cretaceous Sangri
pluton are according with subduction-type (Figs. 4a, 5), but
moderated MgO contents (Fig. 4c) and enriched Hf isotope
composition (Fig. 3) of them are completely different from
the melt from slab or metasomatic mantle wedge during
subduction.

Due to the residue of plagioclase, Sr and Eu
concentrations tend to be significantly low in melts generated
at low pressures, while due to the residue of garnet, while
HREEs and Y tend to be significantly lower in melts
generated at high pressures (Moyen JF, 2009). The relatively
low Sr/Y and (La/Yb)y value imply that these Cu
mineralization magma generated from decompression melting
in an extensional environment (Wang Y et al., 2019a; Yu SM
et al., 2020), which is not consistent with a typical post-
collision PCD formed in collisional thicken crust. Slab break-
off thicken crust delamination are common extensional
environments that can formed PCDs (Richards JP, 2009,
2011; Shafiei B et al., 2009; Hou ZQ et al., 2015). If two
phase of delamination or slab break-off happened during short
time in the same location, it is fundamentally unfeasible, and
the post-collisional slab break-off always happened before
thicken crust delamination in intracontinental environment.

150
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® Xiongmei Jiaélgbta dacit
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Fig. 6. a-Sr/Y vs. Y and b—(La/Yb)y vs. Yby diagrams. The scope for the Gangdese and Andean are modified from Zhu XS et al., 2017 and

Wan B et al., 2018.
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Thus the best explanation is that Early Cretaceous phase was
associated with slab break-off while Late Cretaceous phase
was associated with delamination.

As tungsten is a kind of high-temperature element, the
tungsten mineralization is always associated with high-
temperature hydrothermal that generated from differentiated
complex massif. The Gonggiong complex massif experienced
a highly differentiated evolution from 82.0-75.7 Ma (Fig. 3d;
Chen W et al, 2019), which needed an extensional
environment (Li XF et al., 2008; Hou ZQ and Zhang HR,
2015). The Hf isotopic compositions and geochemistry of
Gonggiong complex massif implies that the magma sourced
from a mafic lower crust (Chen W et al., 2019). A prolonged,
high-temperature extensional environment is essential for the
Late Cretaceous tungsten mineralization. Both batch
delamination and post-collision extension model are suitable
for this requirement.

Pb-Zn deposits are always sourced from the ancient crust
or host strata (Marchev P et al., 2005; Sun JD et al., 2018).
Though the Pb-Zn geochemical anomalies have been
identified around Late Cretaceous Jiangba volcanics (Fig. 2f,
2), Pb-Zn mineralization has not been found. We assume that
this anomaly was sourced from the wallrock strata when the
Jiangba volcanics emplacement, it implies the lead and Zinc
contents in magma for Jiangba volcanics are low, and the
ancient crust mixing is limited. Jiangba volcanics can be
divided into andesite-dacite and rhyolite series. The andesite-
dacites have adakitic signatures and high MgO contents, while
rhyolites have non-adakitic signatures and low MgO contents,
both of them have high positive ¢Hfy,) values (andesite-
dacites: +2.7—+7.1; rhyolites: +1.0—+3.5). Combined,
andesite-dacite series are sourced from a juvenile mafic lower
crust foundered into the convecting mantle, melted, and
interacted with peridotite, while the rhyolites were derived by
a juvenile mafic lower crust. Post-collision thickened juvenile
crust delamination is first considered for the Jiangba volcanics
forming (Sun M et al., 2020).

6.2. A model for the evolution of Northern Lhasa terrane

Three episodes of magmatism occurred in the NLT,
namely, the Jurassic (170-150 Ma), Early Cretaceous
(125-100 Ma), and Late Cretaceous (90-68 Ma). Early
Cretaceous magmatism consists of a near East-West trending
A2-type granite belt (Ma XD et al., 2020), bimodal volcanics
(Sui QL et al. 2013; Chen Y et al., 2014), norite plutons (Ma
XD et al, 2020), several high-Mg andesites/diorite and
adakitic rocks (Wu H et al., 2015a, 2015b; Wang W et al.,
2020) and abundant alkali-rich I-type granite (Chen Y et al.,
2014). These rocks suggest that a high temperature
extensional setting associated with asthenosphere upwelling
existed along the northern margin of the Lhasa terrane (Luo
AB et al., 2021). A series of special types were identified
from the Late Cretaceous magmatism, consisting of bimodal
volcanic rocks, mafic dikes, high-Mg# adakitic rocks, Mg-
rich andesite-dacite and Cu-bearing porphyrites (Wang Q et

al., 2014; Lei M et al., 2020). These rocks suggest that a
compressional to an intracranial extensional environmental
change accompanying asthenosphere upwelling happened.

After discussion on the geochemical exploration and
petrogeochemical characteristics of magmatic rocks in
Xiongmei area, we can draw the inferences as below: A Cu-
rich juvenile crust has been formed at the bottom of NLT
before ca. 125 Ma, which is the source for Early and Late
Early Cu mineralization; During 120-105 Ma and 89-76 Ma,
the asthenosphere mantle was upwelling, the NLT was in an
extensional and high-temperature environment.

Based on these inferences, we sketch out a reasonable
model for the evolution of the Northern Lhasa terrane, and
show it in Fig. 7.

Before ca. 125 Ma, Bangong-Nujiang oceanic slab
southwards subducted beyond the Lhasa terrane. Abundant
arc magma formed, and melt and fluid from the subducted
slab continuing metasomatized the overlying mantle wedge.
At sometime nearly 125 Ma, the slab began rolling back,
asthenosphere slowly upwelling due to volume compensating,
the subduction-modified lithospheric mantle wedge melted to
the Cu-rich juvenile crust (Fig. 7a).
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Fig. 7.
the NLT.

Schematic illustration shows the geodynamic evolution of
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During 120-105 Ma, at the end of the slab rolling back,
the slab break-off happened. Under the slab break-off setting,
the asthenosphere upwelled through the slab window, causing
large-scale overlying lithosphere melting (Fig. 7b). Cu-rich
juvenile and ancient crust were melt and mixed into the
Xiongmei, Shesuo and Tangjiangqiongguo plutons. These
pluton are associated with Cu and Mo mineralization (Figs.
2a—c).

There is almost no ca. 105-90 Ma magmatic activity. This
10 Myr magmatic hiatus reflects the collision between Lhasa
and Qiangtang terranes continuing.

During 90-76 Ma, after nearly 10 Myr collisional thicken
continuing, the lithosphere beneath the NLT became
gravitational instability and happened delaminated (Fig. 7c).
The delaminated lithosphere sinked into the asthenosphere
and melted. These melt are characterized by the high Sr/Y
vales and MgO content like Jiangba andesite-dacite;
meanwhile asthenosphere upwelled following the channel left
by the delaminated lithosphere, the overlying lithosphere was
heated and melted to form Jiangba rhyolites and Gonggiong
pluton. The Pb-Zn anomalies are resulted from the Jiangba
felsic volcanics emplacement, the W mineralizations are
associated with the Gonggiong pluton. The residual Cu-rich
juvenile melted to form Sangri pluton and resulted in the Cu,
Mo mineralizations.

7. Conclusion

In the study area, Early Cretaceous magma mainly
resulted in Cu, Mo mineralization, Late Cretaceous magma
mainly resulted in Cu, Mo, and W mineralization. According
to the feature of mineralization and magmatism, a evolution
model is proposed for the northern Lhasa terrane, involving a
southward subduction, slab rolling back and break-off and
thicken crust delamination from Jurassic to Late Cretaceous.
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Supplementary materials

Sampling, analytical methods, and mapping

Sampling

According to the specifications and technical requirements
of 150000 geochemical survey, the authors carried out
1 2 50000-scale stream sediments survey in the study area.
The authors collected 6585 effective samples in the range of
160 km? equivalent to an average sampling density of 4
spot/km?. These samples were mainly fine to medium sand
with a particle size of 60 mesh. The sampling points were
mainly distributed in the first and second order water systems
or gullies, and soil samples were used in some areas where the
gullies were not developed. After drying and sieving, the
sample was collected by “point-centred quarter method” in
paper bags with the weight of each sample no less than 200 g.

Analytical methods

The analysis and test of the geochemical datasets in this
study was undertaken by the Guangdong Province Research
Center for Geoanalysis. The analysis of these samples adopted
an advanced analysis system and supporting scheme:
Concentrations of Cu, Pb and Zn were determined by
inductively coupled plasma optical emission spectrometry;
Concentrations of W and Mo were determined by inductively
coupled plasma mass spectrometry. In the above analysis
methods, the detection limit of each element met or was better
than the detection limit requirements of the Chinese
Geochemical Survey Specifications of DZ/T 0130-2006 and
DZ/T 0011-2015. The following were the detection limits for
6 elements: Cu (1 pg/g), Mo (0.02 pg/g), Pb (1 pg/g), Zn (2
ng/g), W (0.02 pg/g).

The qualities control of the samples were based on the
Chinese Geochemical Survey Specifications of DZ/T 0130-
2006 and DZ/T 0011-2015 (Table 3). Geochemical sample
percent of report of each element was more than 94.7%.
Logarithmic differences (AlogC) and Relative standard
deviation (RSD) between the analytical values and the
recommended values of the National First-level Certified
Reference Stream Sediments (GBW) were calculated to
measure the bias:

AlgCT(GBW) = |1gC; - 1g C;|

> (cc)
i=1

——=—— x100%

Cs

RSD(GBW) =

Where C; is the measured average value of each standard
sample (GBW); C; is the single determined value of the
GBW; C; is the recommended value of the GBW; and n is the
measurement times of each standard sample. Table 1 lists the
values of Alog C(GBW) and RSD (GBW) of geochemical
data for different concentration ranges.

The accuracy and precision of various methods were
verified by standard materials, and the results were in line
with Chinese Geochemical Survey Specifications of DZ/T
0130-2006 and DZ/T 0011-2015.

Mapping

According to the Chinese Geochemical Survey
Specifications of DZ/T 0167-2006, in order to traced the
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Table 3.
samples (c.f., Chinese Geochemical Survey Specifications of
DZ/T 0130-2006 and DZ/T 0011-2015).

Allowance of bias of the analysis of first standard

Concentration range Alog C(GBW) RSD(GBW)
<3 Detection limit <0.13 <15%

>3 Detection limit <0.11 <10%

>1% <0.07 <7%

extension of geochemical baselines on the geochemical map
and understood the geological significance, we used the
cumulative frequency method and adjusted the color levels to
make the geochemical map of each element (Fig. 2).
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