2018 Vol. 1, No. 2
Article Contents

Hong Cao, Zhi-lei Sun, Chang-ling Liu, En-tao Liu, Xue-jun Jiang, Wei Huang, 2018. Origin of natural sulfur-metal chimney in the Tangyin hydrothermal field, Okinawa Trough: constraints from rare earth element and sulfur isotopic compositions, China Geology, 1, 225-235. doi: 10.31035/cg2018023
Citation: Hong Cao, Zhi-lei Sun, Chang-ling Liu, En-tao Liu, Xue-jun Jiang, Wei Huang, 2018. Origin of natural sulfur-metal chimney in the Tangyin hydrothermal field, Okinawa Trough: constraints from rare earth element and sulfur isotopic compositions, China Geology, 1, 225-235. doi: 10.31035/cg2018023

Origin of natural sulfur-metal chimney in the Tangyin hydrothermal field, Okinawa Trough: constraints from rare earth element and sulfur isotopic compositions

More Information
  • For the first time, we present the rare earth element (REE) and sulfur isotopic composition of hydrothermal precipitates recovered from the Tangyin hydrothermal field (THF), Okinawa Trough at a water depth of 1206 m. The natural sulfur samples exhibit the lowest ΣREE concentrations (ΣREE=0.65×10–6–4.580×10–6) followed by metal sulfides (ΣREE=1.71×10–6–11.63×10–6). By contrast, the natural sulfur-sediment samples have maximum ΣREE concentrations (ΣREE=11.54×10–6–33.06×10–6), significantly lower than those of the volcanic and sediment samples. Nevertheless, the δEu, δCe, (La/Yb)N, La/Sm, (Gd/Yb)N and normalized patterns of the natural sulfur and metal sulfide show the most similarity to the sediment. Most hydrothermal precipitate samples are characterized by enrichments of LREE (LREE/HREE=10.09–24.53) and slightly negative Eu anomalies or no anomaly (δEu=0.48–0.99), which are different from the hydrothermal fluid from sediment-free mid-oceanic ridges and back-arc basins, but identical to the sulfides from the Jade hydrothermal field. The lower temperature and more oxidizing conditions produced by the mixing between seawater and hydrothermal fluids further attenuate the leaching ability of hydrothermal fluid, inducing lower REE concentrations for natural sulfur compared with metal sulfide; meanwhile, the negative Eu anomaly is also weakened or almost absent. The sulfur isotopic compositions of the natural sulfur (δ34S=3.20‰–5.01‰, mean 4.23‰) and metal sulfide samples (δ34S=0.82‰–0.89‰, mean 0.85‰) reveal that the sulfur of the chimney is sourced from magmatic degassing.

  • 加载中
  • [1] Alt JC. 1988. The chemistry and sulfur isotope composition of massive sulfide and associated deposits on Green Seamount, Eastern Pacific. Economic Geology, 83(5), 1026 –1033.

    Google Scholar

    [2] Baar HJWD, Brewer PG, Bacon MP. 1985. Anomalies in rare earth distributions in seawater: Gd and Tb. Geochimica et Cosmochimica Acta, 49(9), 1961–1969.

    Google Scholar

    [3] Bach W, Roberts S, Vanko DA, Binns RA, Yeats CJ, Craddock PR. 2003. Controls of fluid chemistry and complexation on rare-earth element contents of anhydrite from the Pacmanus subseafloor hydrothermal system, Manus Basin, Papua New Guinea. Mineralium Deposita, 38(8), 916 – 935.

    Google Scholar

    [4] Charlou JL, Donval JP, Caprais MP, Fouquet Y, Erzinger J, Stackelberg UV. 1990. Hydrothermal activity in the Lau back arc basin: plumes and hot fluids chemistry. AAPG Bulletin, 74(6), 963 – 964.

    Google Scholar

    [5] Craddock PR, Bach W, Seewald JS, Rouxel OJ, Reeves E, Tivey MK. 2010. Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: indicators of sub-seafloor hydrothermal processes in back-arc basis. Geochimica et Cosmochimica Acta, 74(19), 5494 – 5513.

    Google Scholar

    [6] Fa XU, Zhang P, Zhang J, Liu J, Hou G, Ming Z. 2015. Diagenesis and diagenetic evolution of deltaic and neritic gas-bearing sandstones in the Lower Mingyuefeng Formation of Paleogene, Lishui Sag, East China Sea Shelf Basin: implications for depositional environments and sequence stratigraphy controls. Acta Geologica Sinica (English Edition), 89(5), 1625 –1635.

    Google Scholar

    [7] Feng R, Zhou HN, Yao ZS, Ma GM, Li QL. 1993. 3D velocity structure and its tectonic implications in the East China Sea and Yellow Sea. Acta Geological Sinica (English Edition), 67(3), 273 – 296.

    Google Scholar

    [8] Fouquet Y, Auclair G, Cambon P, Etoubleau J. 1988. Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13oN on the East Pacific Rise. Marine Geology, 84(3-4), 145 –178.

    Google Scholar

    [9] Gamo T, Sakai H, Ishibashi J, Masuda H, Kodera M, Igarashi G. 1987. Geochemical studies on the hydrothermal activity in the Okinawa Trough. Bulletin of the Volcanological Society of Japan Second, 32(3), 107–114.

    Google Scholar

    [10] Gena KR, Chiba H, Mizuta T, Matsubaya O. 2006. Hydrogen, oxygen and sulfur isotope studies of seafloor hydrothermal system at the desmos caldera, Manus back-arc basin, Papua New Guinea: an analogue of terrestrial acid hot crater-lake. Resource Geology, 56(2), 183–190.

    Google Scholar

    [11] Gillis KM, Smith AD, Ludden JN. 1990.Trace element and Sr-isotopic contents of hydrothermal clays and sulfides from the Snake Pit hydrothermal field: ODP Site 649. In: Detrick, R; Honnorez, J; Bryan, WB; Juteau, T (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 106/109, 315-319

    Google Scholar

    [12] Glasby GP, Notsu K. 2003. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview. Ore Geology Reviews, 23(3), 299–339.

    Google Scholar

    [13] Halbach P, Nakamura KI, Wahsner M, Lange J, Sakai H, Käselitz L, Hansen RD, Yamano M, Post J, Prause B, Seifert R, Michaelis W, Teichmann F, Kinoshita M, Märten A, Ishibashi J, Czerwinski S, Blum N. 1989. Probable modern analogue of kuroko-type massive sulphide deposits in the Okinawa Trough back-arc basin. Nature, 338(6215), 496 – 499.

    Google Scholar

    [14] Halback P. 2015. Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan. Economic Geology, 88(8), 2210 –2225.

    Google Scholar

    [15] Hannington M, Herzig P, Scott S, Thompson G, Rona P. 1991. Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges. Marine Geology, 101(1–4), 217–248.

    Google Scholar

    [16] Herzig PM, Hannington MD, Jr AA. 1998. Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems. Mineralium Deposita, 33(3), 226 –237.

    Google Scholar

    [17] Hirata N, Kinoshita H, Katao H, Baba H, Kaiho Y, Koresawa S, Ono Y, Hayashi K. 1991. Report on DELP 1988 cruises in the Okinawa Trough Part 3. Crustal structure of the southern Okinawa Trough. Bull ERI Univ Tokyo., 66, 37–70.

    Google Scholar

    [18] Hongo Y, Nozaki Y. 2001. Rare earth element geochemistry of hydrothermal deposits and Calyptogena shell from the Iheya ridge vent field, Okinawa Trough. Geochemical Journal, 35(5), 347–354.

    Google Scholar

    [19] Hongo Y, Obata H, Gamo T, Nakaseama M, Ishibashi J, Konno U. 2007. Rare earth elements in the hydrothermal system at Okinawa Trough back-arc basin. Geochemical Journal, 41(1), 1–15.

    Google Scholar

    [20] Huang F. 1989. Formation and evolution of the Okinawa Trough. Marine Geology and Quaternary Geology, 9(1), 43–51.

    Google Scholar

    [21] Iked K, Kobayashi S. 2017. Deepest and hottest hydrothermal activity in the Okinawa Trough: the Yokosuka Site at Yaeyama knoll. Royal Society Open Science, 4(12), 9–15.

    Google Scholar

    [22] Ishibashi J, Sano Y, Wakita H, Gamo T, Tsutsumi M, Sakai H. 1995. Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough back arc basin, southwest of Japan. Chemical Geology, 123(1–4), 1–15.

    Google Scholar

    [23] Ishibashi JI, Noguchi T, Toki T, Miyabe S, Yamagami S, Onishi Y. 2014. Diversity of fluid geochemistry affected by processes during fluid upwelling in active hydrothermal fields in the Izena Hole, the middle Okinawa Trough back-arc basin. Geochemical Journal, 48(4), 357–369.

    Google Scholar

    [24] Ishibashi JI,Ikegami F, Tsuji T. 2015. Hydrothermal Activity in the Okinawa Trough Back-Arc Basin: Geological Background and Hydrothermal Mineralization. Subseafloor Biosphere Linked to Hydrothermal Systems. Springer Japan, 337-359

    Google Scholar

    [25] Ishizuka H, Kawanobe Y, Sakai H. 2008. Petrology and geochemistry of volcanic rocks dredged from the Okinawa Trough, an active back-arc basin. Geochemical Journal, 24(2), 75–92.

    Google Scholar

    [26] Kargel JS, Delmelle P, Nash DB. 1999. Volcanogenic Sulfur on Earth and Io: Composition and Spectroscopy. Icarus, 142(1), 249 –280.

    Google Scholar

    [27] Kawagucci S. 2015. Fluid Geochemistry of High-Temperature Hydrothermal Fields in the Okinawa Trough. Subseafloor Biosphere Linked to Hydrothermal Systems. Springer Japan, 387-403

    Google Scholar

    [28] Kimura M. 1985. Back-arc rifting in Okinawa Trough. Marine and Petroleum Geology, 2(3), 222–240.

    Google Scholar

    [29] Kimura M, Uyeda S, Kato Y, Tanaka T, Yaman M, Gamo T. 1988. Active hydrothermal mounds in the Okinawa Trough backarc basin, Japan. Marine and Petroleum Geology, 2(3), 222–240.

    Google Scholar

    [30] Klingelhoefe F, Lee CS, Lin JY, Sibuet JC. 2009. Structure of the southernmost Okinawa trough from reflection and wide-angle seismic data. Tectonophysics, 466(3–4), 281–288.

    Google Scholar

    [31] Klinkhammer GP, Elderfield H, Edmond JM, Mitra A. 1994. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochimica et Cosmochimica Acta, 58(23), 5105–5113.

    Google Scholar

    [32] Kotake Y. 2000. Study ofthe tectonics of western pacific region derived from GPS data analysis. Bulletin of the Earthquake Research Institute University of Tokyo, 75, 229-334

    Google Scholar

    [33] Lee CS, Jr GGS, Bibee LD, Lu RS, Hilde TWC. 1980. Okinawa Trough: origin of a back-arc basin. Marine Geology, 35(1), 219–241.

    Google Scholar

    [34] Letouzey J, Kimura M. 1986. The Okinawa Trough: genesis of a back-arc basin developing along a continental margin. Tectonophysics, 125(1), 209–230.

    Google Scholar

    [35] Li WR, Yang ZS, Wang YJ, Zhang BM. 1997. The Petrochemical Features of the Volcanic Rocks in Okinawa Trough and Their Geological Significance. Acta Petrologica Sinica, 13(4), X8–550.

    Google Scholar

    [36] Lin JY, Hsu SK, Sibuet JC, Lee CS, Liang CW. 2013. Plate tearing in the northwestern corner of the subducting Philippine Sea Plate. Journal of Asian Earth Sciences, 70–71, 1–7.

    Google Scholar

    [37] Lin JY, Sibuet JC, Lee CS, Hsu SK, Klingelhoefer F. 2007. Origin of the southern Okinawa Trough volcanism from detailed seismic tomography. Journal of Geophysical Research Solid Earth, 112(B8), 1–20.

    Google Scholar

    [38] Liu YG, Meng XW, Fu YX. 2004. REE and Sr-Nd isotope characteristics of hydrothermal chimney at Jade area in the Okinawa Trough. Acta Oceanologica Sinica, 23(2), 287–296.

    Google Scholar

    [39] Lüders V, Pracejus B, Halbach P. 2001. Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field (Central Okinawa Trough, Japan). Chemical Geology, 173(1), 45–58.

    Google Scholar

    [40] Marumo K, Hattori KH. 1999. Seafloor hydrothermal clay alteration at Jade in the back-arc Okinawa Trough: mineralogy, geochemistry and isotope characteristics. Geochimica et Cosmochimica Acta, 63(18), 2785–2804.

    Google Scholar

    [41] Mills RA, Elderfield H. 1995. Rare earth element geochemistry of hydrothermal deposits from the active TAGMound, 26oN Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 59(17), 3511–3524.

    Google Scholar

    [42] Miyazaki J, Kawagucci S, Makabe A, Takahashi A, Kitada K, Torimoto J, Matsui Y, Tasumi E, Shibuya T, Nakamura K, Horai S, Sato S, Ishibashi J, Kanzaki H, Nakagawa S, Hirai M, Takaki Y,Okino K, Watanabe HK, KumagaiH, Chen C. 2017. Deepest and hottest hydrothermal activity in the Okinawa Trough: the Yokosuka site at Yaeyama knoll. Royal Society Open Science, 4(12), 9–15.

    Google Scholar

    [43] Nagumo S, Kinoshita H, Kasahara J, Ouchi T, Tokuyama H, Asamuma T, Koresawa S, Akiyoshi H. 1986. Report on DELP 1984 cruises in the middle Okinawa Trough Part 2: seismic structural studies. Bull ERI Univ Tokyo, 61, 167-202

    Google Scholar

    [44] Nishio R, Chiba H. 2012. Mineralogical and sulfur stable isotopic study of mineralization at the No.4 Yonaguni Knoll Seafloor Hydrothermal System, Okinawa Trough. Abstracts of Annual Meeting of the Geochemical Society of Japan. Geochemical Society of Japan, 59

    Google Scholar

    [45] Peilian LI, Hou H, Huifu MA. 2000. Tectonics and petroleum potential of the East China Seashelf rift basin. Acta Geologica Sinica (English Edition), 74(3), 651–660.

    Google Scholar

    [46] Rees CE, Jenkins WJ, Monster J. 1978. Sulphur isotopic composition of ocean water sulfate. Geochimica et Cosmochimica Acta, 42(4), 377–381.

    Google Scholar

    [47] Rodrigues AC, Grilo A, Riso N, Riscado MV. 1998. Okinawa Trough backarcbasin: early tectonic and magmatic evolution. Journal of Geophysical Research Solid Earth, 103(B12), 30245–30267.

    Google Scholar

    [48] Rowe JGL. 1994. Oxygen, hydrogen, and sulfur isotope systematics of the crater lake system of Poas Volcano, Costa Rica. Geochemical Journal, 28(3), 263–287.

    Google Scholar

    [49] Sakai H, Des Marais DJ, Ueda A, Moore JG. 1984. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochimica et Cosmochimica Acta, 48(12), 2433–2441.

    Google Scholar

    [50] Shang LN, Zhang XH, Jia YG, Han B, Yang CS, Geng W. 2017. Late Cenozoic evolution of the East China continental margin: Insights from seismic, gravity, and magnetic analyses. Tectonophysics, 698, 1-15

    Google Scholar

    [51] Sibuet JC, Letouzey J, Barbier F, Charvet J, Foucher JP, Hilde TWC. 1987. Back arc extension in the Okinawa Trough. Journal of Geophysical Research Solid Earth, 92(B13), 14041–14063.

    Google Scholar

    [52] Sibuet JC. 1998. The southwestern Okinawa Trough back-arc basin: tectonics and volcanism. Journal of Geophysical Research, 103(30), 245–267.

    Google Scholar

    [53] Styrt MM, Brackmann AJ, Holland HD, Clark BC, Pisutha-Arnond V, Eldridge CS. 1981. The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21°N latitude. Earth and Planetary Science Letters, 53(3), 382–390.

    Google Scholar

    [54] Sverjensky DA. 1984. Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67(1), 70–78.

    Google Scholar

    [55] Terakado Y, Walker RJ. 2005. Nd, Sr and Pb isotopic and REE geochemical study of some Miocene submarine hydrothermal deposits (Kuroko deposits) in Japan. Contributions to Mineralogy and Petrology, 149(4), 388–399.

    Google Scholar

    [56] Ueda A, Sakai H. 1984. Sulfur isotope study of Quaternary volcanic rocks from the Japanese Islands Arc. Geochimica et Cosmochimica Acta, 48(9), 1837–1848.

    Google Scholar

    [57] Woodhead JD, Harmon RS, Fraser DG. 1987. O, S, Sr, and Pb isotope variations in volcanic rocks from the Northern Mariana Islands: implications for crustal recycling in intra-oceanic arcs. Earth and Planetary Science Letters, 83(1-4), 39–52.

    Google Scholar

    [58] Yamano M, Uyeda S, Foucher JP, Sibuet JC. 1989. Heat flow anomaly in the middle Okinawa Trough. Diana, a cultural history: Palgrave, 307-318

    Google Scholar

    [59] Yang WD, Zhang YB, Shi J. 2004. A study on modern tectonic tension fault in the Okinawa Trough. Offshore Oil, 24(4), 15–20.

    Google Scholar

    [60] Yu ZH, Zhai SK, Li XZ. 2001. Glass inclusions in volcanic rocks in the Okinawa Trough back-arc basin: constraints on magma genesis and evolution. Acta Oceanologica Sinica, 20(3), 383–390.

    Google Scholar

    [61] Zeng ZG, Jiang FQ, Zhai SK, Qin YS. 2000. Lead isotopic compositions of massive sulfides from the Jade hydrothermal field in the Okinawa Trough and its geological implications. Acta Oceanologica Sinica, 20(3), 383–390.

    Google Scholar

    [62] Zeng ZG, Chen CTA, Yin XB, Zhang XY, Wang XY, Zhang GL,Wang XM, Chen DG. 2011. Origin of native sulfur ball from the Kueishantao hydrothermal field offshore northeast Taiwan: evidence from trace and rare earth element composition. Journal of Asian Earth Sciences, 40(2), 661– 671.

    Google Scholar

    [63] Zeng ZG, Chen S, Ma Y, Yin X, Wang XY, Zhang SP, Zhang JL,Wu XW, Li Y, Dong D, Xiao N. 2016. Chemical compositions of mussels and clams from the Tangyin and Yonaguni knoll Ⅳ hydrothermal fields in the southwestern Okinawa Trough. Ore Geology Reviews, 87, 172–191.

    Google Scholar

    [64] Zeng ZG, Jiang FQ, Qin YS, Zhai SK, Hou ZQ. 2001. Rare earth element geochemistry of massive sulphides from the Jade hydrothermal field in the central Okinawa Trough. Acta Geologica Sinica, 75(2), 244 –249.

    Google Scholar

    [65] Zeng ZG, Li J, Jiang FQ, Zhai SK, Qin YS, Hou ZQ. 2002. Sulfur isotopic composition of sea-floor hydrothermal sediment from the Jade hydrothermal field in the central Okinawa Trough and its geological significance. Acta Oceanologica Sinica, 21(3), 395–405.

    Google Scholar

    [66] Zeng ZG, Liu CH, Chen CTA, Yin XB, Chen DG, Wang XY. 2007. Origin of a native sulfur chimney in the Kueishantao hydrothermal field, offshore northeast Taiwan. Science in China, 50(11), 1746.

    Google Scholar

    [67] Zhai SK, Gan, X. 1995. Study of basalt from the hydrothermal field of the Okinawa Trough. Oceanologia et Limnologia Sinica, 26(2), 115–123.

    Google Scholar

    [68] Zhai SK, Yu ZH, Du TJ. 2007. Elemental geochemical records of seafloor hydrothermal activities in the sediments from the Okinawa Trough. Acta Oceanologica Sinica, 26(4), 53– 62.

    Google Scholar

    [69] Zhang LF, Xu J, Peng YJ, Ji FJ, Lü YJ, Zhou BG. 2014. A study on neotectonic movement in the East China Sea. Seismology and Geology, 36(3), 692–705.

    Google Scholar

    [70] Zhang Q, Hou Z, Tang S. 2001. Organic composition of sulphide ores in the Okinawa Trough and its implications. Acta Geologica Sinica (English edition), 75(2), 196 –203.

    Google Scholar

    [71] Zhao L, Shen Y, Liu W, Zhan WG. 1988. A contribution to physicochemical conditions for the formation of syngenetic sulfide ores. Acta Geochimica, 7(3), 233–242.

    Google Scholar

    [72] Zhao Y. 1983. Geochemistry of some elements in sediments of the East China Sea. Chinese Journal of Oceanology and Limnology, 1(2), 210 –222.

    Google Scholar

    [73] Zheng XL, He GY, Hu SQ, Yao ZW, Wang H, Lin L. 2015. Improved geometric model of extensional fault-bend folding. Acta Geologica Sinica (English Edition), 89(6), 1847–1857.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(2214) PDF downloads(10) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint