2018 Vol. 1, No. 2
Article Contents

Kai Sun, Lin-lin Zhang, Zhi-dan Zhao, Fu-qing He, Sheng-fei He, Xing-yuan Wu, Lei Qiu, Xiao-dong Ren, 2018. Episodic crustal growth in the Tanzania Craton: evidence from Nd isotope compositions, China Geology, 1, 210-224. doi: 10.31035/cg2018025
Citation: Kai Sun, Lin-lin Zhang, Zhi-dan Zhao, Fu-qing He, Sheng-fei He, Xing-yuan Wu, Lei Qiu, Xiao-dong Ren, 2018. Episodic crustal growth in the Tanzania Craton: evidence from Nd isotope compositions, China Geology, 1, 210-224. doi: 10.31035/cg2018025

Episodic crustal growth in the Tanzania Craton: evidence from Nd isotope compositions

More Information
  • The analysis of available Nd isotope data from the Tanzania Craton places important constraints on the crust-mantle separation ages, and events marking juvenile crustal addition and crustal recycling. Nd model ages date the oldest crust extraction to 3.16 Ga in the Tanzania Craton, although a rock record of such antiquity is yet to be found there. The most significant period of juvenile crustal addition as well as crustal recycling is 2.7–2.6 Ga. The Nd isotopes of mafic samples show that chemical heterogeneity existed in the mantle beneath the Tanzania Craton, with some samples originating from significantly depleted mantle, and most samples originating from the mixture of primitive mantle and depleted mantle. The Nd isotope section reveals significant differences in Nd isotopes between the north craton and central craton; compared to the north craton, the central craton yields a Nd model age that is approximately 100 Ma older, and itsεNd(t) values are more negative, indicating that the two parts of the craton have different mantle source regions. Different types of granitoids are distributed in the Tanzania Craton, such as high-K and low-Al granite, calc-alkaline granite, peraluminous granite and transitional types of tonalite-trondhjemite-granodiorites (TTGs). Most of the granitoids formed later than the mafic rocks in syn-collision and post-collision events.

  • 加载中
  • [1] Barth H. 1990. Provisional Geological Map of Lake Victoria Gold Fields, Tanzania 1:500000 (with explanatory notes). Geologisches Jahrbuch, B72, 1–59.

    Google Scholar

    [2] Bell K, Dodson MH. 1981. The geochronology of the Tanzanian Shield. Journal of Geology, 89, 109–228. doi: 10.1086/628567

    CrossRef Google Scholar

    [3] Borg G, Krogh T. 1999. Isotopic age data of single zircons from the Archaean Sukumaland Greenstone Belt, Tanzania. Journal of African Earth Sciences, 29, 301–312. doi: 10.1016/S0899-5362(99)00099-8

    CrossRef Google Scholar

    [4] Borg G, Shackleton RM. 1997. The Tanzania and NE Zaire Cratons. In, de Wit M J, Ashwal L D (Eds.), Greenstone Belts. Clarendon Press, Oxford, 608-619

    Google Scholar

    [5] Borg G. 1992. New aspects on the lithostratigraphy and evolution of the Siga Hills, an Archaean granite-greenstone terrain in NW-Tanzania. Zeitschrift fur Angewandte Geologie, 38(2), 89–93.

    Google Scholar

    [6] Boyet M, Carlson RW. 2005. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate earth. Science, 309, 576–581. doi: 10.1126/science.1113634

    CrossRef Google Scholar

    [7] BRGM (Bureau de Recherches Géologiques et Minières), University of Dar-es-Salaam, Tanzania Geological Survey. 2004. A 2000000 Scale Geology and Mineral Map of Tanzania. 20th Colloquium of Africa Geology. BRGM, Orléans France

    Google Scholar

    [8] Caro G. 2011. Early silicate earth differentiation. Annual Review of Earth and Planetary Sciences, 39, 31–58. doi: 10.1146/annurev-earth-040610-133400

    CrossRef Google Scholar

    [9] Cassidy K, Champion D. 2004. Crustal evolution of the Yilgarn Craton from Nd isotopes and granite geochronology, implications for metallogeny. In, Muhling J R, Knox-Robinson C M (Eds.), SEG 2004. Predictive Mineral Discovery Under Cover. Centre for Global Metallogeny, The University of Western Australia Publication, 33, 317-320

    Google Scholar

    [10] Chamberlain CM, Tosdale RM. 2007. U-Pb geochronology of the Lake Victoria greenstone terranes. Confidential Report to Project Sponsors. Mineral Deposits Research Unit, University of British Columbia, Vancouver, BC, 81

    Google Scholar

    [11] Champion DC, Smithies RH. 2003. Archaean granites. In, Belvin P, Jones M, Chappel B (Eds.), Magmas to Mineralization, The Ishihara Symposium. Geoscience Australia, 19-24

    Google Scholar

    [12] Cloutier J, Stevenson RK, Bardoux M. 2005. Nd isotopic, petrologic and geochemical investigation of the Tulawaka East gold deposit, Tanzanian Craton. Precambrian Research, 139(3–4), 147–163. doi: 10.1016/j.precamres.2005.06.002

    CrossRef Google Scholar

    [13] Condie KC, Benn K. 2006. Archean geodynamics, similar to or different from modern geodynamics? In Benn K, Mareschal J C, Condie K C. (Eds.), Archean Geodynamics and Environments, vol. 164. Geophysical monograph, AGU, Washington, 47-59

    Google Scholar

    [14] Condie KC. 2000. Episodic continental growth models, afterthoughts and extensions. Tectonophysics, 322, 153–162. doi: 10.1016/S0040-1951(00)00061-5

    CrossRef Google Scholar

    [15] Cook YA, Sanislav IV, Hammerli J, Blenkinsop TG, Dirks PHGM. 2016. A primitive mantle source for the Neoarchean mafic rocks from the Tanzania Craton. Geoscience Frontiers, 7(6), 911–926. doi: 10.1016/j.gsf.2015.11.008

    CrossRef Google Scholar

    [16] Czarnota K, Champion DC, Goscombe B, Blewett RS, Cassidy KF, Henson PA, Groenewald P B. 2010. Geodynamics of the eastern Yilgarn Craton. Precambrian Research, 183(2), 175–202. doi: 10.1016/j.precamres.2010.08.004

    CrossRef Google Scholar

    [17] Depaolo DJ, Linn AM, Schubert G. 1991. The continental crustal age distribution, Methods of determining mantle separation ages from Sm-Nd isotopic data and application to the Southwestern United States. Journal of Geophysical Research Solid Earth, 96(B2), 2071–2088. doi: 10.1029/90JB02219

    CrossRef Google Scholar

    [18] DePaolo DJ. 1981. Neodymium isotopes in the Colorado Front Range and implications for crust formation and mantle evolution in the Proterozoic. Nature, 291, 193–197. doi: 10.1038/291193a0

    CrossRef Google Scholar

    [19] Depaolo DJ. 1988. Neodymium isotope geochemistry. Minerals & Rocks, 20(3), 159–174.

    Google Scholar

    [20] Dey S. 2013. Evolution of Archaean crust in the Dharwar Craton, the Nd isotope record. Precambrian Research, 227, 227–246. doi: 10.1016/j.precamres.2012.05.005

    CrossRef Google Scholar

    [21] Dickin AP. 2005. Radiogenic Isotope Geology. Cambridge University Press, Cambridge, 70-100

    Google Scholar

    [22] Gabert G. 1990. Lithostratigraphic and tectonic setting of gold mineralization in the Archean Cratons of Tanzania and Uganda, East Africa. Precambrian Research, 46, 59–68. doi: 10.1016/0301-9268(90)90066-Y

    CrossRef Google Scholar

    [23] Jahn BM, Condie KC. 1995. Evolution of the Kaapvaal Craton as viewed from geochemical and Sm-Nd isotopic analyses of intracratonic pelites. Geochimica et Cosmochimica Acta, 59(11), 2239–2258. doi: 10.1016/0016-7037(95)00103-7

    CrossRef Google Scholar

    [24] Kabete JM, Groves DI, Mcnaughton NJ, Mruma AH. 2012a. A new tectonic and temporal framework for the tanzanian shield, implications for gold metallogeny and undiscovered endowment. Ore Geology Reviews, 48(5), 88–124.

    Google Scholar

    [25] Kabete JM, Mcnaughton NJ, Groves DI, Mruma AH. 2012b. Reconnaissance SHRIMP U-Pb zircon geochronology of the Tanzania Craton, Evidence for Neoarchean granitoid-greenstone belts in the Central Tanzania Region and the Southern East African Orogen. Precambrian Research, 216–219, 232–266. doi: 10.1016/j.precamres.2012.06.020

    CrossRef Google Scholar

    [26] Kuehn S, Ogola J, Sango P. 1990. Regional setting and nature of gold mineralization in Tanzania and southwest Kenya. Precambrian Research, 46, 71–82. doi: 10.1016/0301-9268(90)90067-Z

    CrossRef Google Scholar

    [27] Kwelwa SD, Sanislav IV, Dirks PHGM, Blenkinsop T, Kolling SL. 2018. Zircon U-Pb ages and Hf isotope data from the Kukuluma Terrain of the Geita Greenstone Belt, Tanzania Craton, Implications for stratigraphy, crustal growth and timing of gold mineralization. Journal of African Earth Sciences, 139, 38–54. doi: 10.1016/j.jafrearsci.2017.11.027

    CrossRef Google Scholar

    [28] Kwelwa S, Manya S, Vos IMA. 2013. Geochemistry and petrogenesis of intrusions at the Golden Pride gold deposit in the Nzega greenstone belt, Tanzania. Journal of African Earth Sciences, 86(4), 53–64.

    Google Scholar

    [29] Lawley CJM, Selby D, Condon DJ, Horstwood M, Millar I, Crowley Q, Imber J. 2013. Lithogeochemistry, geochronology and geodynamic setting of the Lupa terrane, Tanzania, implications for the extent of the Archean Tanzanian Craton. Precambrian Research, 231(5), 174–193.

    Google Scholar

    [30] Leger C, Barth A, Falk D, Mruma AH, Magigita M, Boniface N, Manya S, Kagya M, Stanek KP. 2015. Explanatory notes for the minerogenic map of Tanzania. Geological Survey of Tanzania, , 1–376.

    Google Scholar

    [31] Li XH, Li ZX, Ge WC, Zhou HW, Li WX, Liu Y, Wingate MTD. 2003. Neoproterozoic granitoids in South China, crustal melting above a mantle plume at ca. 825 Ma? Precambrian Research, 122(1), 45–83.

    Google Scholar

    [32] Li XH, Zhao ZH, Gui XT, Yu JS. 1991. Sm-Nd isotopic and zircon U-Pb constraints on the age of formation of the Precambrian crust in Southeast China. Geochemica, 3, 255–264 (in Chinese with English abstract).

    Google Scholar

    [33] Liu F, Guo JH, Lu XP, Diwu CR. 2009. Crustal growth at ~2.5 Ga in the North China Craton, evidence from whole-rock Nd and zircon Hf isotopes in the Huai’an gneiss terrane. Chinese Sci Bull, 54, 4704–4713.

    Google Scholar

    [34] Maboko MAH, Pedersen RB, Manya S, Torssander P, Mwache M. 2006. The origin of late Archaean granitoids in the Sukumaland Greenstone Belt of northern Tanzania, geochemical and isotopic constraints. Tanzania Journal of Science, 32(1), 75–88.

    Google Scholar

    [35] Maboko MAH, Nakamura E. 1996. Nd and Sr isotopic mapping of the Archaean-Proterozoic boundary in southeastern Tanzania using granites as probes for crustal growth. Precambrian Research, 77(1), 105–115.

    Google Scholar

    [36] Manya S, Kobayashi K, Maboko MAH, Nakamura E. 2006. Ion microprobe zircon U-Pb dating of the late Archaean metavolcanics and associated granites of the Musoma-Mara Greenstone Belt, Northeast Tanzania, Implications for the geological evolution of the Tanzania Craton. Journal of African Earth Sciences, 45(3), 355–366. doi: 10.1016/j.jafrearsci.2006.03.004

    CrossRef Google Scholar

    [37] Manya S, Maboko MAH, Nakamura E. 2007a. The geochemistry of high-Mg andesite and associated adakitic rocks in the Musoma-Mara Greenstone Belt, northern Tanzania, Possible evidence for Neoarchaean ridge subduction? Precambrian Research, 159(3–4), 241–259. doi: 10.1016/j.precamres.2007.07.002

    CrossRef Google Scholar

    [38] Manya S, Maboko MAH. 2003. Dating basaltic volcanism in the Neoarchaean Sukumal and Greenstone Belt of the Tanzania Craton using the Sm-Nd method, implications for the geological evolution of the Tanzania Craton. Precambrian Research, 121(1–2), 35–45. doi: 10.1016/S0301-9268(02)00195-X

    CrossRef Google Scholar

    [39] Manya S, Maboko MAH. 2008a. Geochemistry and geochronology of Neoarchaean volcanic rocks of the Iramba-Sekenke greenstone belt, central Tanzania. Precambrian Research, 163(3–4), 265–278. doi: 10.1016/j.precamres.2008.01.001

    CrossRef Google Scholar

    [40] Manya S, Maboko MAH. 2008b. Geochemistry of the Neoarchaean mafic volcanic rocks of the Geita area, NW Tanzania, Implications for stratigraphical relationships in the Sukumaland greenstone belt. Journal of African Earth Sciences, 52(4), 152–160.

    Google Scholar

    [41] Manya S, Makenya AH, Nakamura E. 2007b. Geochemistry and Nd-isotopic composition of potassic magmatism in the Neoarchaean Musoma-Mara Greenstone Belt, northern Tanzania. Precambrian Research, 159(3), 231–240.

    Google Scholar

    [42] Manya S. 2004. Geochemistry and petrogenesis of volcanic rocks of the Neoarchaean Sukumaland Greenstone Belt, northwestern Tanzania. Journal of African Earth Sciences, 40(5), 269–279. doi: 10.1016/j.jafrearsci.2004.12.006

    CrossRef Google Scholar

    [43] Manya S. 2011. Nd-isotopic mapping of the Archaean-Proterozoic boundary in southwestern Tanzania, implication for the size of the Archaean Tanzania Craton. Gondwana Research, 20(2–3), 325–334. doi: 10.1016/j.gr.2011.01.002

    CrossRef Google Scholar

    [44] Manya S. 2016. Geochemistry of the mafic volcanic rocks of the Buzwagi gold mine in the Neoarchaean Nzega greenstone belt, northern Tanzania. Lithos, 264, 86–95. doi: 10.1016/j.lithos.2016.08.016

    CrossRef Google Scholar

    [45] Messo CW, Manya S, Maboko MAH. 2012. Geochemistry of the Neoarchaean Volcanic Rocks of the Kilimafedha Greenstone Belt, Northeastern Tanzania. Journal of Geological Research, doi:10.1155/2012/603971

    Google Scholar

    [46] Mtoro M, Maboko MAH, Manya S. 2009. Geochemistry and geochronology of the bimodal volcanic rocks of the Suguti area in the southern part of the Musoma-Mara Greenstone Belt, Northern Tanzania. Precambrian Research, 174(3–4), 241–257. doi: 10.1016/j.precamres.2009.07.006

    CrossRef Google Scholar

    [47] Pinna P, Cocherie A, Tieblemont D, Jezequel P, Kayogoma E. 2004. The Making of the East African Craton (2.93-2.53 Ga). Abstract Volume, 20th Colloquium of Africa Geology. Orléans France

    Google Scholar

    [48] Quennel AM, McKinlay AC, Aiken WG. 1956. Summary of the Geology of Tanganyika-Introduction and Stratigraphy of Tanganyika. Geological Survey, Memoir No.1, Part 1, Dodoma, 1-264

    Google Scholar

    [49] Rino S, Tsuyoshi K, Windley BF, Katayama I, Motoki A, Hirata T. 2004. Major episodic increases of continental crustal growth determined from zircon ages of river sands, implication for mantle overturns in the Early Precambrian. Physics of Earth Planet Interior, 146, 369–394. doi: 10.1016/j.pepi.2003.09.024

    CrossRef Google Scholar

    [50] Sanislav IV, Blenkinsop TG, Dirks PHGM. 2017. Archaean crustal growth through successive partial melting events in an oceanic plateau-like setting in the Tanzania Craton. Terra Nova, , . doi: 10.1111/ter.12323

    CrossRef Google Scholar

    [51] Sanislav IV, Wormald RJ, Dicks PHGM, Blenkinsop TG, Salamba L, Joseph D. 2014. Zircon U-Pb ages and Lu-Hf isotope systematics from late-tectonic granites, Geita Greenstone Belt, Implications for crustal growth of the Tanzania Craton. Precambrian Research, 242, 187–204. doi: 10.1016/j.precamres.2013.12.026

    CrossRef Google Scholar

    [52] Schoene B, Dudas FOL, Bowring SA, de Wit M. 2009. Sm-Nd isotopic mapping of lithospheric growth and stabilization in the eastern. Kaapvaal Craton, Terra Nova, 21, 219–228.

    Google Scholar

    [53] Taylor SR, Mclennan SM. 1985. The continental crust, Its composition and evolution. Oxford, Blackwell Scientific Publication, 1-301

    Google Scholar

    [54] Wan YS, Liu SJ, Kröner A, Dong CY, Xie HQ, Xie SW, Bai WQ, REN P, Ma MZ, Liu DY. 2016. Eastern ancient terrane of the North China Craton. Acta Geologica Sinica (English Edition), 90(4), 1082–1096. doi: 10.1111/acgs.2016.90.issue-4

    CrossRef Google Scholar

    [55] Wan YS, Liu SJ, Xie HQ, Dong CY, Li Y, Bai WQ, Liu DY. 2018. Formation and evolution of the Archean continental crust of China, A review. China Geology, 1, 109–136. doi: 10.31035/cg2018011

    CrossRef Google Scholar

    [56] Wang X, Huang XL, Ma JL, Zhong JW, Yang QJ. 2015. Hf-Nd isotopes of the early Precambrian metamorphic complexes in the southern segment of the trans-north china orogen, implications for crustal evolution. Geotectonica Et Metallogenia, 39(6), 1108–1118 (in Chinese with English abstract).

    Google Scholar

    [57] Wu FY, Zhao GC, Wilde SA, Sun DY. 2005. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences, 24(5), 523–545. doi: 10.1016/j.jseaes.2003.10.011

    CrossRef Google Scholar

    [58] Wu SP, Wu CL, Chen QL, Zhang CQ, Li DS. 2009. Error estimation of Initial Ratios of Sr-Nd isotopic and Nd model age. Acta Geologica Sinica, 83(7), 1030–1038 (in Chinese with English abstract).

    Google Scholar

    [59] Zhang HF, Zhao ZD, Luo TC, Zhang BR. 1995. Crustal growth and lower Crust nature of North Qinling, Study of Sm-Nd isotopic model ages. Acta Petrologica Sinica, 11(2), 160–170 (in Chinese with English abstract).

    Google Scholar

    [60] Zorpi MJ, Coulon C, Orsini JB, Cocirta C. 1989. Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons. Tectonophysics, 157(4), 315–329.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(5)

Article Metrics

Article views(1457) PDF downloads(8) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint