Citation: | Li-jun Chen, Ye-mao Hou, Peng-fei Yin, Xin Wang, 2020. An edible fruit from the Jurassic of China, China Geology, 3, 8-15. doi: 10.31035/cg2020010 |
Frugivory is an important ecological tie between animals and angiosperms. It plays an important role in the evolution of food webs and energy flow networks in the ecosystem. However, little is known about how old this relationship can be due to lack of relevant fossil evidence. Here, the authors report a fossil fruit, Jurafructus gen. nov., a putative angiosperm from the Middle−Late Jurassic (>164 Ma) of Daohugou Village, Inner Mongolia, China, which provides the currently earliest evidence of frugivory. The fossil is a more or less three-dimensionally preserved coalified drupe that has been damaged by animals in two different ways. The pericarp, in addition to the seed coat surrounding parenchyma seed contents, is suggestive of an angiospermous affinity, as such a 3+3 structure is distinct from a three-layered seed coat in gymnosperms. The seed possesses a distal micropyle, attached on the base of the pericarp, suggestive of a former orthotropous ovule in the gynoecium. The damaged pericarp ofJurafructus suggests that frugivory can be dated back to the Middle−Late Jurassic. Apparently, the ecological relationship between angiosperms and animals extends deep into the fossil record.
[1] | Biswas C, Johri BM. 1997. The gymnosperms. Berlin, Springer-Verlag, 494. |
[2] | Chang SC, Zhang H, Hemming SR, Mesko GT, Fang Y. 2014. 40Ar/39Ar age constraints on the Haifanggou and Lanqi formations: When did the first flowers bloom? Geological Society, London, Special Publications, 378(1), 277–284. doi: 10.1144/SP378.1 |
[3] | Chang SC, Zhang H, Renne PR, Fang Y. 2009. High-precision 40Ar/39Ar age constraints on the basal Lanqi Formation and its implications for the origin of angiosperm plants. Earth and Planetary Science Letters, 279, 212–221. doi: 10.1016/j.jpgl.2008.12.045 |
[4] | Chang SY, Lee YF, Kuo YM, Chen JH. 2012. Frugivory by Taiwan barbets (Megalaima nuchalis) and the effects of deinhibition and scarification on seed germination. Canadian Journal of Zoology, 90(5), 640–650. doi: 10.1139/z2012-030 |
[5] | Chen W, Ji Q, Liu DY, Zhang Y, Song B, Liu XY. 2004. Isotope geochronology of the fossil-bearing beds in the Daohugou area, Ningcheng, Inner Mongolia. Geological Bulletin of China, 23(12), 1165–1169 (in Chinese with English abstract). |
[6] | Cope EA. 1998. Taxaceae: The genera and cultivated species. Botanical Review, 64(4), 291–322. doi: 10.1007/BF02857621 |
[7] | Dong C, Yang X, Zhou Z. 2016. Fossil plants. In Huang D (ed.) Daohugou Biota. Shanghai, Shanghai Science and Technology Press. |
[8] | Elzinga JA, Bernasconi G. 2009. Enhanced frugivory on invasive Silene latifolia in its native range due to increased oviposition. Journal of Ecology, 97(5), 1010–1019. doi: 10.1111/j.1365-2745.2009.01534.x |
[9] | Fu Q, Diez JB, Pole M, Garcia-Avila M, Liu ZJ, Chu H, Hou Y, Yin P, Zhang GQ, Du K, Wang X. 2018. An unexpected noncarpellate epigynous flower from the Jurassic of China. eLife, 7, e38827. doi: 10.7554/eLife.38827 |
[10] | Gao KQ, Ren D. 2006. Radiometric dating of ignimbrite from Inner Mongolia provides no indication of a post-Middle Jurassic age for the Daohugou Beds. Acta Geologica Sinica (English Edition), 81(1), 42–45. |
[11] | Han G, Liu ZJ, Liu X, Mao L, Jacques FMB, Wang X. 2016. A whole plant herbaceous angiosperm from the Middle Jurassic of China. Acta Geologica Sinica (English Edition), 90, 19–29. |
[12] | Heinrichs J, Wang X, Ignatov MS, Krings M. 2014. A Jurassic moss from Northeast China with preserved sporophytes. Review of Palaeobotany and Palynology, 204, 50–55. doi: 10.1016/j.revpalbo.2014.02.005 |
[13] | Hochuli PA, Feist-Burkhardt S. 2004. A boreal early cradle of Angiosperms? Angiosperm-like pollen from the Middle Triassic of the Barents Sea (Norway) Journal of Micropalaeontology, 23, 97–104. |
[14] | Hochuli PA, Feist-Burkhardt S. 2013. Angiosperm-like pollen and Afropollis from the Middle Triassic (Anisian) of the Germanic Basin (Northern Switzerland). Frontiers in Plant Science 4, 344. |
[15] | Hori T, Ridge RW, Tulecke W, Del Tredici R, Trémouillaux-Guiller J, Tobe H. 1997. Ginkgo biloba, a global treasure: From biology to medicine. Springer Verlag, Tokyo. |
[16] | Huang DY, Nel A. 2007. Oldest ‘libelluloid’ dragonfly from the Middle Jurassic of China (Odonata: Anisoptera: Cavilabiata). Neues Jahrbuch für Geologie und Paläontologie Abhandlunge, 246, 63–68. doi: 10.1127/0077-7749/2007/0246-0063 |
[17] | Huang DY, Nel A. 2008. A new Middle Jurassic aphid family (Insecta: Hemiptera: Sternorrhyncha: Sinojuraaphididae Fam. nov.) from Inner Mongolia, China. Palaeontology, 51(3), 715–719. doi: 10.1111/j.1475-4983.2008.00773.x |
[18] | Huang DY, Nel A, Shen Y, Selden PA, Lin Q. 2006. Discussions on the age of the Daohugou fauna-evidence from invertebrates. Progress in Natural Science, 16(S), 308–312. |
[19] | Huang D, Selden PS, Dunlop JA. 2009. Harvestmen (Arachnida: Opiliones) from the Middle Jurassic of China. Naturwissenschaften, 96(8), 955–962. doi: 10.1007/s00114-009-0556-3 |
[20] | Ji Q, Liu Y, Chen W, Ji S, Lu J, You H, Yuan C. 2005. On the geological age of Daohugou biota. Geological Review, 51(6), 609–612. |
[21] | Labandeira CC, Wilf P, Johnson KR, Marsh F. 2007. Guide to insect (and other) damage types on compressed plant fossils. Version 3.0. Smithsonian Institution. |
[22] | Li N, Li Y, Wang L, Zheng S, Zhang W. 2004. A new species of Weltrichia Braun in north China with a special bennettitalean male reproductive organ. Acta Botanica Sinica, 46(11), 1269–1275. |
[23] | Liang J, Vrsansky P, Ren D, Shih C. 2009. A new Jurassic carnivorous cockroach (Insecta, Blattaria, Raphidiomimidae) from the Inner Mongolia in China. Zootaxa, 1974, 17–30. |
[24] | Lin QB, Huang DY. 2008. New Middle Jurassic mayflies (Insecta: Ephemeroptera: Siphlonuridae) from Inner Mongolia, China. Annales Zoologici, 58(3), 521–527. doi: 10.3161/000345408X364346 |
[25] | Liu YQ, Liu YX, Li PX, Zhang H, Zhang LJ, Li Y, Xia HD. 2004. Daohugou biota-bearing lithostratigraphic succession on the southeastern margin of the Ningcheng basin, Inner Mongolia, and its geochronology. Regional Geology of China, 23(12), 1180–1187 (in Chinese with English abstract). |
[26] | Liu Y, Ren D. 2008. Two new Jurassic stoneflies (Insecta: Plecoptera) from Daohugou, Inner Mongolia, China. Progress in Natural Science, 18(8), 1039–1042. doi: 10.1016/j.pnsc.2008.03.014 |
[27] | Liu ZJ, Wang X. 2016. Yuhania: A unique angiosperm from the Middle Jurassic of Inner Mongolia, China. Historical Biology, 29(4), 431–441. |
[28] | Meng QM, Labandeira CC, Ding QL, Ren D. 2019. The natural history of oviposition on a ginkgophyte fruit from the Middle Jurassic of northeastern China. Insect Science, 26, 171–179. doi: 10.1111/1744-7917.12506 |
[29] | Na Y, Sun C, Li T, Li Y. 2014. The insect oviposition firstly discovered on the Middle Jurassic Ginkgoales leaf from Inner Mongolia, China. Acta Geologica Sinica (English Edition), 88(1), 18–28. doi: 10.1111/1755-6724.12179 |
[30] | Onstein RE, Baker WJ, Couvreur TLP, Faurby S, Svenning JC, Kissling WD. 2017. Frugivory-related traits promote speciation of tropical palms. Nature Ecology & Evolution, 1(12), 1903–1911. |
[31] | Petrulevicius J, Huang DY, Ren D. 2007. A new hangingfly (Insecta: Mecoptera: Bittacidae) from the Middle Jurassic of Inner Mongolia, China. African Invertebrates, 48(1), 145–152. |
[32] | Pott C, McLoughlin S, Wu S, Friis EM. 2012. Trichomes on the leaves of Anomozamites villosus sp. nov. (Bennettitales) from the Daohugou beds (Middle Jurassic), Inner Mongolia, China: Mechanical defence against herbivorous arthropods. Review of Paleobotany and Palynology, 169(1), 48–60. |
[33] | Prasad V, Strömberg CA, Leaché AD, Samant B, Patnaik R, Tang L, Mohabey DM, Ge S, Sahni A. 2011. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae. Nature Communications, 2, 480. |
[34] | Ren D, Gao K, Guo Z, Ji S, Tan J, Song Z. 2002. Stratigraphic division of the Jurassic in the Daohugou area, Ningcheng, Inner Mongolia. Geological Bulletin of China, 21(8−9), 584–591 (in Chinese with English abstract). |
[35] | Ren D, Labandeira CC, Santiago-Blay JA, Rasnitsyn A, Shih C, Bashkuev A, Logan MA, Hotton CL, Dilcher D. 2009. A probable polination mode before angiosperms: Eurasian long-proboscid scorpionflies. Science, 326, 840–847. doi: 10.1126/science.1178338 |
[36] | Ren D, Shih C, Gao T, Yao Y, Zhao Y. 2010. Silent stories. Beijing, Science Press, 322 (in Chinese). |
[37] | Selden PA, Huang DY, Ren D. 2008. Palpimanoid spiders from the Jurassic of China. The Journal of Arachnology, 36, 306–321. doi: 10.1636/CA07-106.1 |
[38] | Shen YB, Chen PJ, Huang DY. 2003. Age of the fossil conchostracans from Daohugou of Ningcheng, Inner Mongolia. Journal of Stratigraphy, 27(4), 311–313. |
[39] | Shih C, Liu C, Ren D. 2009. The earliest fossil record of pelecinid wasps (Inseta: Hymenoptera: Proctotrupoidea: Pelecinidae) from Inner Mongolia, China. Annals of the Entomological Society of America, 102(1), 20–38. doi: 10.1603/008.102.0103 |
[40] | Sporne KR. 1971. The morphology of gymnosperms, the structure and evolution of primitive seed plants. London, Hutchinson University Library, 216. |
[41] | Taylor EL, Taylor TN. 2009. Seed ferns from the late Paleozoic and Mesozoic: Any angiosperm ancestors lurking there? American Journal of Botany, 96(1), 237–251. doi: 10.3732/ajb.0800202 |
[42] | Taylor EL, Taylor TN, Kerp H, Hermsen EJ. 2006. Mesozoic seed ferns: Old paradigms, new discoveries. Journal of the Torrey Botanical Society, 133(1), 62–82. doi: 10.3159/1095-5674(2006)133[62:MSFOPN]2.0.CO;2 |
[43] | Taylor TN, Taylor EL, Krings M. 2009. Paleobotany: The biology and evolution of fossil plants. Amsterdam, Elsevier, 1230. |
[44] | Tomlinson PB. 1992. Aspects of cone morphology and development in Podocarpaceae (Coniferales). International Journal of Plant Sciences, 153(4), 572–588. doi: 10.1086/297081 |
[45] | Tomlinson PB, Takaso T. 2002. Seed cone structure in conifers in relation to development and pollination: A biological approach. Canadian Journal of Botany, 80(12), 1250–1273. doi: 10.1139/b02-112 |
[46] | Valido A, Olesen JM. 2019. Frugivory and seed dispersal by lizards: A global review. Frontiers in Ecology and Evolution, 7(49). doi: 10.3389/fevo.2019.00049. |
[47] | Wang B, Li J, Fang Y, Zhang H. 2009a. Preliminary elemental analysis of fossil insects from the Middle Jurassic of Daohugou, Inner Mongolia and its taphonomic implications. Chinese Science Bulletin, 54(5), 783–787. |
[48] | Wang B, Ponomarenko AG, Zhang H. 2009b. A new coptoclavid larva (Coleoptera: Adephaga: Dytiscoidea) from the Middle Jurassic of China, and its phylogenetic implication. Paleontological Journal, 43(6), 652–659. doi: 10.1134/S0031030109060082 |
[49] | Wang B, Zhang HC. 2009a. A remarkable new genus of Procercopidae (Hemiptera: Cercopoidea) from the Middle Jurassic of China. Comptes Rendus Palevol, 8, 389–394. doi: 10.1016/j.crpv.2009.01.003 |
[50] | Wang B, Zhang HC. 2009b. Tettigarctidae (Insecta: Hemiptera: Cicadoidea) from the Middle Jurassic of Inner Mongolia, China. Geobios, 42, 243–253. doi: 10.1016/j.geobios.2008.09.003 |
[51] | Wang B, Zhang HC. 2011. The oldest Tenebrionoidea (Coleoptera) from the Middle Jurassic of China. Journal of Paleontology, 85(2), 266–270. doi: 10.1666/09-088.1 |
[52] | Wang M, Rasnitsyn A, Dong R. 2014. Two new fossil sawflies (Hymenoptera, Xyelidae, Xyelinae) from the Middle Jurassic of China. Acta Geologica Sinica (English Edition), 88(4), 1027–1033. doi: 10.1111/1755-6724.12269 |
[53] | Wang X. 2018. The dawn angiosperms. Cham, Switzerland, Springer Nature, 407. |
[54] | Wang X, Duan S, Geng B, Cui J, Yang Y. 2007. Schmeissneria: a missing link to angiosperms? BMC Evolutionary Biology, 7, 14. |
[55] | Wang X, Krings M, Taylor TN. 2010a. A thalloid organism with possible lichen affinity from the Jurassic of northeastern China. Review of Palaeobotany and Palynology, 162, 567–574. |
[56] | Wang X, Zheng SL, Jin JH. 2010b. Structure and relationships of Problematospermum, an enigmatic seed from the Jurassic of China. International Journal of Plant Sciences, 171, 447–456. doi: 10.1086/651224 |
[57] | Wang Y, Ren D. 2009. New fossil palaeontinids from the Middle Jurassic of Daohugou, Inner Mongolia, China (Insecta, Hemiptera). Acta Geologica Sinica (English Edition), 83(1), 33–38. doi: 10.1111/j.1755-6724.2009.00004.x |
[58] | Wu Y, You HL, Li XQ. 2018. Dinosaur-associated Poaceae epidermis and phytoliths from the Early Cretaceous of China. National Science Review, 5, 721–727. |
[59] | Zhang J. 2002. Discovery of Daohugou Biota (pre-Jehol Biota) with a discussion on its geological age. Journal of Stratigraphy, 26, 173–177. |
[60] | Zhang J, D’Rozario A, Yao J, Wu Z, Wang L. 2011. A new species of the extinct genus Schizolepis from the Jurassic Daohugou Flora, Inner Mongolia, China with special reference to the fossil diversity and evolutionary implications. Acta Geologica Sinica (English Edition), 85(2), 471–481. doi: 10.1111/j.1755-6724.2011.00415.x |
[61] | Zhang K, Li J, Yang D, Ren D. 2009. A new species of Archirhagio Rohdendorf, 1938 from the Middle Jurassic of Inner Mongolia of China (Diptera: Archisargidae). Zootaxa, 1984, 61–65. doi: 10.11646/zootaxa.1984.1.4 |
[62] | Zheng SL, Zhang LJ, Gong EP. 2003. A discovery of Anomozamites with reproductive organs. Acta Botanica Sinica, 45(6), 667–672. |
[63] | Zheng S, Wang X. 2010. An undercover angiosperm from the Jurassic of China. Acta Geologica Sinica (English Edition), 84(4), 895–902. doi: 10.1111/j.1755-6724.2010.00252.x |
[64] | Zhou Z, Zheng S. 2003. The missing link in Ginkgo evolution. Nature, 423, 821–822. doi: 10.1038/423821a |
[65] | Zhou Z, Zheng S, Zhang L. 2007. Morphology and age of Yimaia (Ginkgoales) from Daohugou Village, Ningcheng, Inner Mongolia, China. Cretaceous Research, 28, 348–362. doi: 10.1016/j.cretres.2006.05.004 |
Geographical information of the fossil locality of Jurafructus gen. nov., Daohugou Village, Inner Mongolia, China (b). The inset map (a) shows northeastern China, and the rectangular region is enlarged in (b). The main map (b) shows the junction region among Liaoning Province, Hebei Province and Inner Mongolia. The arrow points to the fossil locality of Daohugou Village.
General view of Jurafructus. a−coalified more or less three-dimensionally preserved fruit; b−the same as in Fig. 2a, but using SEM. Note the attachment (between arrows) of seed (S) on the bottom of the urceolate pericarp (P). The rectangular regions are shown in detail in Fig. 3.
Micro-CT renderings of Jurafructus. a−longitudinal planar view of the fruit, showing the seed (s) separated from the enclosing pericarp (p) at its top. Note the missing patchy portion of pericarp and/or seed coat; b−detailed view of the pericarp at the fruit tip; c−longitudinal view of the fruit tip, showing the pericarp (p) and micropyle (arrow) at the seed top; d−longitudinal section of the fruit tip, showing seed tip (s) sandwiched by the pericarp (p). Note the separation (arrow) between the pericarp and seed; e−f−two longitudinal views of the fruit showing the damaged surface (broken lines between arrows) in seed (s) and pericarp (p); g−longitudinal view of the fruit showing tissue residue (arrow) after damaging and the original surface (broken line); h−longitudinal view of the fruit, showing the distal appendages (arrow). Bottom of the fruit is to the left of the figure.
Diagram of Jurafructus showing a section through the center of the fruit. Not to scale. Note the appendages (1) at the apex and stalk at the base (11), three-layered pericarp (2, 3, 4) fully enclosing three layered seed coat (5, 6, 7), which surrounds the seed contents (8), piercing damage (9) and patchy damage (12) on the fruit surface. The seed is attached at the base (10) and has a micropyle at the top (13).
SEM views of Jurafructus. a−detailed view of the upper-right rectangle in Fig. 2b, showing the surface view of the seed coat (white line) and seed contents (SC) inside; b−detailed surface view of the seed coat, showing longitudinally oriented elongated cells, enlarged from the upper rectangle in Fig. 3a; c−detailed view of the seed coat, showing rugose surface texture, enlarged from the lower rectangle in Fig. 3a; d−detailed view of the lower-right rectangle in Fig. 2b, showing the seed contents (SC) and surrounding 3+3 organization (three-layered seed coat (S3, S2, S1) PLUS three-layered pericarp (P3, P2, P1)). Note that the P2 is not continuous but interrupted at the position corresponding to the depression on fruit surface (arrow); e−detailed view of seed coat with three layers (S1, S2, S3); f−detailed view of the left rectangle in Fig. 2b, showing the epidermis (ep), three-layered pericarp (P1, P2, P3); g−spongy subcellular details of the parenchymatous cells in the seed contents; h−texture on the sclerenchymatous cells in S2 layer of seed coat.