2020 Vol. 3, No. 2
Article Contents

Nan Xu, Cai-lai Wu, Sheng-rong Li, Bo-qiang Xue, Xiang He, Yan-long Yu, Jun-zhuang Liu, 2020. LA-ICP-MS in situ analyses of the pyrites in Dongyang gold deposit, Southeast China: Implications to the gold mineralization, China Geology, 3, 230-246. doi: 10.31035/cg2018123
Citation: Nan Xu, Cai-lai Wu, Sheng-rong Li, Bo-qiang Xue, Xiang He, Yan-long Yu, Jun-zhuang Liu, 2020. LA-ICP-MS in situ analyses of the pyrites in Dongyang gold deposit, Southeast China: Implications to the gold mineralization, China Geology, 3, 230-246. doi: 10.31035/cg2018123

LA-ICP-MS in situ analyses of the pyrites in Dongyang gold deposit, Southeast China: Implications to the gold mineralization

More Information
  • The Dongyang gold deposit is a newly discovered epithermal deposit in Fujian Province, Southeast China, along the Circum-Pacific metallogenic belt. Herewith, the authors present mineralogical, scanning electron microscope, and laser ablation inductively coupled clasma mass spectrometry analysis to reveal the relations between Au and Te, As, S, Fe, etc., and discuss the gold precipitation process. The pyrites in this deposit are Fe-deficient, and are enriched in Te and As. The authors infer that As was mainly in form of As-complexes, and Te-Au-Ag inclusions/solid solution also exsits in the Py I. Along with the depletion of Te and As, they were less active chemically in the Py II, and Au may be incorporated into As-rich and Fe-deficient surface sites by chemisorption onto As-rich growth surfaces. Because of the incorporation of new fluid, Te and As became the most active chemically in the Py III, which was the main elements precipitation stage, and As dominantly substituted for S in the lattice of pyrite, due to the more reducing condition. The authors propose Au was in form of invisible gold, and the incorporation of gold can be considered as post-pyrite event, while the Au-bearing minerals were result of post incorporation of gold in arsenian pyrite.

  • 加载中
  • [1] Arehart GB, Chryssoulis SL, Kesler SE. 1993. Gold and arsenic in iron sulfides from sediment-hosted disseminated gold deposits: Implications for depositional processes. Economic Geology, 88, 171–185. doi: 10.2113/gsecongeo.88.1.171

    CrossRef Google Scholar

    [2] Agangi A, Hofmann A, Wohlgemuth-Ueberwasser CC. 2013. Pyrite zoning as a record of mineralization in the Ventersdorp contact reef, Witwatersrand Basin, South Africa. Economic Geology, 108, 1243–1272. doi: 10.2113/econgeo.108.6.1243

    CrossRef Google Scholar

    [3] Bajwah ZU, Seccombe PK, Offler P. 1987. Trace element distribution, Co :Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineral Deposita, 22, 292–300.

    Google Scholar

    [4] Blanchard M, Alfredsson M, Brodholt J, Wright K, Catlow CRA. 2007. Arsenic incorporation into FeS2 pyrite and its influence on dissolution: ADFT study. Geochimica et Cosmochimica Acta, 71, 624–630. doi: 10.1016/j.gca.2006.09.021

    CrossRef Google Scholar

    [5] Brugger J, Etschmann BE, Grundler PV, Liu WH, Testemale D, Pring A. 2012. XAS evidence for the stability of polytellurides in hydrothermal fluids up to 599 degrees C, 800 bar. American Mineralogist, 97, 1519–1522. doi: 10.2138/am.2012.4167

    CrossRef Google Scholar

    [6] Chouinard A, Paquette J, William-Jones AE. 2005. Crystallographic controls on trace-element incorporation in auriferous pyrite from Pascua epithermal high sulfidation deposit: Chile-Argentina. Canadian Mineralogist, 43, 951–963. doi: 10.2113/gscanmin.43.3.951

    CrossRef Google Scholar

    [7] Ciobanu CL, Cook NJ, Spry PG. 2006. Preface-Special Issue: Telluride and selenide minerals in gold deposits-how and why? Mineralogy and Petrology, 87, 163–169. doi: 10.1007/s00710-006-0133-9

    CrossRef Google Scholar

    [8] Ciobanu CL, Cook NJ, Utsunomiya S, Kogagwa M, Green L, Gilbert S, Wade B. 2012. Gold-telluride nanoparticles revealed in arsenic-free pyrite. American Mineralogist, 97, 1515–1518. doi: 10.2138/am.2012.4207

    CrossRef Google Scholar

    [9] Cline JS, Hofstra AH, Muntean JL, Tosdal RM, Hickey KA. 2005. Carlin type gold deposits in Nevada: Critical geologic characteristics and viable models. Economic Geology, 100, 451–454.

    Google Scholar

    [10] Cook NJ, Ciobanu CL, Mao J. 2009a. Textural control on gold distribution in As free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chemical Geology, 264, 101–121. doi: 10.1016/j.chemgeo.2009.02.020

    CrossRef Google Scholar

    [11] Cook NJ, Ciobanu CL, Spry PG, Voudouris P. 2009b. Understanding gold-(silver)-telluride-(selenide) mineral deposits. Episodes, 32, 249–263. doi: 10.18814/epiiugs/2009/v32i4/002

    CrossRef Google Scholar

    [12] Cook NJ, Ciobanu CL, Meria D, Silcock D, Wade B. 2013. Arsenopyrite-pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements. Economic Geology, 108, 1273–1283. doi: 10.2113/econgeo.108.6.1273

    CrossRef Google Scholar

    [13] Deditius AP, Utsunomiya S, Renock D, Ewing RC, Ramana CV, Becker U, Kesler SE. 2008. A proposed new form of arsenian pyrite: Composition, nanostructure and geochemical significance. Geochimica et Cosmochimica Acta, 72, 2919–2933. doi: 10.1016/j.gca.2008.03.014

    CrossRef Google Scholar

    [14] Deditius A, Utsunomiya S, Ewing RC, Chryssoulis S, Venter D, Kesler SE. 2009a. Decoupled geochemical behavior of As and Cu in hydrothermal systems. Geology, 37, 707–710. doi: 10.1130/G25781A.1

    CrossRef Google Scholar

    [15] Deditius A, Utsunomiya S, Ewing RC, Kesler SE. 2009b. Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite. American Mineralogist, 94, 394–394.

    Google Scholar

    [16] Deditius AP, Reich M, Kesler SE, Utsunomiya S, Chryssoulis SL, Walshe J, Ewing RC. 2014. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochimica et Cosmochimica Acta, 140, 644–670. doi: 10.1016/j.gca.2014.05.045

    CrossRef Google Scholar

    [17] Einaudi MT, Hedenquist JW, Inan E. 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. In: Simmons SF, Graham IJ (Eds.). Volcanic, geothermal and ore-forming fluids: Rulers and witnesses of processes within the Earth Economic Geology, 10, 285–314.

    Google Scholar

    [18] Fleet ME, Mumin AH. 1997. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American Mineralogist, 82, 182–193. doi: 10.2138/am-1997-1-220

    CrossRef Google Scholar

    [19] Fleet ME, Knipe SW. 2000. Stability of native gold in H-O-S fluids at 100−400°C and high H2S content. Journal of Solution Chemistry, 29, 1143–1157. doi: 10.1023/A:1005195201175

    CrossRef Google Scholar

    [20] Gao S, Xu H, Li SX, Santosh M, Zhang D, Yang L, Quan S. 2017. Hydrothermal alteration and ore-forming fluids associated with gold-tellurium mineralization in the Dongping gold deposit, China. Ore Geology Reviews, 80, 166–184. doi: 10.1016/j.oregeorev.2016.06.023

    CrossRef Google Scholar

    [21] Goldfarb RJ, Baker T, Dube B, Groves DI, Hart C, Gosselin P. 2005. Distribution, character, and genesis of gold deposits in metamorphic terranes. Economic Geology, 100, 407–450.

    Google Scholar

    [22] Grundler PV, Brugger J, Etschmann BE, Helm L, Liu WH, Spry PG, Tian Y, Testemale D, Pring A. 2013. Speciation of aqueous tellurium (IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition. Geochimica et Cosmochimica Acta, 120, 298–325. doi: 10.1016/j.gca.2013.06.009

    CrossRef Google Scholar

    [23] Keith M, Smith DJ, Jenkin GRT, Holwell DA, Dye MD. 2017. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geology Reviews, 126(2), 70–71. doi: 10.1016/j.oregeorev.2017.07.023

    CrossRef Google Scholar

    [24] Keith M, Häckel F, Haase KM, Schwarz-Schampera U, Klemd R. 2016a. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geology Reviews, 72, 728–745. doi: 10.1016/j.oregeorev.2015.07.012

    CrossRef Google Scholar

    [25] Keith M, Haase KM, Klemd R, Krumm S, Strauss H. 2016b. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus. Chemical Geology, 423, 7–18. doi: 10.1016/j.chemgeo.2015.12.012

    CrossRef Google Scholar

    [26] Kesler SE, Deditius AP, Chryssoulis S. 2007. Geochemistry of Se and Te in arsenian pyrite: New evidence for the role of Se and Te hydrothermal complexes in Carlin and epithermal-type deposits. In: Kojonen KK, Cook NJ, Ojala VJ (Eds.). Au-Ag-Te-Se deposits, Proceedings of the 2007 Field Workshop (Espoo, Finland, August 26-31, 2007). Geological Survey of Finland, 53, 85–95.

    Google Scholar

    [27] King J, Williams-Jones AE, Van Hinsberg V, Williams-Jones G. 2014. High-sulfidation epithermal pyrite-hosted Au (Ag-Cu) ore formation by condensed magmatic vapors on Sangihe Island, Indonesia. Economic Geology, 109, 1705–1733. doi: 10.2113/econgeo.109.6.1705

    CrossRef Google Scholar

    [28] Koglin N, Frimmel HE, Minter WEL. 2010. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Mineralium Deposita, 45(3), 259–280. doi: 10.1007/s00126-009-0272-0

    CrossRef Google Scholar

    [29] Kouzmanov K, Pettke T, Heinrich CA. 2010. Direct analysis of ore-precipitating fluids: Combined IR microscopy and LA-ICP-MS study of fluid inclusions in opaque ore minerals. Economic Geology, 105, 351–373. doi: 10.2113/gsecongeo.105.2.351

    CrossRef Google Scholar

    [30] Large RR, Danyushevsky LV, Hollit C, Maslennikov V, Meffre S, Gilbert SE, Bull S, Scott RJ, Emsbo P, Thomas H, Singh B, Foster J. 2009. Gold and trace element zonation in pyrite using a laser imaging technique: Implications of the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology, 104, 635–668. doi: 10.2113/gsecongeo.104.5.635

    CrossRef Google Scholar

    [31] Liu JJ, Dai HZ, Zhai DG, Wang JP, Wang YH, Yang LB, Mao GJ, Liu XH, Liao YF, Yu C, Li QZ. 2015. Geological and geochemical characteristics and formation mechanisms of the Zhaishang Carlin-like type gold deposit, western Qinling Mountains, China. Ore Geology Reviews, 64(1), 273–298.

    Google Scholar

    [32] Liu JJ, Mao GJ, Wu SH, Wang JP, Ma XH, Li LX, Liu GZ, Liao YF, Zheng WJ. 2010. Metallogenic characteristics and formation mechanism of Zhaishang gold deposit, southern Gansu Province. Mineral Deposits, 29(1), 85–100 (in Chinese with English abstract).

    Google Scholar

    [33] Maslennikov VV, Maslennikov SP, Large RR, Danyushevsky LV. 2009. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). Economic Geology, 104, 1111–1141. doi: 10.2113/gsecongeo.104.8.1111

    CrossRef Google Scholar

    [34] Mills SE. 2013. Gold deposit genesis in the Jiaodong Gold District, Northeast China: Mineralogical and geochemical insights into Mesozoic gold in an Archean Craton. (PhD thesis). Monash University.

    Google Scholar

    [35] Mills SE, Tomkins AG, Weinberg RF, Fan HR. 2015. Implications of pyrite geochemistry for gold mineralisation and remobilisation in the Jiaodong gold district, northeast China. Ore Geology Reviews, 71, 150–168. doi: 10.1016/j.oregeorev.2015.04.022

    CrossRef Google Scholar

    [36] Pals DW, Spry PG. 2003. Telluride mineralogy of the low-sulfidation epithermal Emperor gold deposit, Vatukoula, Fiji. Mineralogy and Petrology, 79, 285–307. doi: 10.1007/s00710-003-0013-5

    CrossRef Google Scholar

    [37] Pokrovski G, Gout R, Schott J, Zotov A, Harrichoury JC. 1996. Thermodynamic properties and stoichiometry of As (III) hydroxide complexes at hydrothermal conditions. Geochimica et Cosmochimica Acta, 60, 737–749. doi: 10.1016/0016-7037(95)00427-0

    CrossRef Google Scholar

    [38] Pokrovski GS, Kara S, Roux J. 2002a. Stability and solubility of arsenopyrite, FeAsS, in crustal fluids. Geochimica et Cosmochimica Acta, 66, 2361–2378. doi: 10.1016/S0016-7037(02)00836-0

    CrossRef Google Scholar

    [39] Pokrovski GS, Zakirov IV, Roux J, Testamale D, Hazeman JL, Bychkov AY, Golikova GV. 2002b. Experimental study of arsenic speciation in vapour phase to 500°C: Implications for As transport and fractionation in low-density crustal fluids and volcanic gases. Geochimica et Cosmochimica Acta, 66, 3453–3480. doi: 10.1016/S0016-7037(02)00946-8

    CrossRef Google Scholar

    [40] Qian G, Brugger J, Testemale D, Skinner W, Pring A. 2013. Formation of As(II)- pyrite during experimental replacement of magnetite under hydrothermal conditions. Geochimica et Cosmochimica Acta, 100, 1–10. doi: 10.1016/j.gca.2012.09.034

    CrossRef Google Scholar

    [41] Reich M, Becker U. 2006. First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite. Chemical Geology, 225, 278–290. doi: 10.1016/j.chemgeo.2005.08.021

    CrossRef Google Scholar

    [42] Reich M, Utsunomiya S, Kesler SE, Wang LM, Ewing RC, Becker U. 2006. Thermal behavior of metal nanoparticles in geologic materials. Geology, 34, 1033–1036. doi: 10.1130/G22829A.1

    CrossRef Google Scholar

    [43] Reich M, Deditius A, Chryssoulis S, Li JW, Ma CQ, Parada MA, Barra F, Mittermayr F. 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyr copper system: A SIMS/EMPA trace element study. Geochimica et Cosmochimica Acta, 104, 42–62. doi: 10.1016/j.gca.2012.11.006

    CrossRef Google Scholar

    [44] Reich M, Kesler SE, Utsunomiya S, Palenik C.S., Chryssoulis, S.L. and Ewing, R. C. 2005. Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69, 2781–2796. doi: 10.1016/j.gca.2005.01.011

    CrossRef Google Scholar

    [45] Revan MK, Genç Y, Maslennikov VV, Maslennikov SP, Large RR, Danyushevsky LV. 2014. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the Eastern Pontide orogenic belt (NE Turkey). Ore Geology Reviews, 63, 129–149. doi: 10.1016/j.oregeorev.2014.05.006

    CrossRef Google Scholar

    [46] Rickard D, Luther GW. 2007. Chemistry of Iron Sulfide. Chemical Reviews, 107, 514–562. doi: 10.1021/cr0503658

    CrossRef Google Scholar

    [47] Seedorff E, Dilles J H, Proffett JM, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA, Barton MD. 2005. Porphyry deposits: Characteristics and origin of hypogen features. Economic Geology, 100, 251–298.

    Google Scholar

    [48] Simon G, Huang H, Penner-Hahn JE, Kesler SE, Kao LS. 1999a. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite. American Mineralogist, 84, 1071–1079. doi: 10.2138/am-1999-7-809

    CrossRef Google Scholar

    [49] Simon G, Kesler SE, Chryssoulis S. 1999b. Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: Implications for deposition of gold in Carlin-type deposits. Economic Geology, 94, 405–422. doi: 10.2113/gsecongeo.94.3.405

    CrossRef Google Scholar

    [50] Simmons SF, White NC, John DA. 2005. Geological characteristics of epithermal precious and base metal deposits. Economic Geology, 100, 485–522.

    Google Scholar

    [51] Sillitoe RH and Hedenquist JW. 2003. Linkages between volcanic tectonic settings, ore fluid compositions, and epithermal precious metals deposits. In: Simmons SF, Graham IJ (Eds.). Volcanic, geothermal and ore-forming fluids: Rulers and witnesses of processes within the Earth. Economic Geology, 10, 315–343.

    Google Scholar

    [52] Smith JW, Holwell DA, McDonald I. 2014. Precious and base metal geochemistry and mineralogy of the Grasvally Norite-Pyroxenite-Anorthosite (GNPA) member, northern Bushveld Complex, South Africa: Implications for a multistage emplacement. Mineral Deposita, 49, 667–692. doi: 10.1007/s00126-014-0515-6

    CrossRef Google Scholar

    [53] Su WC, Xia B, Zhang HT, Zhang XC, Hu RZ. 2008. Visble gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China: Implications for the environment and processes of ore formation. Ore Geology Reviews, 33, 667–679. doi: 10.1016/j.oregeorev.2007.10.002

    CrossRef Google Scholar

    [54] Sung Y, Brugger J, Ciobanu CL, Pring A, Skinner W, Nugus M. 2009. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Mineral Deposita, 44, 765–791. doi: 10.1007/s00126-009-0244-4

    CrossRef Google Scholar

    [55] Tomkins AG. 2007. Three mechanisms of ore re-mobilisation during amphibolite facies metamorphism at the Montauban Zn-Pb-Au-Ag deposit. Mineral Deposita, 42, 627–637. doi: 10.1007/s00126-007-0131-9

    CrossRef Google Scholar

    [56] Tribovillard N, Algeo TJ, Lyons T. 2006. Trace metalasas paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1 −2), 12–32. doi: 10.1016/j.chemgeo.2006.02.012

    CrossRef Google Scholar

    [57] Wedepohl KH. 1995. The composition of the continental-crust. Geochimica et Cosmochimica Acta, 59, 1217–1232. doi: 10.1016/0016-7037(95)00038-2

    CrossRef Google Scholar

    [58] Wohlgemuth-Ueberwasser CC, Viljoen F, Petersen S, Vorster C. 2015. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochimica et Cosmochimica Acta, 159, 16–41. doi: 10.1016/j.gca.2015.03.020

    CrossRef Google Scholar

    [59] Xu N, Li SR, M Santosh, Tong B. 2017. Petrology, geochemistry and zircon U-Pb geochronology of the Jurassic porphyry dykes in the Dehua gold field, Southeast China: Genesis and geodynamics. Geological Journal, 53, 547–564. doi: 10.1002/gj.2912

    CrossRef Google Scholar

    [60] Xu N, Li SR, Wu CL, M Santosh. 2020. Geochemistry and geochronology of the Dongyang gold deposit in southeast China: Constrains to ore genesis. Geological Journal, 55, 425–438. doi: 10.1002/gj.3421

    CrossRef Google Scholar

    [61] Yang YC, Liu JJ, Liu XH, Wu SH. 2011. Mode of occurrence of arsenic and its influence on the precipitation of gold in the Jinlongshan gold deposit, southern Qinling. Geology in China, 38(3), 701–715 (in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(10475) PDF downloads(27) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint