2019 Vol. 2, No. 2
Article Contents

Le Zhang, Zhi-lei Sun, Wei Geng, Hong Cao, Yi-chao Qin, Cui-ling Xu, Xian-rong Zhang, Xin Li, Xi-lin Zhang, Hui-ling Song, 2019. Advances in the microbial mineralization of seafloor hydrothermal systems, China Geology, 2, 227-237. doi: 10.31035/cg2018087
Citation: Le Zhang, Zhi-lei Sun, Wei Geng, Hong Cao, Yi-chao Qin, Cui-ling Xu, Xian-rong Zhang, Xin Li, Xi-lin Zhang, Hui-ling Song, 2019. Advances in the microbial mineralization of seafloor hydrothermal systems, China Geology, 2, 227-237. doi: 10.31035/cg2018087

Advances in the microbial mineralization of seafloor hydrothermal systems

More Information
  • Research on the biomineralization in modern seafloor hydrothermal systems is conducive to unveiling the mysteries of the early Earth’s history, life evolution, subsurface biosphere and microbes in outer space. The hydrothermal biomineralization has become a focus of geo-biological research in the last decade, since the introduction of the microelectronic technology and molecular biology technology. Microorganisms play a critical role in the formations of oxide/hydroxides (e.g. Fe, Mn, S and Si oxide/hydroxides) and silicates on the seafloor hydrothermal systems globally. Furthermore, the biomineralization of modern chemolithoautotrophic microorganisms is regarded as a nexus between the geosphere and the biosphere, and as an essential complement of bioscience and geology. In this paper, we summarize the research progress of hydrothermal biomineralization, including the biogenic minerals, the microbial biodiversity, and also the interactions between minerals and microorganisms. In the foreseeable future, the research on hydrothermal biomineralization will inspire the development of geosciences and biosciences and thus enrich our knowledge of the Earth’s history, life evolution and even astrobiology.

  • 加载中
  • [1] Al-Hanbali HS, Sowerby SJ, Holm NG. 2001. Biogenicity of silicified microbes from a hydrothermal system: relevance to the search for evidence of life on earth and other planets. Earth and Planetary Science Letters, 191, 213–218. doi: 10.1016/S0012-821X(01)00421-6

    CrossRef Google Scholar

    [2] Alt JC. 1988. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific. Marine Geology, 81, 227–239. doi: 10.1016/0025-3227(88)90029-1

    CrossRef Google Scholar

    [3] Baross JA, Hoffman SE. 1985. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of Life and Evolution of Biospheres, 15, 327–345. doi: 10.1007/BF01808177

    CrossRef Google Scholar

    [4] Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ. 2004. Dating the rise of atmospheric oxygen. Nature, 427, 117–120. doi: 10.1038/nature02260

    CrossRef Google Scholar

    [5] Bennett SA, Achterberg EP, Connelly DP, Statham PJ, Fones GR, German CR. 2008. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth and Planetary Science Letters, 270, 157–167. doi: 10.1016/j.jpgl.2008.01.048

    CrossRef Google Scholar

    [6] Cao H, Sun ZL, Liu CL, Liu ET, Jiang XJ, Huang W. 2018. Origin of natural sulfur-metal chimney in the Tangyin hydrothermal field, Okinawa Trough: constraints from rare earth element and sulfur isotopic compositions. China Geology, 1(2), 225–235. doi: 10.31035/cg2018023

    CrossRef Google Scholar

    [7] Casella LA. 2017. Experimental diagenesis: insights into aragonite to calcite transformation of Arctica islandica shells by hydrothermal treatment. Biogeosciences, 14, 1461–1492. doi: 10.5194/bg-14-1461-2017

    CrossRef Google Scholar

    [8] Chan CS, Fakra SC, Emerson D, Fleming EJ, Edwards KJ. 2010. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. The ISME Journal, 1–11.

    Google Scholar

    [9] Connell L, Barrett A, Templeton A, Staudigel H. 2009. Fungal diversity associated with an active deep sea volcano: Vailulu’u Seamount, Samoa. Geomicrobiology Journal, 26, 597–605. doi: 10.1080/01490450903316174

    CrossRef Google Scholar

    [10] Corliss JB, Baross JA, Hoffman SE. 1981. An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanologica Acta, 4(suppl), 59–69.

    Google Scholar

    [11] Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH. 1979. Submarine thermal sprirngs on the Galápagos rift. Science, 203, 1073–1083. doi: 10.1126/science.203.4385.1073

    CrossRef Google Scholar

    [12] Cornell RM, Schwertmann U. 1997. The iron oxides: Properties, reactions, occurrences and uses. Mineralogical Magazine, 61(408), 740–741. doi: 10.1180/minmag.1997.061.408.20

    CrossRef Google Scholar

    [13] Cox JS, Smith DS, Warren LA, Ferris FG. 1999. Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding. Environmental Science & Technology, 33, 4514–4521.

    Google Scholar

    [14] Dauphas N, John SG, Rouxel O. 2017. Iron isotope systematics. Reviews in Mineralogy and Geochemistry, 82, 415–510. doi: 10.2138/rmg.2017.82.11

    CrossRef Google Scholar

    [15] Dekov VM, Kamenov GD, Stummeyer J, Thiry M, Savellie C, Shanks WC, Forting D, Kuzmann E, Vértes A. 2007. Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea). Chemical Geology, 245, 103–119. doi: 10.1016/j.chemgeo.2007.08.006

    CrossRef Google Scholar

    [16] Dekov VM, Kamenov GD, Savelli C, Stummeyer J, Thirye M, Shanks WC, Willingham AL, Boycheva TB, Rochette P, Kuzmann E, Fortin D, Vértes A. 2009. Metalliferous sediments from Eolo Seamount (Tyrrhenian Sea): Hydrothermal deposition and re-deposition in a zone of oxygen depletion. Chemical Geology, 264, 347–363. doi: 10.1016/j.chemgeo.2009.03.023

    CrossRef Google Scholar

    [17] Deming JW. 1998. Deep ocean environmental biotechnology. Current Opinion in Biotechnology, 9, 283–287. doi: 10.1016/S0958-1669(98)80060-8

    CrossRef Google Scholar

    [18] Dick GJ, Clement BG, Webb SM, Fodrie FJ, Bargar JR, Teboa BM. 2009. Enzymatic microbial Mn(II) oxidation and Mn biooxide production in the Guaymas Basin deep-sea hydrothermal plume. Geochimica et Cosmochimica Acta, 73, 6157–6530.

    Google Scholar

    [19] Dick GJ, Lee YE, Tebo BM. 2006. Manganese(II)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes. Applied and Environmental Microbiology, 72, 3184–3190. doi: 10.1128/AEM.72.5.3184-3190.2006

    CrossRef Google Scholar

    [20] Eberhard C, Wirsen CO, Jannasch, HW. 1995. Oxidation of polymetal sulfides by chemolithoautotrophic bacteria from deep-sea hydrothermal vents. Geomicrobiology Journal, 13, 145–164. doi: 10.1080/01490459509378014

    CrossRef Google Scholar

    [21] Edwards KJ, McCollom TM, Konishi H, Buseck PR. 2003. Seafloor bioalteration of sulfide minerals: Results from in situ incubation studies. Geochimica et Cosmochimica Acta, 67, 2843–2856. doi: 10.1016/S0016-7037(03)00089-9

    CrossRef Google Scholar

    [22] Ehrlich HL. 1990. Geomicrobiology 2nd edition. New York: Marcel Dekker, P646.

    Google Scholar

    [23] Elderfield H, Schultz A. 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annual Review of Earth and Planetary Sciences, 24, 191–224. doi: 10.1146/annurev.earth.24.1.191

    CrossRef Google Scholar

    [24] Embley RW, Chadwick WW, Jonasson IR, Butterfield D. 1995. Initial results of the rapid response to the 1993 Coaxial event: relationships between hydrothermal and volcanic processes. Geophysical Research Letters, 22, 143–146. doi: 10.1029/94GL02281

    CrossRef Google Scholar

    [25] Embley RW, Chadwick WW, Perfit MR, Smith MC. 2000. Recent eruptions on the Coaxial segment of the Juan de Fuca ridge: implications for mid-ocean ridge accretion processes. Jouranl of Geophysical Research, 105, 16501–16526. doi: 10.1029/2000JB900030

    CrossRef Google Scholar

    [26] Emerson D, Moyer CL. 2002. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Applied and environmental microbiology, 68, 3085–3093. doi: 10.1128/AEM.68.6.3085-3093.2002

    CrossRef Google Scholar

    [27] Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H, Chan C, Moyer CL. 2007. A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS ONE, 2007, 2.

    Google Scholar

    [28] Emerson D. 2000. Microbial oxidation of Fe(II) and Mn(II) at circumneutral pH, in Environmental Microbe-Metal Interactions (ed. D.R. Lovely), ASM Press, Washington, DC, pp. 31–52.

    Google Scholar

    [29] Fisk MR, Giovanoni SJ, Thorseth IH. 1998. Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science, 281, 978–980. doi: 10.1126/science.281.5379.978

    CrossRef Google Scholar

    [30] Fitzsimmons JN, John SG, Marsay CM, Hoffman CL, Nicholas SL, Toner BM, German CR, Sherrell RM. 2017. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange. National Geoscience, 10, U195–U150. doi: 10.1038/ngeo2900

    CrossRef Google Scholar

    [31] Forget NL, Murdock SA, Juniper SK. 2010. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes. Geobiology, 8, 417–432. doi: 10.1111/gbi.2010.8.issue-5

    CrossRef Google Scholar

    [32] Foriel J, Philippot P, Susini J, Dumas P, Somogyi A, Salomé M, Khodja H, Ménez B, Fouquet Y, Moreira D, López-García P. 2004. High-resolution imaging of sulfur oxidation states, trace elements, and organic molecules distribution in individual microfossils and contemporary microbial filaments. Geochimica et Cosmochimica Acta, 68, 1561–1569. doi: 10.1016/j.gca.2003.10.006

    CrossRef Google Scholar

    [33] Fortin D, Ferris FG, Scott SD. 1998. Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean. American Mineralogist, 83, 1399–1408. doi: 10.2138/am-1998-11-1229

    CrossRef Google Scholar

    [34] Fortin D, Langley S. 2005. Formation and occurrence of biogenic iron-rich minerals. Earth-Science Reviews, 72, 1–19. doi: 10.1016/j.earscirev.2005.03.002

    CrossRef Google Scholar

    [35] Geptner A, Kristmannsdottir H, Kristjansson J, Marteinsson VT. 2002. Biogenic saponite from an active submarine hot spring, Iceland. Clay and Clay minerals, 50, 174–185. doi: 10.1346/000986002760832775

    CrossRef Google Scholar

    [36] German CR, von Damm KL. 2003. Hydothermal processes. treatise on geochemistry, Elsevier Science Ltd.

    Google Scholar

    [37] Guidry SA, Chafetz HS. 2003. Siliceous shrubs in hot springs from Yellowstone National Park, Wyoming, U.S.A. Canadian Journal of Earth Sciences, 40, 1571–1583. doi: 10.1139/e03-069

    CrossRef Google Scholar

    [38] Hastings D, Emerson S. 1986. Oxidation of manganese by spores of a marine Bacillus: kinetic and thermodynamic considerations. Geochimica et Cosmochimica Acta, 50, 1819–1824. doi: 10.1016/0016-7037(86)90141-9

    CrossRef Google Scholar

    [39] Hofmann BA, Farmer JD, Von Blanckenburg F, Fallick AE. 2008. Subsurface filamentous Fabrics: an evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology. Astrobiology, 8, 87–117. doi: 10.1089/ast.2007.0130

    CrossRef Google Scholar

    [40] Ivarsson M, Lindblom S, Broman C, Holm NG. 2008. Fossilized microorganisms associated with zeolite-carbonate interfaces in sub-seafloor hydrothermal environments. Geobiology, 6, 155–170. doi: 10.1111/gbi.2008.6.issue-2

    CrossRef Google Scholar

    [41] Johannessen KC, Roost JV, Dahle H, Dundas SH, Pedersen RB, Thorseth IH. 2017. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields. Geochimica et Cosmochimica Acta, 202, 101–123. doi: 10.1016/j.gca.2016.12.016

    CrossRef Google Scholar

    [42] Jones B, De Ronde CEJ, Renaut RW. 2007. Siliceous sublacustrine spring deposits around hydrothermal vents in Lake Taupo, New Zealand. Journal of the Geological Society, 164, 227–242. doi: 10.1144/0016-76492005-102

    CrossRef Google Scholar

    [43] Jørgensen BB, Boetius A. 2007. Feast and famine-microbial life in the deep-sea bed. Nature Reviews Microbiology, 5, 770–781. doi: 10.1038/nrmicro1745

    CrossRef Google Scholar

    [44] Juniper SK, Fouquet Y. 1988. Filamentous iron-silica deposits from modern and ancient hydrothermal site. Canadian Mineralogist, 26, 859–869.

    Google Scholar

    [45] Juniper SK, Tebo BM. 1995. Microbe-metal interactions and mineral deposition at hydrothermal vents. The Microbiology of Deep-Sea Hydrothermal Vents. New York: CRC Press, 219–253.

    Google Scholar

    [46] Kasama T, Murakami T. 2001. The effect of microorganisms on Fe precipitation rates at neutral pH. Chemical Geology, 180, 117–128. doi: 10.1016/S0009-2541(01)00309-6

    CrossRef Google Scholar

    [47] Kennedy CB, Scott SD, Ferris FG. 2003. Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, Northeast Pacific Ocean. Geomicrobiology Journal, 20, 199–214. doi: 10.1080/01490450303873

    CrossRef Google Scholar

    [48] Kennedy CB, Scott SD, Ferris FG. 2003. Ultrastructure and potential sub-seafloor evidence of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, north-east Pacific Ocean. FEMS Microbiology Ecology, 43, 247–254. doi: 10.1111/fem.2003.43.issue-2

    CrossRef Google Scholar

    [49] Kim HS, Pasten PA, Gaillard JF, Stair PC. 2004. Nanocrystalline todorokite-like manganese oxide produced by bacterial catalysis. Abstracts of the American Chemical Society, 227, U1213–U1213.

    Google Scholar

    [50] Klar JK, James R, Gibbs D, Lough A. 2017. Isotopic signature of dissolved iron delivered to the Southern Ocean from hydrothermal vents in the East Scotia Sea. Geology, 45, 351–354. doi: 10.1130/G38432.1

    CrossRef Google Scholar

    [51] Köhler B, Singer A, Stoffers P. 1994. Biogenic nontronite from marine white smoker chimneys. Clays and Clay Minerals, 42, 689–701.

    Google Scholar

    [52] Konhauser KO, Phoenix VR, Bottrell SH, Adams DG. 2001. Microbial-silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites. Sedimentology, 48, 415–433. doi: 10.1046/j.1365-3091.2001.00372.x

    CrossRef Google Scholar

    [53] Konhauser KO, Schiffman P, Fisher QJ. 2002. Microbial mediation of authigenic clays during hydrothermal alteration of basaltic tephra, Kilauea Volcano. Geochemistry, Geophysics, Geosystems, 3(12), 1–13.

    Google Scholar

    [54] Kyle JE, Schroeder PA, Wiegel J. 2007. Microbial Silicification in Sinters from Two Terrestrial Hot springs in the Uzon Caldera, Kamchatka, Russia. Geomicrobiology Journal, 24, 627–641. doi: 10.1080/01490450701672158

    CrossRef Google Scholar

    [55] Langley S, Igric P, Takahashi Y, Sakai Y, Fortin D, Hannington MD, Schwarz-Schampera U. 2009. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean. Geobiology, 7, 35–49. doi: 10.1111/gbi.2009.7.issue-1

    CrossRef Google Scholar

    [56] Learman DR, Wankel SD, Webb SM, Martinez N, Madden AS, Hansel CM. 2011. Coupled biotic-abiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides. Geochimica et Cosmochimica Acta, 75, 6048–6063. doi: 10.1016/j.gca.2011.07.026

    CrossRef Google Scholar

    [57] Lough AJM, Klar JK, Homoky WB, Comer-Warner SA, Milton JA, Connelly DP, James RH, Mills RA. 2017. Opposing authigenic controls on the isotopic signature of dissolved iron in hydrothermal plumes. Geochimica et Cosmochimica Acta, 202, 1–20. doi: 10.1016/j.gca.2016.12.022

    CrossRef Google Scholar

    [58] Lubetkin M, Carey S, Kelley KA, Robert G, Cornell W, Raineault N, Balcanoff J, Ballard RD. 2018. Salinas-de-León P, Nontronite-bearing tubular hydrothermal deposits from a Galapagos seamount. Deep-Sea Research, 150, 181–194. doi: 10.1016/j.dsr2.2017.09.017

    CrossRef Google Scholar

    [59] Martin W, Baross J, Kelley D, Russel MJ. 2008. Hydrothermal vents and the origin of life. Nature Reviews Microbiology, 6, 805–814. doi: 10.1038/nrmicro1991

    CrossRef Google Scholar

    [60] Martinez RE, Smith DS, Kulczycki E, Ferris FG. 2002. Determination of intrinsic bacterial surface acidity constants using a Donnan shell model and a continuous p Ka distribution method. Journal of Colloid and Interface Science, 253, 130–139. doi: 10.1006/jcis.2002.8541

    CrossRef Google Scholar

    [61] McCollom TM. 2000. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes. Deep-sea Research I, 47, 85–101. doi: 10.1016/S0967-0637(99)00048-5

    CrossRef Google Scholar

    [62] Moyer CL, Dobbs FC, Karl DM. 1995. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi seamount, Hawaii. Applied and Environmental Microbiology, 61, 1555–1562.

    Google Scholar

    [63] Nealson K, Tebo BM, Rosson RA. 1988. Occurrence and mechanisms of microbial oxidation of manganese. Advances in Applied Microbiology, 33, 279–318. doi: 10.1016/S0065-2164(08)70209-0

    CrossRef Google Scholar

    [64] Nelson D, Haymon RM, Lilley M. 1991. Rapid growth of unusual hydrothermal bacteria observed at new vents during adventure dive program to the EPR crest at 9°45′-52′N. EOS Trans Am Geophys Union, 72, P481.

    Google Scholar

    [65] Nelson YM, Lion LW, Ghiorse WC, Shuler ML. 1999. Production of biogenic Mn oxides by leprothrixdiscophora ss-1 in a chemically defined growth medium and evaluation of their pb adsorption characteristics. Applied and Environmental Microbiology, 65, 175–180.

    Google Scholar

    [66] Nisbet EG, Fowler CMR. 1996. Some liked it hot. Nature, 382, 404–405. doi: 10.1038/382404a0

    CrossRef Google Scholar

    [67] Nisbet EG, Fowler CMR. 1999. Archaean metabolic evolution of microbial mats. Proceedings of the Royal Society of London Series B, 266, 2375–2382. doi: 10.1098/rspb.1999.0934

    CrossRef Google Scholar

    [68] Nisbet EG. 2000. The realms of Archaean life. Nature, 405, 625–626. doi: 10.1038/35015187

    CrossRef Google Scholar

    [69] Orange F, Westall F, Disnar JR, Prieur D, Bienvenu N, LE. 2009. Experimental silicification of the extremophilic Archaea Pyrococcusabyssi and Methanocaldococcusjannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks. Geobiology, 7, 403–418. doi: 10.1111/gbi.2009.7.issue-4

    CrossRef Google Scholar

    [70] Pérez-Huerta A, Coronado I, Hegna TA. 2018. Understanding biomineralization in the fossil record. Earth-Science Reviews, 179, 95–122. doi: 10.1016/j.earscirev.2018.02.015

    CrossRef Google Scholar

    [71] Rasmussen B. 2000. Filamentous microfossils in a 3235-million-year-old volcanogenic massive sulphide deposit. Nature, 405, 676–679. doi: 10.1038/35015063

    CrossRef Google Scholar

    [72] Rouxel O, Toner B, Germain Y, Glazer B. 2018. Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount. Geochimica et Cosmochimica Acta, 220, 449–482. doi: 10.1016/j.gca.2017.09.050

    CrossRef Google Scholar

    [73] Sander SG, Koschinsky A. 2011. Metal flux from hydrothermal vents increased by organic complexation. Nature Geoscience, 10, 145–150.

    Google Scholar

    [74] Santelli CM. 2009. Life in the deep sea. Nature Geosciences, 2, 825–826. doi: 10.1038/ngeo711

    CrossRef Google Scholar

    [75] Scott SD. 1997, Submarine hydrothermal systems and deposits. Geochemistry of hydrothermal ore deposits. New York: John Wiley, 797–875.

    Google Scholar

    [76] Sievert SM, Hügler M, Taylor CD, Wirsen CO. 2008. Sulfur oxidation at deep-sea hydrothermal vents. microbial sulfur metabolism. Heidelberg: Springer, 238–258.

    Google Scholar

    [77] Stevens K,Griesshaber E, Schmahl W, Casella LA, Iba Y, Mutterlose J. 2017. Belemnite biomineralization, development, and geochemistry: the complex rostrum of Neohibolites minimus. Palaeogeogr. Palaeoclimatol. Palaeoecol, 468, 388–402. doi: 10.1016/j.palaeo.2016.12.022

    CrossRef Google Scholar

    [78] Stüben D, EddineTaibi N, McCuthry GM, Scholten J, Stoffers P, Zhang DY. 1994. Growth history of a hydrothermal silica chimney from the Mariana backarc spreading centre (southwest Pacific, 18°13′N). Chemical Geology, 113, 273–296. doi: 10.1016/0009-2541(94)90071-X

    CrossRef Google Scholar

    [79] Sun ZL, Li J, Huang W, Dong HL, Little CTS, Li JW. 2015. Generation of hydrothermal Fe-Si oxyhydroxide deposit on the Southwest Indian Ridge and its implication for the origin of ancient banded iron Formations. Journal of Geophysical Research: Biogeosciences, 10, 1002. doi: 10.1002/2014JG002764

    CrossRef Google Scholar

    [80] Sun ZL, Zhou HY, Glasby GP, Sun ZX, Yang QH, Yin XJ, Li JW. 2013. Mineralogical characterization and formation of Fe-Si oxyhydroxide deposits from modern seafloor hydrothermal vents. American Mineralogist, 98, 85–97. doi: 10.2138/am.2013.4147

    CrossRef Google Scholar

    [81] Sun ZL, Zhou HY, Glasby GP, Yang QH, Yin XJ, Li JW, Chen ZQ. 2012. Formations of Fe-Mn-Si oxide and nontronite deposits in hydrothermal fields on the Valu Fa Ridge, Lau Basin. Journal of Asian Earth Sciences, 43, 64–76. doi: 10.1016/j.jseaes.2011.08.011

    CrossRef Google Scholar

    [82] Sun ZL, Zhou HY, Yang QH, Yin XJ, Wang H, Yao HQ, Dong CF. 2012. Growth model of a hydrothermal low-temperature Si-rich chimney; Example from the CDE hydrothermal field, Lau Basin. Science China, Earth Sciences, 55, 1716–1730. doi: 10.1007/s11430-012-4485-1

    CrossRef Google Scholar

    [83] Taylor CD, Wirsen CO, Gaill F. 1999. Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Applied and Environmental Microbiology, 65, 2253–2255.

    Google Scholar

    [84] Taylor CD, Wirsen CO. 1997. Microbiology and ecology of filamentous sulfur formation. Science, 277, 1483–1485. doi: 10.1126/science.277.5331.1483

    CrossRef Google Scholar

    [85] Tazaki K, Fyfe WS. 1992. Microbial green marine clay from Izu-Bonin deep-sea sediments (west Pacific). Chemical Geology, 102, 105–118. doi: 10.1016/0009-2541(92)90149-Y

    CrossRef Google Scholar

    [86] Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM. 2004. Biogenic manganese oxides: Properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 32, 287–328. doi: 10.1146/annurev.earth.32.101802.120213

    CrossRef Google Scholar

    [87] Templeton AS, Hubert S, Tebo BM. 2005. Diverse Mn(II)-Oxidizing Bacteria Isolated from Submarine Basalts at Loihi Seamount. Geomicrobiology Journal, 22, 127–139. doi: 10.1080/01490450590945951

    CrossRef Google Scholar

    [88] Templeton AS, Knowles EJ, Eldridge DL, Arey BW, Dohnalkova AC, Webb SM, Bailey BE, Tebo BM, Staudige H. 2009. A seafloor microbial biome hosted within incipient ferromanganese crusts. Nature Geoscience, 2, 872–876. doi: 10.1038/ngeo696

    CrossRef Google Scholar

    [89] Ueshima M, Tazaki K. 2001. Possible role of microbial polysaccharides in nontronite formation. Clay and Clay minerals, 49, 292–299.

    Google Scholar

    [90] Verati C, de Donato P, Prieur D, Lancelot J. 1999. Evidence of bacterial activity from micrometer-scale layer analyses of black-smoker sulfide structures (Pito Seamount Site, Easter microplate). Chemical Geology, 158, 257–269. doi: 10.1016/S0009-2541(99)00054-6

    CrossRef Google Scholar

    [91] Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA, Reysenbach AL. 1999. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Applied and Environmental Microbiology, 65, 4375–4384.

    Google Scholar

    [92] Villalobos M, Toner B, Bargar J, Sposito G. 2003. Characterization of the manganese oxide produced by pseudomonas putida strain MnB1. Geochimica et Cosmochimica Acta, 67, 2649–2662. doi: 10.1016/S0016-7037(03)00217-5

    CrossRef Google Scholar

    [93] Webb SM, Tebo BM, Bargat JR. 2005. Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp strain sg-1. American Mineralogist, 90, 1342–1357. doi: 10.2138/am.2005.1669

    CrossRef Google Scholar

    [94] Weber KA, Achenbach LA, Coates JD. 2006. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 4, 752–764. doi: 10.1038/nrmicro1490

    CrossRef Google Scholar

    [95] Westall F, de Vries ST, Nijman W. 2006. The 3.466 Ga “Kitty’s Gap Chert”, an early Archean microbial ecosystem. Geological Society of America special paper, 405, 105–131.

    Google Scholar

    [96] Westall F, Southam G. 2006. The early record of life. Archean Geodynamics and Environments, 164, 283–304. doi: 10.029/1GM164

    CrossRef Google Scholar

    [97] Wirsen CO, Jannasch HW, Molyneaux SJ. 1993. Chemosynthetic microbial activity at Mid-Atlantic Ridge Hydrothermal vent sites. Journal of Geophysical Research, B98, 9693–9703.

    Google Scholar

    [98] Wu J, Wells ML, Rember, R. 2011. Dissolved iron in the deep tropical- subtropical Pacific: Evidence for long-range transport of hydrothermal iron. Geochimica Et Cosmochimica Acta, 75(2), 460–468. doi: 10.1016/j.gca.2010.10.024

    CrossRef Google Scholar

    [99] Yayanos AA. 1995. Microbiology to 10,500 meters in the deep-sea. Annual Review of Microbiology, 49, 777–805. doi: 10.1146/annurev.mi.49.100195.004021

    CrossRef Google Scholar

    [100] Yee N, Fowle DA, Ferris FG. 2004. A Donnan potential model for metal sorption onto Bacillus subtilis. Geochimica et Cosmochimica Acta, 68, 3657–3664. doi: 10.1016/j.gca.2004.03.018

    CrossRef Google Scholar

    [101] Zhao J. 1994. Ferrihydrite: Surface structure and its effects on phase transformation. Clays and Clay Minerals, 42, 737–746. doi: 10.1346/CCMN

    CrossRef Google Scholar

    [102] Zierenberg RA, Schiffman P. 1990. Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge. Nature, 348, 155–157. doi: 10.1038/348155a0

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(1456) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint