2019 Vol. 2, No. 4
Article Contents

Zhong-yang Lin, Xi-bin Han, Xiang-long Jin, Chao-hui Zhu, Liang Yi, Zheng-gang Li, 2019. Magnetostratigraphy and paleoenvironmental significance of sediments from ANT29-P7-09 core in Prydz Bay, Antarctica, China Geology, 2, 493-500. doi: 10.31035/cg2018134
Citation: Zhong-yang Lin, Xi-bin Han, Xiang-long Jin, Chao-hui Zhu, Liang Yi, Zheng-gang Li, 2019. Magnetostratigraphy and paleoenvironmental significance of sediments from ANT29-P7-09 core in Prydz Bay, Antarctica, China Geology, 2, 493-500. doi: 10.31035/cg2018134

Magnetostratigraphy and paleoenvironmental significance of sediments from ANT29-P7-09 core in Prydz Bay, Antarctica

More Information
  • Due to the unique geographical location and sensitive response to global climate changes, the Antarctic region plays an important role in paleoclimate researches, and attracts great attentions from various scholars. One 324 cm long sediment core (ANT29-P7-09) was obtained from Prydz Bay, Antarctica, during the 29th Chinese National Antarctic Research Expedition. Based on sediment particle size, TOC, δ13C analyses and magnetism data, the authors show that the dominant magnetic minerals are ferrimagnetic pseudo single domain (PSD)-multi domain (MD) magnetite. Variations in the paleoenvironmental records allow us to define 4 zones in the core. These zones outline the climatic variations in the region since the late Early Pleistocene, including a warm period, a transitional period, and a cold period. The magnetic particle assemblage varies with glacial-interglacial cycles. Abrupt changes in particle size, TOC content, and geomagnetism occur at 102–90 cm deep in the core, indicating a sudden warming in the Antarctic region, signaling the onset of the Holocene. The authors identified 3 additional climatic signals in the middle part of the core (232–162 cm) that show unexpected cooling events during the warm period in Prydz Bay, Antarctica.

  • 加载中
  • [1] Avramidis P, Iliopoulos G, Panagiotaras D, Papoulis D, Lambropoulou P, Kontopoulos N, Siavalas G, Christanis K. 2014. Tracking Mid- to Late Holocene depositional environments by applying sedimentological, palaeontological and geochemical proxies, Amvrakikos coastal lagoon sediments, Western Greece, Mediterranean Sea. Quaternary International, 332(85), 19–36. doi: 10.1016/j.quaint.2013.09.006

    CrossRef Google Scholar

    [2] Chen FH, Liu JB, Xu QH, Li YC, Chen JH, Wei HT, Liu QS, Wang ZL, Cao XY, Zhang SR. 2013. Environmental magnetic studies of sediment cores from Gonghai Lake: Implications for monsoon evolution in North China during the late glacial and Holocene. Journal of Paleolimnology, 49(3), 447–464. doi: 10.1007/s10933-012-9677-3

    CrossRef Google Scholar

    [3] Chen L, Zhang YF, Zhang ZQ, Liu Q, Yang WF. 2014. Paleomagnetic characteristics of a core from the powell basin, Antarctic Peninsula. Chinese Journal of Polar Research, 26(1), 111-119 (in Chinese with English abstract).

    Google Scholar

    [4] Chen XY, Liu DH, Yin P, Liu JQ, Cao K, Gao F. 2019. Temporal and spatial evolution of surface sediments characteristics in the Dagu River estuary and their dynamic response mechanism. China Geology, 2(3), 325–332. doi: 10.31035/cg2018092

    CrossRef Google Scholar

    [5] Crampton JS, Cody RD, Levy R, Harwood D, McKay R, Naish TR. 2016. Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years. Proceedings of the National Academy of Sciences, 113(25), 6868–6873. doi: 10.1073/pnas.1600318113

    CrossRef Google Scholar

    [6] Dong CY, Zhang WG, He Q, Dong Y, Yu LZ. 2014. Magnetic fingerprinting of hydrodynamic variations and channel erosion across the turbidity maximum zone of the Yangtze Estuary, China. Geomorphology, 226, 300–311. doi: 10.1016/j.geomorph.2014.08.008

    CrossRef Google Scholar

    [7] Duan ZQ, Gao X, Liu QS, Xu BQ, Su YL. 2011. Magnetic characteristics of insoluble microparticles in ice core (Nojingkangsang) from the southern Tibetan Plateau and its environmental significance. Science China-Earth Sciences, 54, 1635–1642. doi: 10.1007/s11430-011-4271-5

    CrossRef Google Scholar

    [8] Duan ZQ, Liu QS, Yang XQ, Gao X, Su YL. 2014. Magnetism of the Huguangyan Maar Lake sediments, Southeast China and its paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 395, 158–167. doi: 10.1016/j.palaeo.2013.12.033

    CrossRef Google Scholar

    [9] Escutia C, Barcena MA, Lucchi RG, Romero O, Ballegeer AM, Gonzalez JJ, Harwood DM. 2009. Circum-Antarctic warming events between 4 and 3.5 Ma recorded in marine sediments from the Prydz Bay (ODP Leg 188) and the Antarctic Peninsula (ODP Leg 178) margins. Global and Planetary Change, 69(3), 170–184. doi: 10.1016/j.gloplacha.2009.09.003

    CrossRef Google Scholar

    [10] Fabio S, Giuseppe M, Victor F, Pere A, Oriol O, Paola D, Claudia A, Mauro P, Lorenzo R, Massimiliano G. 2018. Pleistocene paleosol development and paleoenvironmental dynamics in East Africa: A multiproxy record from the Homo-bearing Aalat pedostratigraphic succession, Dandiero basin (Eritrea). Quaternary Science Reviews, 191, 275–298. doi: 10.1016/j.quascirev.2018.05.015

    CrossRef Google Scholar

    [11] Florindo F, Bohaty SM, Erwin PS, Richter C, Roberts AP, Whalen PA, Whitehead JM. 2003. Magnetobiostratigraphic chronology and palaeoenvironmental history of Cenozoic sequences from ODP sites 1165 and 1166, Prydz Bay, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 198(1−2), 69–100. doi: 10.1016/S0031-0182(03)00395-X

    CrossRef Google Scholar

    [12] Folk RL, Ward WC. 1957. Brazos river bar: A study in the signification of grain size parameters. Journal of Sedimentary Petrology, 27(1), 3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D.

    Google Scholar

    [13] Gao MS, Guo F, Huang XY, Hou GH. 2019. Sediment distribution and provenance since Late Pleistocene in Laizhou Bay, Bohai Sea, China. China Geology, 2, 16–25. doi: 10.31035/cg2018062

    CrossRef Google Scholar

    [14] Gu SC, Yan W. 1998. A preliminary study on the element strata and palaeoenvironment of core NP95-1 from the Prydz Bay, Antarctica. Advances in Polar Science, 9(1), 19–26.

    Google Scholar

    [15] Hamdan MA, Ibrahim MIA, Shiha MA, Flower RJ, Hassan FA, Eltelet SAM. 2016. An exploratory Early and Middle Holocene sedimentary record with palynoforms and diatoms from Faiyum lake, Egypt. Quaternary International, 410, 30–42. doi: 10.1016/j.quaint.2015.12.049

    CrossRef Google Scholar

    [16] Hannah MJ. 2006. The palynology of ODP site 1165, Prydz Bay, East Antarctica: A record of Miocene glacial advance and retreat. Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 120–133. doi: 10.1016/j.palaeo.2005.07.029

    CrossRef Google Scholar

    [17] Hou HM, Luo YL, Zheng HH, Wang BG, Tang XZ. 1998. Heinrich layer in Antarctic marine sediments and its significance to global changes. Chinese Science Bulletin, 43(21), 1830–1834. doi: 10.1007/BF02883383

    CrossRef Google Scholar

    [18] Hounslow MW, Maher BA. 1999. Source of the climate signal recorded by magnetic susceptibility variations in Indian Ocean sediments. Journal of Geophysical Research, 104, 5047–5061. doi: 10.1029/1998JB900085

    CrossRef Google Scholar

    [19] Hovi EH, Nowaczyk N, Saarinen T, Plessen B. 2010. Magnetic properties and environmental changes recorded in Lake Lehmilampi (Finland) during the Holocene. Journal of Paleolimnology, 43(1), 1–13. doi: 10.1007/s10933-009-9309-8

    CrossRef Google Scholar

    [20] Janbu AD, Paache Ø, Talbot MR. 2011. Paleoclimate changes inferred from stable isotopes and magnetic properties of organic-rich lake sediments in Arctic Norway. Journal of Paleolimnology, 46, 29–44. doi: 10.1007/s10933-011-9512-2

    CrossRef Google Scholar

    [21] Jovane L, Acton G, Florindo F, Verosub KL. 2008. Geomagnetic field behavior at high latitudes from a paleomagnetic record from Eltanin core 27–21 in the Ross Sea sector, Antarctica. Earth and Planetary Science Letters, 267(3-4), 435–443. doi: 10.1016/j.jpgl.2007.12.006

    CrossRef Google Scholar

    [22] Kairyte M, Stevens RL, Manville V. 2015. Composite methodology for interpreting sediment transport pathways from spatial trends in grain size: A case study of the Lithuanian coast. Sedimentology, 62(3), 681–696. doi: 10.1111/sed.12156

    CrossRef Google Scholar

    [23] Li P, Li PY, Zhang XL, Cao CX, Xu XY, Du J, Liu LJ. 2005. Magnetic properties of different grain-sized particles of sediments from the Okinawa Trough and their relationships to sedimentary environment. Chinese Science Bulletin, 50(7), 696–703. doi: 10.1360/04wd0167

    CrossRef Google Scholar

    [24] Liu J, Wang RJ, Zhao Y, Yang Y. 2019. A 40, 000-year record of aridity and dust activity at Lop Nur, Tarim Basin, northwestern China. Quaternary Science Reviews, 211, 208–221. doi: 10.1016/j.quascirev.2019.03.023

    CrossRef Google Scholar

    [25] Liu QS, Roberts AP, Larrasoaña JC, Banerjee SK, Guyodo Y, Tauxe L, Oldfield F. 2012. Environmental magnetism Principles and applications. Reviews of Geophysics, 50(RG4002), 4001–4050. doi: 10.1029/2012RG000393

    CrossRef Google Scholar

    [26] Liu S, Zhang WG, He Q, Li DJ, Liu H, Yu LZ. 2010. Magnetic properties of East China Sea shelf sediments off the Yangtze Estuary: Influence of provenance and particle size. Geomorphology, 119(3-4), 212–220. doi: 10.1016/j.geomorph.2010.03.027

    CrossRef Google Scholar

    [27] Mckay R, Naish T, Carter L, Riesselman C, Dunbar R, Sjunneskog C, Winter D, Sangiorgi F, Warren C, Pagani M, Schouten S, Willmott V, Levy R, DeConto R, Powell RD. 2012. Antarctic and Southern Ocean influences on Late Pliocene global cooling. Proceedings of the National Academy of Sciences of the United States of America, 109(17), 6423–6428. doi: 10.1073/pnas.1112248109

    CrossRef Google Scholar

    [28] Nemirovskaya IA, Kravchishina MD. 2015. Biogeochemical features of the distribution of organic compounds and particulate matter in the snow-ice cover in East Antarctica. Geochemistry International, 53(5), 430–440. doi: 10.1134/s0016702915030106

    CrossRef Google Scholar

    [29] Ouyang TP, Tian CJ, Zhu ZY, Qiu Y, Appel E, Fu SQ. 2014. Magnetic characteristics and its environmental implications of core YSJD-86GC sediments from the southern South China Sea. Chinese Science Bulletin, 59(25), 3176–3187. doi: 10.1007/s11434-014-0438-8

    CrossRef Google Scholar

    [30] Pandit MK, Wall HD. 2014. Preliminary magnetic susceptibility characteristics of the Bharati promontory, Grovness Peninsula, Larsemann Hills, Prydz Bay region, East Antarctica. Journal of the Geological Society of India, 84(2), 163–173. doi: 10.1007/s12594-014-0119-x

    CrossRef Google Scholar

    [31] Poizot E, Méar Y, Biscara L. 2008. Sediment Trend Analysis through the variation of granulometric parameters: A review of theories and applications. Earth-Science Reviews, 86(1-4), 15–41. doi: 10.1016/j.earscirev.2007.07.004

    CrossRef Google Scholar

    [32] Qi L, Qiao YS, Li YH, Wang Y, Peng SS, He ZX, Yang SB, Han C, Zhang XJ. 2017. Intensification of the East Asian monsoon in Southern China at about 300−400 ka BP inferred from Eolian Deposits in the middle-lower reaches of the Yangtze River. Acta Geologica Sinica (English Edition), 91(3), 1095–1108. doi: 10.1111/1755-6724.13326

    CrossRef Google Scholar

    [33] Raj R, Chamyal LS, Juyal N, Phartiyal B, Ali SN, Thakur B. 2016. Late Quaternary fluvio-aeolian interaction: Palaeoenvironment and palaeoclimatic conditions in the pediment zone of Vatrak River basin, western India. Zeitschrift für Geomorphologie, 60(2), 151–169. doi: 10.1127/zfg/2016/0234

    CrossRef Google Scholar

    [34] Razik S, Dekkers MJ, Dobeneck T. 2014. How environmental magnetism can enhance the interpretational value of grain-size analysis: A time-slice study on sediment export to the NW African margin in Heinrich Stadial 1 and Mid Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 406, 33–48. doi: 10.1016/j.palaeo.2014.04.009

    CrossRef Google Scholar

    [35] Sagnotti L, Macri P, Camerlenghi A, Rebesco M. 2001. Environmental magnetism of Antarctic Late Pleistocene sediments and interhemispheric correlation of climatic events. Earth and Planetary Science Letters, 192(1), 65–80. doi: 10.1016/s0012-821x(01)00438-1

    CrossRef Google Scholar

    [36] Su YL, Gao X, Liu QS, Wang JB, Haberzettl T, Zhu LP, Li JH, Duan ZQ, Tian LD. 2013. Mineral magnetic study of lacustrine sediments from Lake Pumoyum Co, southern Tibet, over the last 19 ka and paleoenvironmental significance. Tectonophysics, 588, 209–221. doi: 10.1016/j.tecto.2012.12.017

    CrossRef Google Scholar

    [37] Taylor F, McMinn A, Franklin D. 1997. Distribution of diatoms in surface sediments of Prydz Bay, Antarctica. Marine Micropaleontology, 32(3−4), 209–229. doi: 10.1016/S0377-8398(97)00021-2

    CrossRef Google Scholar

    [38] Villa G, Lupi C, Cobianchi M, Florindo F, Pekar SF. 2008. A Pleistocene warming event at 1 Ma in Prydz Bay, East Antarctica: Evidence from ODP Site 1165. Palaeogeography, Palaeoclimatology, Palaeoecology, 260(1−2), 230–244. doi: 10.1016/j.palaeo.2007.08.017

    CrossRef Google Scholar

    [39] Wang XY, Lu HY, Li Z, Deng CL, Tan HB, Song YG. 2003. Paleoclimatic significance of mineral magnetic properties of loess sediments in northeastern Qinghai-Tibetan Plateau. Chinese Science Bulletin, 48(19), 2126–2133. doi: 10.1360/02wd0567

    CrossRef Google Scholar

    [40] Wu SG, Lu J. 1998. Paleoclimatic evolution recorded in sediments of the Prydz Bay, Antarctic in 15000 years. Acta Oceanologica Sinica, 20, 65-73 (in Chinese).

    Google Scholar

    [41] Wu SG, Luo YL, Wang YQ, Lu J, Zheng F, Sun SX. 1996. Holocene glacial-marine sedimentation in the Prydz Bay, Antarctica. Advances in Polar Science, 7(2), 164–172.

    Google Scholar

    [42] Wu Y, Zhu ZY, Rao ZG, Qiu SF, Yang T. 2010. Mid-Late Quaternary loess-paleosol sequence in Lantian’s Yushan, China: An environmental magnetism approach and its paleoclimatic significance. Chinese Science Bulletin, 55(26), 79–90.

    Google Scholar

    [43] Xiang F, Wang YW, Zhang Y, Li SX, Wang JY, Fen Q. 2016. Provenance of detrital magnetites from Quaternary sediments in the Yichang Area and its significance to the birth of the Three Gorges, Yangtze River. Acta Geologica Sinica (English Edition), 90(3), 1063–1064. doi: 10.1111/1755-6724.12754

    CrossRef Google Scholar

    [44] Yao ZQ, Shi XF, Liu QS, Liu YG, Cruz Larrasoaña J, Liu JX, Ge SL, Wang KS, Qiao SQ, Li XY, Shi FD, Fang XS, Yu YG, Yang G, Duan ZQ. 2014. Paleomagnetic and astronomical dating of sediment core BH08 from the Bohai Sea, China: Implications for glacial-interglacial sedimentation. Palaeogeography, Palaeoclimatology, Palaeoecology, 393, 90–101. doi: 10.1016/j.palaeo.2013.11.012

    CrossRef Google Scholar

    [45] Zhang L, Yin KD, Yang YQ, Zhang DR. 2013. Distribution characteristics and sources of sedimentary organic matter in the pearl river estuary and adjacent coastal waters, Southern China. Journal of Earth Science, 24, 262–273. doi: 10.1007/s12583-013-0327-0

    CrossRef Google Scholar

    [46] Zhang WG, Dong CY, Ye LP. 2012. Magnetic properties of coastal loess on the Midao islands, northern China: Implications for provenance and weathering intensity. Palaeogeography, Palaeoclimatology, Palaeoecology, 333-334, 160–167. doi: 10.1016/j.palaeo.2012.03.026

    CrossRef Google Scholar

    [47] Zhang WG, Jiang HM, Dong CY, Yan Q, Yu LZ, Yu Y. 2011. Magnetic and geochemical characterization of iron pollution in subway dusts in Shanghai, China. Geochemistry Geophysics Geosystems, 12(6), Q06Z25. doi: 10.1029/2011GC003524

    CrossRef Google Scholar

    [48] Zhang WG, Yu LZ. 2003. Magnetic properties of tidal flat sediments of the Yangtze Estuary and its relationship with particle size. Science in China, Series D: Earth Sciences, 46, 954–966. doi: 10.1007/BF02991341

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(1184) PDF downloads(10) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint