2018 Vol. 1, No. 1
Article Contents

Yu-sheng Wan, Shou-jie Liu, Hang-qiang Xie, Chun-yan Dong, Yuan Li, Wen-qian Bai, Dun-yi Liu, 2018. Formation and evolution of the Archean continental crust of China: A review, China Geology, 1, 109-136. doi: 10.31035/cg2018011
Citation: Yu-sheng Wan, Shou-jie Liu, Hang-qiang Xie, Chun-yan Dong, Yuan Li, Wen-qian Bai, Dun-yi Liu, 2018. Formation and evolution of the Archean continental crust of China: A review, China Geology, 1, 109-136. doi: 10.31035/cg2018011

Formation and evolution of the Archean continental crust of China: A review

More Information
  • The mainland of China is composed of the North China Craton, the South China Craton, the Tarim Craton and other young orogenic belts. Amongst the three cratons, the North China Craton has been studied most and noted for its widely-distributed Archean basement rocks. In this paper, we assess and compare the geology, rock types, formation age and geochemical composition features of the Archean basements of the three cratons. They have some common characteristics, including the fact that the crustal rocks prior to the Paleoarchean and the supracrustal rocks of the Neoarchean were preserved, and Tonalite-Trondhjemtite-Granodiorite (TTG) magmatism and tectono-magmatism occurred at about 2.7 Ga and about 2.5 Ga respectively. The Tarim Craton and the North China Craton show more similarities in their early Precambrian crustal evolution. Significant findings on the Archean basement of the North China Craton are concluded to be: (1) the tectonic regime in the early stage (>3.1 Ga) is distinct from modern plate tectonics; (2) the continental crust accretion occurred mostly from the late Mesoarchean to the early Neoarchean period; (3) a huge linear tectonic belt already existed in the late Neoarchean period, suggesting the beginning of plate tectonics; and (4) the preliminary cratonization had already been completed by about 2.5 Ga. Hadean detrital zircons were found at a total of nine locations within China. Most of them show clear oscillatory zoning, sharing similar textures with magmatic zircons from intermediate-felsic magmatic rocks. This indicates that a fair quantity of continental material had already developed on Earth at that time.

  • 加载中
  • [1] Allègre, CJ. Rousseau D. 1984. The growth of the continent through geological time studied by Nd isotope analysis of shales. Earth and Planetary Science Letters, 67, 19-34.

    Google Scholar

    [2] Armstrong RL. 1981. Radiogenic isotopes: The case for crustal recycling on a steady-state no-continental growth Earth. Philosophical Transactions of the Royal Society of London, series A, Mathematical and Physical Sciences, 301, 443-42.

    Google Scholar

    [3] Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O’Reilly SY, Pearson NJ. 2010. The growth of the continental crust: Constraints from zircon Hf isotope data. Lithos, 119, 457-466.

    Google Scholar

    [4] Cai ZH, Xu ZQ, Yu SY, Li SZ, He BZ, Ma XX, Chen XJ, Xu XY. 2018. Neoarchean magmatism and implications for crustal growth and evolution of the Kuluketage region, northeastern Tarim Craton. Precambrian Research, 304, 156-170.

    Google Scholar

    [5] Cawood PA, Hawkesworth CJ, Dhuime B. 2013. The continental record and the generation of continental crust. Geological Society of America Bulletin, 125, 14-32.

    Google Scholar

    [6] Chen K, Gao S, Wu Y, Guo J, Hu Z, Liu Y, Zong K, Liang Z, Geng X. 2013. 2.6-2.7 Ga crustal growth in Yangtze craton, South China. Precambrian Research, 224, 472-490.

    Google Scholar

    [7] Condie KC, Aster RC. 2010. Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambrian Research, 180, 227-236.

    Google Scholar

    [8] Condie KC, Kröner A. 2013. The building blocks of continental crust: Evidence for a major change in the tectonic setting of continental growth at the end of the Archean. Gondwana Research, 23, 394-402.

    Google Scholar

    [9] Deng XL, Shu LS, Zhu WB, Ma DS, Wang B. 2008. Precambrian tectonism, magmatism, deformation and geochronology of igneous rocks in the Xingdi Fault Zone, Xinjiang. Acta Petrologica Sinica, 24, 2800-2808.

    Google Scholar

    [10] Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD. 2012. A change in the geodynamics of continental growth 3 billion years ago. Science, 335, 1334-1336.

    Google Scholar

    [11] Dong CY, Wan YS, Xie HQ, Nutman AP, Xie SW, Liu SJ, Ma MZ, Liu DY. 2017. The Mesoarchean Tiejiashan-Gongchangling potassic granite in the Anshan-Benxi area, North China Craton: Origin by recycling of Paleo- to Eoarchean crust from U-Pb-Nd-Hf-O isotopic studies. Lithos, 290-291, 116-135.

    Google Scholar

    [12] Eriksson PG. Altermann W. Hartzer FJ. 2006. The Transvaal Supergroup and its Precursors. In Johnson MR. Anhaeusser CR.Thomas RJ. (Eds.) The Geology of South Africa. Johannesburg. Geological Society of South Africa. p.237-260.

    Google Scholar

    [13] Gao S, Yang J, Zhou, Li M, Hu Z, Guo J, Yuan H, Gong H, Xiao G, Wei J. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 gagranitoid gneisses. American Journal of Science, 311, 153-182.

    Google Scholar

    [14] Ge RF, Zhu WB, Wilde SA, Wu HL., He JW, Zheng BH. 2014a. Archean magmatism and crustal evolution in the northern Tarim Craton: insights from zircon U-Pb-Hf-O isotopes and geochemistry of ~2.7 Ga orthogneiss and amphibolite in the Korla Complex. Precambrian Research, 252, 145-165.

    Google Scholar

    [15] Ge RF, Zhu WB, Wilde SA, He JW. 2014b. Zircon U-Pb-Lu-Hf-O isotopic evidence for ≥3.5 Ga crustal growth, reworking and differentiation in the northern Tarim Craton. Precambrian Research, 249, 115-128.

    Google Scholar

    [16] Ge RF, Zhu WB, Wilde SA, He JW, Cui X. 2015. Synchronous crustal growth and reworking recorded in late Paleoproterozoic granitoids in the northern Tarim craton: In situ zircon U-Pb-Hf-O isotopic and geochemical constraints and tectonic implications. Geological Society of America Bulletin, 127, 781-803.

    Google Scholar

    [17] Ge R, Zhu W, Wilde SA, Wu H. 2018. Remnants of Eoarchean continental crust derived from a subducted proto-arc. Science Advances, 4(2), 31-59.

    Google Scholar

    [18] Gehrels GE, Yin A, Wang X. 2003. Magmatic history of the northeastern Tibetan Plateau. Journal of Geophysical Research, 108, 2423.

    Google Scholar

    [19] Geng YS, Liu FL, Yang CH. 2006. Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication. Acta Geologica Sinica, 80, 819-833.

    Google Scholar

    [20] Geng YS. 2015. Early Precambrian geological signatures in South China Craton. In: Zhai MG. (Ed.) Precambrian geology of China. Springer. p.207-240.

    Google Scholar

    [21] Goodwin, AM. 1996. Principles of Precambrian Geology, London. Academic Press. p.1-327

    Google Scholar

    [22] Griffin WL, Belousova EA, Shee SR, Pearson NJ, O’Reilly SY. 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 131, 231-282.

    Google Scholar

    [23] Guo ZJ, Zhang ZC, Liu SW, Li HM. 2003. U-Pb Geochronological Evidence for the Early Precambrian Complex of the Tarim Craton, NW China. Acta Petrologica Sinica, 19, 537-542.

    Google Scholar

    [24] Guo XC, Zheng YZ, Gao J, Zhu ZX. 2013. Determination and geological sig-nificance of the Mesoarchean Craton in Western Kunlun Mountains, Xinjiang, China. Geological Review, 59, 401-412.

    Google Scholar

    [25] Guo JL, Gao S, Wu YB, Li M, Chen K, Hu ZC, Liang ZW, Liu YS, Zhou L, Zong KQ, Zhang W, Chen HH. 2014. 3.45 Ga granitic gneisses from the Yangtze Craton, South China: Implications for Early Archean crustal growth. Precambrian Research, 242, 82-95.

    Google Scholar

    [26] Guo JL, Wu YB, Gao S, Jin ZM, Zong KQ, Hu ZC, Chen K, Chen HH, Liu YS. 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) granitoid magmatism in Yangtze Craton, South China: Implications for late Archean tectonics. Precambrian Research, 270, 246-266.

    Google Scholar

    [27] Halla J, Whitehouse MJ, Ahmad T, Bagai Z. 2016. Archaean granitoids: an overview and significance from a tectonic perspective. Geological Society. London, Special Publications, 449, 1-18.

    Google Scholar

    [28] Han Q, Peng S, Kusky T, Polat A, Jiang X, Cen Y, Liu S, Deng H. 2017a. A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: Evidence for Paleoproterozoic suturing and microcontinent amalgamation. Precambrian Research, 293, 13-38.

    Google Scholar

    [29] Han Q, Peng S, Polat A, Kusky T, Deng H, Wu T. 2017b. A ca.2.1 Ga Andean-type margin built on metasomatized lithosphere in the northern Yangtze craton, China: Evidence from high-Mg basalts and andesites. Precambrian Research. http://dx.doi.org/10.1016/j.precamres.2017.05.015.

    Google Scholar

    [30] Han PY, Guo JL, Chen K, Huang H, Zong KQ, Liu YS, Hu ZC, Gao S. 2017c. Widespread Neoarchean (~2.7-2.6 Ga) magmatism of the Yangtze craton, South China, as revealed by modern river detrital zircons. Gondwana Research, 42, 1-12.

    Google Scholar

    [31] Hu AQ, Rogers G. 1992. Discovery of 3.3 Ga Archean rocks in North Tarim Block of Xinjiang, western China. Chinese Science Bulletin, 37, 1546-1549.

    Google Scholar

    [32] Hu AQ, Wei GJ. 2006. On the age of the Neoarchean Qingir gray gneisses from the Northern Tarim Basin, Xinjiang, China. Acta Geologica Sinica, 80, 126-134.

    Google Scholar

    [33] Hu J, Liu X, Chen L, Qu W, Li H, Geng J. 2013. A ~2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinlin gorogen. Chinese Science Bulletin, 58, 3564-3579.

    Google Scholar

    [34] Huang ZY, Long XP, Wang XC, Zhang YY, Du L, Yuan C, Xiao WJ. 2017. Precambrian evolution of the Chinese Central Tianshan Block: constraints on its tectonic affinity to the Tarim Craton and responses to supercontinental cycles. Precambrian Research, 295, 24-37.

    Google Scholar

    [35] Hui B, Dong Y, Cheng C, Long X, Liu X, Yang Z, Sun S, Zhang F, Varga J. 2017. Zircon U-Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean-Paleoproterozoic Yudongzi complex, northwestern margin of the Yangtze craton, China. Precambrian Research, 301, 65-85.

    Google Scholar

    [36] Hurley PM, Rand JR. 1969. Predrift continental nuclei. Science, 164, 1229-1242.

    Google Scholar

    [37] Jahn BM, Auvray B, Cornichet J, Bai YL, Shen QH, Liu DY. 1987. 3.5 Ga Old amphibolites from eastern Hebei province, China: field occurrence, petrography, Sm-Nd isochron age and REE chemistry. Precambrian Research, 34, 311-346.

    Google Scholar

    [38] Jahn BM, Liu DY, Wan YS, Song B, Wu JS. 2008. Archean crustal evolution of the Jiaodong peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science, 308, 232-269.

    Google Scholar

    [39] Jiao W, Wu Y, Yang S, Peng M, Wang J. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Science in China Series D: Earth Sciences, 52, 1393-1399.

    Google Scholar

    [40] Kröner A, Wilde SA, Li JH, Wang KY. 2005. Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24, 577-595.

    Google Scholar

    [41] Kusky TM, Li JH, Santosh M. 2007. The Paleoproterozoic North Hebei Orogen: North China Craton's collisional suture with the Columbia supercontinent. Gondwana Research, 12, 4-28.

    Google Scholar

    [42] Laurent O, Martin H, Moyen JF, Doucelance R. 2014. The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos, 205, 208-235.

    Google Scholar

    [43] Li DP, Li XL, Zhou XK, Li W, Du SX, Dai XY, Gao XP, Liu YQ. 2007. SHRIMP U-Pb zircon dating of Neoarchean meta-gabbro dikes on the southwestern margin of the Tarim Plate and its significance. Geology in China, 34, 262-269.

    Google Scholar

    [44] Li HM, Lu SN, Zheng JK, Yu HF, Zhao FQ, Li HK, Zou YC. 2001. Dating of 3.6 Ga zircons in granitic gneiss from the eastern Altyn mountains and its geological significance. Bulletin of Mineralogy, Petrology and Geochemistry, 20, 259-262.

    Google Scholar

    [45] Li JH, Kusky TM, Huang XN. 2002. Archean podiform chromitites and mantle tectonites in ophiolitic mélange, North China Craton: a record of early oceanic mantle processes. GSA Today, 12, 4-11.

    Google Scholar

    [46] Li L, Lin S, Davis DW, Xiao W, Xing G, Yin C. 2014. Geochronology and geochemistry of igneous rocks from the Kongling terrane: Implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze Block. Precambrian Research, 255, 30-47.

    Google Scholar

    [47] Li Y, Zheng J, Xiong Q, Wang W, Ping X, Li X, Tang H. 2016. Petrogenesis and tectonic implications of Paleoproterozoic metapelitic rocks in the Archean Kongling Complex from the northern Yangtze Craton, South China. Precambrian Research, 276, 158-177.

    Google Scholar

    [48] Liu DY, Nutman AP, Compston W. Wu JS, Shen QH. 1992. Remnants of 3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20, 339-342.

    Google Scholar

    [49] Liu DY, Wilde SA, Wan YS, Wu JS, Zhou HY, Dong CY, Yin XY. 2008. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton. American Journal of Science, 308, 200-231.

    Google Scholar

    [50] Liu DY, Wilde SA, Wan YS, Wang SY, Valley JW, Kita N, Dong CY, Xie HQ, Yang CX, Zhang YX, Gao LZ. 2009. Late Mesoarchean-early Neoarchean tectonothermal events at the southern margin of the North China Craton: evidence of multiple events from SHRIMP U-Pb dating and hafnium isotope analysis of zircons from metamorphosed supracrustal rocks and tonalites. Chemical Geology, 261, 140-154.

    Google Scholar

    [51] Liu SJ, Wan YS, Sun HY, Nutman A, Xie HQ, Dong CY, Ma MZ, Du LL, Liu DY, Jahn BM. 2013. Paleo to Eoarchean crustal materials in eastern Hebei, North China Craton: New evidence from SHRIMP U-Pb dating and in-situ Hf isotopic studies in detrital zircons of supracrustal rocks. Journal of Asian Earth Sciences, 78, 4-17.

    Google Scholar

    [52] Liu SW, Santosh M, Wang W, Bai X, Yang PT. 2011. Zircon U-Pb chronology of the Jianping Complex: Implications for the Precambrian crustal evolution history of the northern margin of North China Craton. Gondwana Research, 20, 48-63.

    Google Scholar

    [53] Liu SW, Wang MJ, Wan YS, Guo RR, Wang W, Wang K, Guo BR, Fu JH, Hu FY. 2017. A reworked ~3.45 Ga continental microblock of the North China Craton: Constraints from zircon U-Pb-Lu-Hf isotopic systematics of the Archean Beitai-Waitoushan migmatite-syenogranite complex. Precambrian Research. p.332-354.

    Google Scholar

    [54] Liu XM, Gao S, Lin WL, Yuan HL, Hu ZC. 2006. Identification of 3.5 Ga detrital zircons from Yangtze craton in south China and the implication for Archean crust evolution. Progress in Natural Science, 16, 663-666.

    Google Scholar

    [55] Long XP, Yuan C, Sun M, Zhao GC, Xiao WJ, Wang YJ, Yang YH, Hu AQ. 2010. Archean crustal evolution of the northern Tarim Craton, NW China: zircon U-Pb and Hf isotopic constraints. Precambrian Research, 180, 272-284.

    Google Scholar

    [56] Long XP, Yuan C, Sun M, Xiao WJ, Zhao GC, Zhou KF, Wang YJ, Hu AQ. 2011. The discovery of the oldest rocks in the Kuluketage area and its geological implications. Science in China Series D: Earth Sciences, 54, 342-348.

    Google Scholar

    [57] Lu SN. 1992. Geological evolution of Proterozoic in Kuruktage, Xinjiang. Bulletin of Tianjin Institute of Geological and Mineral Resources. v.2-27. p.179-192 (in Chinese with English Abstract).

    Google Scholar

    [58] Lu SN, Yuan GB. 2003. Geochronology of early Precambrian magmatic activities in Aketashitage, eastern AltynTagh. Acta Geologica Sinica, 77, 61-68.

    Google Scholar

    [59] Lu SN, Li HK, Zhang CL, Niu GH. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Research, 160, 94-107.

    Google Scholar

    [60] Ma MZ, Wan YS, Santosh M, Xu ZY, Xie HQ, Dong CY, Liu DY. 2012. Decoding multiple tectonothermal events in zircons from single rock samples: SHRIMP zircon U-Pb data from the late Neoarchean rocks of Daqingshan, North China Craton. Gondwana Research, 22, 810-827.

    Google Scholar

    [61] Martin H, Moyen JF, Guitreau M, Blichert-Toft J, Le Pennec JL. 2014. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos, 198-199, 1-13.

    Google Scholar

    [62] Mei HL, Yu HF, Lu SN, Li HM, Lin YX, Li Q. 1998. Archean tonalite in the Dunhuang area, Gansu Provience: Age from the U-Pb single zircon and Nd isotope. Progress in Precambrian Research, 21, 41-45.

    Google Scholar

    [63] Moyen JF. 2011. The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos, 123, 21-36.

    Google Scholar

    [64] Moyen JF, Martin H. 2012. Forty years of TTG research. Lithos, 148, 312-336.

    Google Scholar

    [65] Nutman AP, Wan YS, Du LL, Friend CRL, Dong CY, Xie HQ, Wang W, Sun HY, Liu DY. 2011. Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambrian Research, 189, 43-65.

    Google Scholar

    [66] Peng M, Wu Y, Wang J, Jiao W, Liu X, Yang S. 2009. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication. Chinese Science Bulletin, 54, 1098-1104.

    Google Scholar

    [67] Peng M, Wu Y, Gao S, Zhang H, Wang J, Liu X, Gong H, Zhou L, Hu Z, Liu Y, Yuan H. 2012. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: Constraints on petrogenesis and geologic implications. Gondwana Research, 22, 140-151.

    Google Scholar

    [68] Qiu XF, Yang HM, Lu SS, Tan JJ, Cai YX. 2015. Geochronological and geochemical study for the Paleoproterozoic A-type granite in the nucleus of the Yangtze Craton and its tectonic implication. Geoscience, 29, 884-895.

    Google Scholar

    [69] Qiu YM, Gao S, McNaughton NJ, Groves DI, Ling W. 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28, 11-14.

    Google Scholar

    [70] Shu LS, Deng XL, Zhu WB, Ma DS, Xiao WJ. 2011. Precambrian tectonic evolution of the Tarim Block, NW China: new geochronological insights from the Quruqtagh domain. Journal of Asian Earth Science, 42, 774-790.

    Google Scholar

    [71] Song B, Nutman AP, Liu DY, Wu JS. 1996. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research, 78, 79-94.

    Google Scholar

    [72] Sun M, Chen N, Zhao G, Wilde SA, Ye K, Guo J, Chen Y, Yuan C. 2008. U-Pb Zircon and Sm-Nd isotopic study of the Huangtuling granulite, Dabie-Sulu belt, China: Implication for the paleoproterozoic tectonic history of the Yangtze craton. American Journal of Science, 308, 469-483.

    Google Scholar

    [73] Taylor SR, McLennan SM. 1985. The Continental Crust: Its Composition and Evolution. Oxford, Blackwell Scientific Publications, 312.

    Google Scholar

    [74] Van Kranendonk MJ, Altermann W, Beard BL, Hoffman PF, Johnson CM, Kasting JF. 2012. A Chronostratigraphic division of The Precambrian: A Chronostratigraphic division of the Precambrian: possibilities and challenges. In: F. M. Gradstein, Ogg, JG. Schmitz M. Ogg G. (Eds.) The geologic time scale. Elsevier, 299-392.

    Google Scholar

    [75] Van Kranendonk MJ, Smithies RH, Griffin WL, Huston DL, Hickman AH, Champion DC, Anhaeusser CR, Pirajno F. 2014. Making it thick: a volcanic plateau origin of Palaeoarchean continental lithosphere of the Pilbara and Kaapvaal cratons. In: Roberts, NMW. Van Kranendonk M. Parman S. Shirey S. Clift PD (Eds.) Continent Formation Through Time. Geological Society, London, Special Publications, 389, 83-111.

    Google Scholar

    [76] Wan YS, Liu DY, Song B, Wu JS, Yang CH, Zhang ZQ, Geng YS. 2005. Geochemical and Nd isotopic compositions of 3.8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. Journal of Asian Earth Science, 24, 563-575.

    Google Scholar

    [77] Wan YS, Liu DY, Dong CY, Nutman A, Wilde SA, Wang W, Xie HQ, Yin XY, Zhou HY. 2009. The oldest rocks and zircons in China. Acta Petrologica Sinica, 25, 1973-1807.

    Google Scholar

    [78] Wan YS, Liu DY, Wang SJ, Dong CY, Yang EX, Wang W, Zhou HY, Du LL, Yin XY, Xie HQ, Ma MZ. 2010. Juvenile magmatism and crustal recycling at the end of the Neoarchean in western Shandong Province, North China Craton: Evidence from SHRIMP zircon dating. American Journal of Science, 310, 1503-1552.

    Google Scholar

    [79] Wan YS, Liu DY, Dong CY, Liu SJ, Wang SJ, Yang EX. 2011. U-Th-Pb behavior of zircons under high-grade metamorphic conditions: A case study of zircon dating of meta-diorite near Qixia, eastern Shandong. Geoscience Forntiers, 2, 137-146.

    Google Scholar

    [80] Wan YS, Liu DY, Nutman A, Zhou HY, Dong CY, Yin XY, Ma MZ. 2012a. Multiple 3.8-3.1 Ga tectono-magmatic events in a newly discovered area of ancient rocks (the Shengousi Complex), Anshan, North China Craton. Journal of Asian Earth Sciences, 54-55, 18-30.

    Google Scholar

    [81] Wan YS, Wang SJ, Liu DY, Wang W, Kröner A, Dong CY, Yang EX, Zhou HY, Xie HQ, Ma MZ. 2012b. Redefinition of depositional ages of Neoarchean supracrustal rocks in western Shandong Province, China: SHRIMP U-Pb zircon dating. Gondwana Research, 21, 768-784.

    Google Scholar

    [82] Wan YS, Dong CY, Xie HQ, Wang SJ, Song MC, Xu ZY, Wang SY, Zhou HY, Ma MZ, Liu DY. 2012c. Formation ages of early Precambrian BIFs in North China Craton: SHRIMP zircon U-Pb dating. Acta Geologica Sinica, 86(9), 1447-1478.

    Google Scholar

    [83] Wan YS, Dong CY, Liu YD, Kröner A, Yang CH, Wang W, Du LL, Xie HQ, Ma MZ. 2012d. Zircon ages and geochemistry of late Neoarchean syenogranites in the North China Craton: A review. Precambrian Research, 222-223, 265-289.

    Google Scholar

    [84] Wan YS, Xie SW, Yang CH, Kröner K, Ma MZ, Dong CY, Du LL, Xie HQ, Liu DY. 2014. Early Neoarchean (~2.7 Ga) tectono-thermal events in the North China Craton: A synthesis. Precambrian Research, 247, 45-63.

    Google Scholar

    [85] Wan YS, Ma MZ, Dong CY, Xie HQ, Xie SW, Ren P, Liu DY. 2015b. Widespread late Neoarchean reworking of Meso- to Paleoarchean continental crust in the Anshan-Benxi area, North China Craton, as documented by U-Pb-Nd-Hf-O isotopes. American Journal of Science, 315, 620-670.

    Google Scholar

    [86] Wan YS, Liu DY, Dong CY, Xie HQ, Kröner A, Ma MZ, Liu SJ, Xie SW, Ren P. 2015a. Formation and evolution of Archean continental crust of the North China Craton. In: Zhai, MG (Ed.) Precambrian Geology of China. Springer. 59-136.

    Google Scholar

    [87] Wan YS, Liu DY, Xie HQ, Kröner A, Ren P, Liu SJ, Xie SW, Dong CY, Ma MZ. 2016a. Formation ages and environments of Early Precambrian banded iron formation in the North China Craton. In: Zhai, MG (Ed.) Main Tectonic Events and Metallogeny of the North China Craton. Springer. 65-83.

    Google Scholar

    [88] Wan YS, Liu SJ, Kröner A, Dong CY, Xie HQ, Xie SW, Bai WQ, Ren P, Ma MZ, Liu DY. 2016b. Eastern Ancient Terrane of the North China Craton. Acta Geologica Sinica, 90, 1801-1840.

    Google Scholar

    [89] Wan YS, Dong CY, Ren P, Bai WQ, Xie HQ, Liu SJ, Xie SW, Liu DY. 2017. Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton: A synthesis. Acta Petrologica Sinica, 33, 1405-1419.

    Google Scholar

    [90] Wan YS. 2018. Huge growth of the North China Craton during the Neoarchean. In: Zhai MG (Ed.) Precambrian Geology and Metallogeny of China. Beijing. Science press (in Chinese) (in press).

    Google Scholar

    [91] Wan YS, Xie HQ, Dong CY, Kröner A, Wilde S, Bai WQ, Liu SJ, Xie SW, Ma MZ, Li Y, Liu DY. 2018. Hadean to Paleoarchean rocks and zircons in China. In: Van Kranendonk, MJ. Smithies RH. Bennett V (Eds.) Earth’s oldest Rocks (version 2) (in press).

    Google Scholar

    [92] Wang HL, Xu XY, Chen JL, Yan Z, Li T, Zhu T. 2011. Constraints from Zircon U-Pb Chronology of Yudongzi Group Magnetite-Quartzite in the Lueyang Area, Southern Qinling, China. Acta Geologica Sinica, 85, 1284-1290.

    Google Scholar

    [93] Wang Z, Wang J, Du Q, Deng Q, Yang F, Wu H. 2013a. Mature Archean continental crust in the Yangtze craton: Evidence from petrology, geochronology and geochemistry. Chinese Science Bulletin, 58, 2360-2369.

    Google Scholar

    [94] Wang Z, Wang J, Du Q, Deng Q, Yang F. 2013b. The evolution of the Central Yangtze Block during early Neoarchean time: Evidences from Geochronology and Geochemistry. Journal of Asian Earth Sciences, 77, 31-44.

    Google Scholar

    [95] Wang HC, Kang JL, Ren YW, Chu H, Lu SN, Xiao ZB. 2015a. Identification of ~2.7 Ga BIF in the North China Craton: Evidence from geochronology of iron-bearing formation in the Laizhou-Changyi area, Jiaobei terrane. Acta Petrologica Sinica, 31, 2991-3011.

    Google Scholar

    [96] Wang YF, Li XH, Jin W, Zhang JH. 2015b. Eoarchean ultra-depleted mantle domains inferred from ca. 3.81 Ga Anshan trondhjemitic gneisses, North China Craton. Precambrian Research, 263, 88-107.

    Google Scholar

    [97] Wei JQ, Wang JX, Wang XD, Shan MY, Guo HM. 2009. Dating of mafic dikes from Kongling Group in Huangling area and its implications. Journal of Northwest University (Natural Science Edition), 39, 466-471.

    Google Scholar

    [98] Wei JQ, Wang JX. 2012. Zircon Age and Hf isotope compositions of amphibolite enclaves from the Kongling Complex. Geological Journal of China Universities, 18, 589-600.

    Google Scholar

    [99] Wei JQ.,Jing MM. 2013. Chronology and geochemistry of amphibolites from the Kongling complex. Chinese Journal of Geology, 48, 970-983.

    Google Scholar

    [100] Wilde SA, Cawood PA, Wang KY, Nemchin AA. 2005. Granitoid evolution in the Late Archean Wutai Complex, North China Craton. Journal of Asian Earth Science, 24, 597-613.

    Google Scholar

    [101] Wilde SA, Valley JW, Kita NT, Cavosie AJ, Liu DY. 2008. SHRIMP U-Pb and CAMECA 1280 Oxygen isotope results from ancient detrital zircons in the Caozhuang Quartzite, Eastern Hebei, North China Craton: evidence for crustal reworking 3.8 Ga ago. American Journal of Science, 308, 185-199.

    Google Scholar

    [102] Wu Y, Zhou G, Gao S, Liu X, Qin Z, Wang H, Yang J, Yang S. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs. Precambrian Research, 254, 73-86.

    Google Scholar

    [103] Wu FY, Yang JH, Liu XM, Li TS, Xie LW, Yang YH. 2005. Hf isotopes of the 3.8 Ga zircons in eastern Hebei Province, China: implications for early crustal evolution of the North China Craton. Chinese Science Bulletin, 50, 2473-2480.

    Google Scholar

    [104] Wu FY, Zhang YB, Yang JH, Xie LW, Yang YH. 2008b. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research, 167, 339-362.

    Google Scholar

    [105] Wu JS, Geng YS, Shen QH, Wan YS, Liu DY, Song B. 1998. Archaean geology characteristics and tectonic evolution of China-Korea Paleo-continent. Geological Publishing House, Beijing. p. 1-212 (in Chinese).

    Google Scholar

    [106] Wu YB, Chen DG, Xia QK, Deloule E, Cheng H. 2002. SIMS U-Pb dating of zircons in granulite of Huangtuling from Northern Dabieshan. Acta Petrologica Sinica, 18, 378-382.

    Google Scholar

    [107] Wu YB, Gao S, Gong HJ, Xiang H, Jiao WF, Yang SH, Liu YS, Yuan HL. 2009. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: refining the timing of Palaeoproterozoic high-grade metamorphism. Journal of Metamorphic Geology, 27, 461-477.

    Google Scholar

    [108] Wu YB, Zheng YF, Gao S, Jiao WF, Liu YS. 2008a. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos, 101, 308-322.

    Google Scholar

    [109] Xie SW, Xie HQ, Wang SJ, Kröner A, Liu SJ, Zhou HY, Ma MZ, Dong CY, Liu DY, Wan YS. 2014. Ca. 2.9 Ga granitoid magmatism in eastern Shandong, North China Craton: Zircon dating, Hf-in-zircon isotopic analysis and whole-rock geochemistry. Precambrian Research, 255, 538-562.

    Google Scholar

    [110] Xin HT, Liu YS, Luo ZH, Song SC, Wang SQ. 2013. The growth of Archean continental crust in the Aqtashtagh area of southeast Tarim, China: constraints from petrochemistry and chronology of the Milan Group and TTG gneiss. Earth Science Frontier, 20, 240-259.

    Google Scholar

    [111] Xiong Q, Zheng J, Yu C, Su Y, Tang H, Zhang Z. 2009. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: signification for the Yangtze continental cratonization in Paleoproterozoic. Chinese Science Bulletin, 54, 436-446.

    Google Scholar

    [112] Yang C, Wei CJ. 2017. Two phases of granulite facies metamorphism during the Neoarchean and Paleoproterozoic in the East Hebei, North China Craton: Records from mafic granulites. Precambrian Research, 301, 49-64.

    Google Scholar

    [113] Yang JH, Wu FY, Wilde SA, Zhao GC. 2008. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: geochronological, geochemical and Nd-Hf isotopic evidence. Precambrian Research, 167, 125-149.

    Google Scholar

    [114] Yin C, Lin S, Davis DW, Zhao G, Xiao W, Li L, He Y. 2013. 2.1-1.85 Ga tectonic events in the Yangtze Block, South China: Petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia. Lithos, 182-183, 200-210.

    Google Scholar

    [115] Zhai MG, Santosh M. 2011. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20, 6-25.

    Google Scholar

    [116] Zhai MG, Zhou YY. 2015. General Precambrian geology in China. In: Zhai, MG (Ed.) Precambrian geology of China. Springer, 3-56.

    Google Scholar

    [117] Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S, Wu FY. 2006a. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China. Precambrian Research, 146, 16-34.

    Google Scholar

    [118] Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S, Wu FY. 2006b. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research, 151, 265-288.

    Google Scholar

    [119] Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S, Wu FY. 2006c. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters, 252, 56-71.

    Google Scholar

    [120] Zhang X, Xu XY, Song GS, Chen JL, Li T. 2010. Zircon LA-ICP-MS U-Pb dating and significance of Yudongzi Group deformation granite from Lueyang area, western Qinling, China. Geological Bulletin of China, 29, 510-517.

    Google Scholar

    [121] Zhang SG, Zhang ZQ, Song B, Tang SH, Zhao ZR, Wang JH. 2004. On the Existence of Neoarchean Materials in the Douling Complex, Eastern Qinling: Evidence from U-Pb SHRIMP and Sm-Nd Geochronology. Acta Geologica Sinica, 78, 800-806.

    Google Scholar

    [122] Zhang LC, Zhai MG, Wan YS, Guo JH, Dai YP, Wang CL, Liu L. 2012. Study of the Precambrian BIF-iron deposits in the North China Craton: Progresses and problems. Acta Petrologica Sinica, 28, 3431-3445.

    Google Scholar

    [123] Zhang ZQ, Zhang GW, Tang SH, Wang JH. 2001. On the Age of Metamorphic Rocks of the Yudongzi Group and the Archean Crystalline Basement of the Qinling Orogen. Acta Geologica Sinica, 75, 198-204.

    Google Scholar

    [124] Zhang CL, Li HK, Santosh M, Li ZX, Zou HB, Wang HY, Ye HM. 2012. Precambrian evolution and cratonization of the Tarim Block, NW China: petrology, geochemistry, Nd-isotopes and U-Pb zircon geochronology from Archaean gabbro-TTG-potassic granite suite and Paleoproterozoic metamorphic belt. Journal of Asian Earth Sciences, 47, 5-20.

    Google Scholar

    [125] Zhang JX, Yu SY, Gong JH, Li HK, Hou KJ. 2013. The latest Neoarchean-Paleoproterozoic evolution of the Dunhuang block, eastern Tarim craton, northwestern China: evidence from zircon U-Pb dating and Hf isotopic analyses. Precambrian Research, 226, 21-42.

    Google Scholar

    [126] Zhao G, Cawood PA. 2012. Precambrian geology of China. Precambrian Research, 222-223, 13-54.

    Google Scholar

    [127] Zhao GC, Wilde SA, Cawood PA, Lu LZ. 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China Carton and its bearing on tectonic setting. International Geology Review, 40, 706-721.

    Google Scholar

    [128] Zhao GC, Sun M, Wilde SA, Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambr Research, 136, 177-202.

    Google Scholar

    [129] Zhao GC, Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research, 23, 1207-1240.

    Google Scholar

    [130] Zhao Y, Diwu CR, Sun Y, Zhu T, Wang H. 2013. Zircon geochronology and Lu-Hf isotope compositions for Precambrian rocks of the Dunhuang complex in the Shuixiakou area, Gansu Province. Acta Petrologica Sinica, 29, 1698-1712.

    Google Scholar

    [131] Zheng J, Griffin WL, O'Reilly SY, Zhang M, Pearson N, Pan Y. 2006. Widespread Archean basement beneath the Yangtze craton. Geology, 34, 417-420.

    Google Scholar

    [132] Zheng JP, Griffin WL, O'Reilly SY, Lu FX, Wang CY, Zhang M, Wang FZ, Li HM. 2004. 3.6 Ga lower crust in central China: new evidence on the assembly of the NCC. Geology, 32, 229-232.

    Google Scholar

    [133] Zhou G, Wu Y, Gao S, Yang J, Zheng J, Qin Z, Wang H, Yang S. 2015. The 2.65 Ga A-type granite in the northeastern Yangtze craton: Petrogenesis and geological implications. Precambrian Research, 258, 247-259.

    Google Scholar

    [134] Zong KQ, Liu YS, Zhang ZM, He ZY, Hu ZC, Guo JL, Chen K. 2013. The generation and evolution of Archean continental crust in the Dunhuang block, northeastern Tarim craton, northwestern China. Precambrian Research, 235, 251-263.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(20)

Tables(2)

Article Metrics

Article views(3861) PDF downloads(26) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint