2018 Vol. 1, No. 1
Article Contents

Tao Wang, Ying Tong, Xiao-xia Wang, Jian-ren Mao, Hong-rui Zhang, He Huang, Shan Li, Lei Guo, Jian-jun Zhang, 2018. Some progress on understanding the Phanerozoic granitoids in China, China Geology, 1, 84-108. doi: 10.31035/cg2018010
Citation: Tao Wang, Ying Tong, Xiao-xia Wang, Jian-ren Mao, Hong-rui Zhang, He Huang, Shan Li, Lei Guo, Jian-jun Zhang, 2018. Some progress on understanding the Phanerozoic granitoids in China, China Geology, 1, 84-108. doi: 10.31035/cg2018010

Some progress on understanding the Phanerozoic granitoids in China

More Information
  • There are large volumes of the Phanerozoic granitoid rocks in China and neighboring areas. In recent years, numerous new and precise U-Pb zircon ages have been published for these granitoids, and define many important magmatic events, such as ca. 500 Ma granitoid events in the West Junggar, Altai orogens in the NW China, and Qinling orogen in the central China. These ages accurately constrain the time of important Early Paleozoic, Late Paleozoic, Early Mesozoic and Late Mesozoic magmatic events of the northern, central, western, southern and eastern orogenic Mountains in China. There occur various types of granitoids in China, such as calc-alkaline granite, alkali granite, highly-fractionated granite, leucogranite, adakite, and rapakivi granite. Rapakivi granites are not only typical Proterozoic as in the North China Craton, but were also emplaced during Paleozoic and Mesozoic in the Kunlun-Qinling orogen, a part of the China Central Orogenic Belt (CCOB). Nd-Hf isotopic tracing and mapping show that granitoids in the southern Central Asian Orogenic Belt (CAOB) in China (or the Northern China Orogenic Belt) are characterized predominantly by juvenile sources.The juvenile crust in this orogenic domain accounts for over 50% by area, distinguishing it from other orogenic belts in the world, and those in central (e.g., Qinling), southwestern and eastern China. Based on a large amount of new age data, a preliminary granitoid and granitoid-tectonic maps of China have been preliminarily compiled, and an evolutionary framework of Phanerozoic granitoids in China and neighboring areas has been established from the view of assembly and breakup of continental blocks. Research ideas on granitoid tectonics has also been proposed and discussed.

  • 加载中
  • [1] Booth AL, Zeitler PK, Kidd WSF, Wooden J, Liu YP, Idleman B, Hren M, Chamberlain CP. 2004. U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa Area. American Journal of Science, 304(10), 889-929.

    Google Scholar

    [2] Breiter K, Gardenová N, Kanický V, Vaculovič T. 2013. Gallium and germanium geochemistry during magmatic fractionation and post-magmatic alteration in different types of granitoids: A case study from the Bohemian Massif (Czech Republic). Geologica Carpathica, 64(3), 171-180.

    Google Scholar

    [3] Cao LT, Tang HY, Zheng JP, Ren HW, Yu CM, Xu Z, He S. 2017. Petrogenesis of the Early Cretaceous Laojunshan monzogranite at the southern margin of the North China Craton: Constrains on the transition of the tectonic regime. Acta Geologica Sinica(English Edition), 41(1), 91-94.

    Google Scholar

    [4] Chen B, Jahn BM, Suzuki K. 2013. Petrological and Nd-Sr-Os isotopic constraints on the origin of high-mg adakitic rocks from the north china craton: tectonic implications. Geology, 41(1), 91-94.

    Google Scholar

    [5] Chen B, Jahn BM. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd–Sr isotope and trace element evidence. Journal of Asian Earth Sciences, 23(5), 691-703.

    Google Scholar

    [6] Chen B, Ma X, Wang Z. 2014. Origin of the florine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization. Journal of Asian Earth Sciences, 93(1), 301-314.

    Google Scholar

    [7] Chen CH, Hsieh PS, Lee CH, Zhou HW. 2011. Two episodes of the Indosinian thermal event on the South China Block: Constraints from LA-ICPMS U-Pb zircon and electron microprobe monazite ages of the Darongshan S-type granitic suite. Gondwana Research, 19(4), 1008-1023.

    Google Scholar

    [8] Chen CH, Hsieh PS, Lee CH, Zhou HW. 2010. Zircon LA-ICPMS U-Pb ages and Hf isotopes of Huayu (Penghu Islands) volcanic in the Taiwan Strait and tectonic implication. Journal of Asian Earth Sciences, 37(1), 17-30.

    Google Scholar

    [9] Chen J, Lu JJ, Chen WF, Wang RC, Ma DS, Zhu JC, Zhang WL, Ji JF. 2008. W-Sn-Nb-Ta-Bearing granites in the Nanling Range and their relationship to Metallogengesis. Geological Journal of China Universities, 14(4), 459-473.

    Google Scholar

    [10] Chen JF, Han BF, Ji JQ, Zhang L, Z, He GQ, Wang T. 2010. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. Lithos, 115(1-4), 137-152.

    Google Scholar

    [11] Chen Q, Sun M, Zhao G, Yang F, Long X, Li J, Wang J, Yu Y. 2017. Origin of the mafic microgranular enclaves (MMEs) and their host granitoids from the Tagong pluton in Songpan-Ganze terrane: An igneous response to the closure of the Paleo-Tethys ocean. Lithos, 290-291, 1-17.

    Google Scholar

    [12] Chiu HY, Chung SL, Wu FY, Liu D, Liang YH, Lin I. 2009. Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477(1), 3-19.

    Google Scholar

    [13] Chu MF, Chung SL, Song B, Liu D, O'Reilly SY, Pearson NJ, Ji J, Wen DJ. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9), 745-748.

    Google Scholar

    [14] Chung SL, Chu MF, Zhang Y, Xie Y, Lo CH, Lee TY, Lan CY, Li X, Zhang Q, Wang Y. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4), 173-196.

    Google Scholar

    [15] Chung SL, Liu D, Ji J, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11), 1021-1024.

    Google Scholar

    [16] Dan W, Li XH, Wang Q, Tang GJ, Liu Y. 2014. An Early Permian (ca. 280 Ma) silicic igneous province in the Alxa Block, NW China: A magmatic flare-up triggered by a mantle-plume? Lithos, 204(3), 144-158.

    Google Scholar

    [17] Deng JF, Feng YF, Di YJ. 2016. Intrusive Tectonic Map of China (1:2 500 000). Beijing, Geological Publishing House(in Chinese).

    Google Scholar

    [18] Ding L, Yang D, Cai FL, Pullen A, Kapp P, Gehrels GE, Zhang LY, Zhang QH, Lai QZ, Yue YH, Shi RD. 2013. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. Tectonics, 32, 1-15.

    Google Scholar

    [19] Feng Z, Wang C, Zhang M, Liang J. 2012. Unusually dumbbell-shaped Guposhan-Huashan twin granite plutons in Nanling Range of south China: Discussion on their incremental emplacement and growth mechanism. Journal of Asian Earth Sciences, 48(6), 9-23.

    Google Scholar

    [20] Gao LE, Zeng LS, Asimow PD. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, 45(1), 39-42.

    Google Scholar

    [21] Ge WC, Chen JS, Yang H, Zhao GC, Zhang YL, Tian DX. 2015. Tectonic implications of new zircon U-Pb ages for the Xinghuadukou complex, Erguna massif, northern Great Xing'an Range, NE China. Journal of Asian Earth Sciences, 106, 169-185.

    Google Scholar

    [22] Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ. 2004. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today, 14(4), 4-11.

    Google Scholar

    [23] Haapala I, Rämö OT. 1999. Rapakivi granites and related rocks: an introduction. Precambrian Research, 95(1-2), 1-7.

    Google Scholar

    [24] Han BF, He GQ, Wang XC, Guo ZJ. 2011. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China. Earth-Science Reviews, 109(3-4), 74-93.

    Google Scholar

    [25] Han BF, Ji JQ, Song B, Chen LH, Zhang L. 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I): timing of post collisional plutonism. Acta Petrologica Sinica, 22(5), 1077-1086.

    Google Scholar

    [26] Han BF, Wang SG, Jahn BM, Hong DW, Kagami H, Sun YL. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd–Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology, 138(3-4), 135-159.

    Google Scholar

    [27] Han BF, Xu Z, Ren R, Li LL, Yang JH, Yang YH. 2012. Crustal growth and intracrustal recycling in the middle segment of the Trans-North China Orogen, North China Craton: a case study of the Fuping complex. Geological Magazine, 149(4), 729-742.

    Google Scholar

    [28] He B, Xu YG, Paterson S. 2009. Magmatic diapirism of the Fangshan pluton, southwest of Beijing, China. Journal of Structural Geology, 31(6), 615-626.

    Google Scholar

    [29] Hong DW, Wang SG, Han BF, Jin MY. 1994. The Permian alkaline granites in Central Inner Mongolia and their geodynamic significance. Journal of Southeast Asian Earth Sciences, 10(3-4), 169-176.

    Google Scholar

    [30] Hong DW, Wang SG, Xie XL, Zhang JS, Wang T. 2004. Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Blet. Journal of Asian Earth Sciences, 23(5), 799-813.

    Google Scholar

    [31] Hong DW, Wang T, Tong Y. 2007. An outline about granitoids in China. Geological Review, 53, 9-16(in Chinese with English abstract).

    Google Scholar

    [32] Hou ZQ, Duan LF, Lu YJ, Zheng YC, Zhu DC, Yang ZS, Yang ZM, Wang BD, Pei YG, Zhao ZD. 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110, 1541-1575.

    Google Scholar

    [33] Hou ZQ, Zhang HR, Pan XF, Yang ZM. 2011. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews, 39(1-2), 21-45.

    Google Scholar

    [34] Hu DG, Wu ZH, Jiang W, Shi YR, Ye PS, Liu QS. 2005. SHRIMP zircon U-Pb age and isotopic study on the Nyainqentanglha Group in Tibet. Science China (Series D), 48(9), 1377-1386.

    Google Scholar

    [35] Hu PY, Li C, Li J, Wang M, Xie CM, Wu YW. 2014. Zircon U-Pb-Hf isotopes and whole-rock geochemistry of gneissic granites from the Jitang complex in Leiwuqi area, eastern Tibet, China: Record of the closure of the Paleo-Tethys Ocean. Tectonophysics, 623(7), 83-99.

    Google Scholar

    [36] Hua RM, Mao JW. 1999. A preliminary discussion on the Mesozoic metallogenic explosion in eastern China. Mineral Deposits, 18(4), 300-308.

    Google Scholar

    [37] Huang H, Zhang ZC, Santosh M, Zhang DY, Wang T. 2015. Petrogenesis of the Early Permian volcanic rocks in the Chinese South Tianshan: Implications for crustal growth in the Central Asian Orogenic Belt. Lithos, 228-229, 23-42.

    Google Scholar

    [38] Jahn BM, Capdevila R, Liu D, Vernon A, Badarch G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, 23(5), 629-653.

    Google Scholar

    [39] Jahn BM, Wu FY, Capdevila R, Martineau F, Zhao ZH, Wang YX. 2001. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing’an Mountainsin NE China. Lithos, 59(4), 171-198.

    Google Scholar

    [40] Jahn BM, Wu FY, Chen B. 2000a. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh Earth Sciences, 91(1-2), 181-193.

    Google Scholar

    [41] Jahn BM, Wu FY, Chen B. 2000b. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2), 82-92.

    Google Scholar

    [42] Xu JF, Wu JB, Wang Q, Chen JL, Cao K. 2014. Research advances of adakites and adakitic rocks in China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1), 6-13.

    Google Scholar

    [43] Ji WQ, Wu FY, Chung SL, Li JX, Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4), 229-245.

    Google Scholar

    [44] Jiang YH, Wang GC. 2016. Petrogenesis and geodynamics of Late Mesozoic granitoids in SE China: tectonic model involving repeated slab-advance-retreat of the Paleo-Pacific plate. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6), 1073-1081.

    Google Scholar

    [45] Kang L, Xiao PX, Gao XF, Xi RG, Yang ZC. 2016. Early Paleozoic magmatism and collision orogenic process of the South Altyn. Acta Geological Sinica, 90(10), 2527-2550.

    Google Scholar

    [46] Kröner A, Kovach V, Alexeiev D, Wang KL, Wong J, Degtyarev K, Kozakov I. 2017. No excessive crustal growth in the Central Asian Orogenic Belt: Further evidence from field relationships and isotopic data. Gondwana Research, 8(3), 503-504.

    Google Scholar

    [47] Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hoffmann JE, Wong J, Sun M, Cai K, Wang T, Tong Y, Wilde SA, Degtyarev KE, Rytsk E. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research, 25(1), 103-125.

    Google Scholar

    [48] Li GM, Li JX, Zhao JX, Qin KZ, Cao MJ, Evans NJ. 2015. 2015. Petrogenesis and tectonic setting of Triassic granitoids in the Qiangtang terrane, central Tibet: Evidence from U-Pb ages, petrochemistry and Sr-Nd-Hf isotopes. Journal of Asian Earth Sciences, 105, 443-455.

    Google Scholar

    [49] Li JH, Zhang YQ, Dong SW, Stephen J. 2014. Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth-Science Reviews, 134(1), 98-136.

    Google Scholar

    [50] Li S, Chung SL, Wilde SA, Wang T, Xiao WJ, Guo QQ. 2016. 2016. Linking magmatism with collision in an accretionary orogen. Scientific Reports, 6, 25751.

    Google Scholar

    [51] Li S, Wang T, Wilde SA, Tong Y, Hong D, Guo Q. 2012. Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China. Lithos, 134-135(2), 123-145.

    Google Scholar

    [52] Li S, Wang T, Wilde SA, Tong Y. 2013a. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Science Reviews, 126(11), 206-234.

    Google Scholar

    [53] Li S, Wilde SA, Wang T, Guo QQ. 2013b. Incremental growth and origin of the Cretaceous Renjiayingzi pluton, southern Inner Mongolia, China: Evidence from structure, geochemistry and geochronology. Journal of Asian Earth Sciences, 75(8), 226-242.

    Google Scholar

    [54] Li XH, Chen ZG, Liu DY, Li WX. 2003. Jurassic gabbro-granite-syenite suites from Southern Jiangxi province, SE China: Age, origin, and tectonic significance. International Geology Review, 45(10), 898-921.

    Google Scholar

    [55] Li XH, Li WX, Li ZX. 2007. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14), 1873-1885.

    Google Scholar

    [56] Li ZL, Chen HL, Song B, Li YQ, Yang SF, Yu X. 2011. Temporal evolution of the Permian large igneous province in Tarim Basin in northwestern China. Journal of Asian Earth Sciences, 42(5), 917-927.

    Google Scholar

    [57] Li ZL, Zhou J, Mao JR, Santosh M, Yu MG, Li YQ, Hu YZ. 2013. Zircon U-Pb geochronology and geochemistry of two episodes of granitoids from the northwestern Zhejiang Province, SE China: Implication for magmatic evolution and tectonic transition. Lithos, 179(10), 334-352.

    Google Scholar

    [58] Li ZX, Li XH. 2007. Formation of the 1300 km-wide intra-continental orogen and post-orogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2), 179-182.

    Google Scholar

    [59] Ling HF. 2011. Origin of hydrothermal fuids of granit-type uranium deposits: Constraints from redox conditions. Geological Review, 57(2), 193-206.

    Google Scholar

    [60] Liu H, Wang BD, Ma L, Gao R, Chen L, Li XB, Wang LQ. 2016. Late Triassic syn-exhumation magmatism in central Qiangtang, Tibet: Evidence from the Sangehu adakitic rocks. Journal of Asian Earth Sciences, 132, 9-24.

    Google Scholar

    [61] Liu HS. 2017. Jurassic granitic emplacement mechanism in South China and its implications for geodynamics. Doctoral Thesis of Nanjing University.

    Google Scholar

    [62] Liu S, Hu RZ, Gao S, Feng CX, Huang Z, Lai S, Yuan H, Liu X, Coulson IM, Feng G. 2009. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, western Yunnan Province, SW China. Journal of Asian Earth Sciences, 36(2-3), 168-182.

    Google Scholar

    [63] Liu ZC, Wu FY, Qiu ZL, Wang JG, Liu XC, Ji WQ, Liu CZ. 2017. Leucogranite geochronological constraints on the termination of the South Tibetan Detachment in eastern Himalaya. Tectonophysics, 721, 106-122.

    Google Scholar

    [64] Lu L, Zhang KJ, Yan LL, Jin X, Zhang YX. 2017. Was Late Triassic Tanggula granitoid (central Tibet, western China) a product of melting of underthrust Songpan-Ganzi flysch sediments? Tectonics, 36(5), 902-928.

    Google Scholar

    [65] Lu XX, Dong Y, Chang QL, Xiao QH, Li XB, Wang XX. 1996. Indosinian Shahew an rapakivi granite in Qinling and its dynamic significance. Science in China (Series D), 39(3), 266-272.

    Google Scholar

    [66] Lu XX, Wei XD, Xiao QH, Li RS, Yang YC. 1998. The discovery of rapakivi granite in the west Qinling. Geological Review, 44(5), 535-542.

    Google Scholar

    [67] Mao JR, Li ZL, Ye HM. 2014. Mesozoic tectono-magmatic activities in South China: Retrospect and prospect. Science China (Series D), 57(12), 2583-2877.

    Google Scholar

    [68] Mao JR, Takahashi Y, Kee WS, Li ZL, Ye HM, Zhao XL, Liu K, Zhou J. 2011. Characteristics and geodynamic evolution of Indosinian agmatism in South China: A case studyof the Guikeng pluton. Lithos, 127(3-4), 535-557.

    Google Scholar

    [69] Mao JR, Xing GF, Ye HM. 2013a. Cenozoic magmatism and mineralization in Southeast China and its adjacent area. Beijing, Science Press, 30-474(in Chinese).

    Google Scholar

    [70] Mao JR, Ye HM, Li ZL, Liu K, Qiu RZ, Zhao XL, Xhou J. 2013c. The magmatic activity and metallogenic records of the Late Mesozoic compressive-extensional tectonics in the Qqinhang (Eastern section). Acta Mineralogica Sinica,(Z2), 30-31.

    Google Scholar

    [71] Mao JR, Ye HM, Liu K, L ZL, Takahashi Y, Zhao XL, Kee WS. 2013b. The collision-extension event between the South China Block and the Paleo-Pacific Plate: Evidence from Indosinian alkaline rocks in Dashuang, eastern Zhejiang. Lithos, 172-173(4), 81-97.

    Google Scholar

    [72] Mao JW, Xie GQ, Guo CL, Yuan SD, Cheng YB, Chen YC. 2008. Spatial-temporal distribution of mesozoic ore deposits in south china and their metallogenic settings. Geological Journal of China Universities, 14(4), 510-526.

    Google Scholar

    [73] Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66, 1-33.

    Google Scholar

    [74] Mo XX, Dong GC, Zhao ZD, Zhou S, Wang LL, Qiu RZ, Zhang FQ. 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities, 11(3), 281-290.

    Google Scholar

    [75] Mo XX, Dong GC, Zhao ZD, Zhu DC. 2013. Tectonic-magmatic rock diagrams and specification on the Tibetan Plateau and adjacent areas(1:1500000). Beijing, Geological Publishing House(in Chinese).

    Google Scholar

    [76] Mo XX. 2011. Magmatism and evolution of the Tibetan Plateau. Geological Journal of China Universities, 17(3), 351-367.

    Google Scholar

    [77] Niu XL, Yang JS, Liu F, Zhang HY, Yang MC. 2016. Origin of Baotoudong Syenites in North China Craton: Petrological, Mineralogical and Geochemical Evidence. Science China Earth Sciences, 46(3), 95-110.

    Google Scholar

    [78] Pei RF, Mei YX, Mao JW, Li JW, Fu XJ, Gong YF, Hu RQ. 2008. Mesozoic metallogenesis in China. Geological Publishing House, Beijing.

    Google Scholar

    [79] Peng TP, Zhao GC, Fan WM, Peng BX, Mao YS. 2015. Late Triassic granitic magmatism in the Eastern Qiangtang, Eastern Tibetan Plateau: Geochronology, petrogenesis and implications for the tectonic evolution of the Paleo-Tethys. Gondwana Research, 27(4), 1494-1508.

    Google Scholar

    [80] Profeta L, Ducea MN, Chapman JB, Paterson SR, Gonzales SMH, Kirsch M, Petrescu L, DeCelles PG. 2015. Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5, 17786.

    Google Scholar

    [81] Qin Q, Huang H, Wang T, Guo RQ, Zhang ZC, Tong Y. 2016. Relationship of the Tarim Craton to the Central Asian Orogenic Belt: insights from Devonian intrusions in the northern margin of Tarim Craton, China. International Geology Review, 58(16), 2007-2028.

    Google Scholar

    [82] Rämö TO, Haapala I, Vaasjoki M, Yu JH, Fu HQ. 1995. 1700 Ma Shachang complex, northeast China: Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust. Geology, 23(9), 815-818.

    Google Scholar

    [83] Ren HD, Wang T, Zhang L, Wang XX, Huang H, Feng CY, Teschner C, Song P. 2016. Age, Sources and Tectonic Setting of the Triassic Igneous Rocks in the Elashan Mountain, Easternmost Segment of the East Kunlun Orogen. Acta Geologica Sinica (English Edition), 90(2), 801-840.

    Google Scholar

    [84] Shi XJ, Wang T, Zhang L, Castro A, Xiao XC, Tong Y, Zhang JJ, Guo L, Yang QD. 2014. Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro-granodiorite-granite intrusions in the Shalazhashan of northern Alxa: Constraints on the southernmost boundary of the Central Asian Orogenic Belt. Lithos, 208-209(1), 158-177.

    Google Scholar

    [85] Sigoyer JD, Vanderhaeghe O, Duchêne S, Billerot A. 2014. Generation and emplacement of Triassic granitoids within the Songpan Ganze accretionary-orogenic wedge in a context of slab retreat accommodated by tear faulting, Eastern Tibetan plateau, China. Journal of Asian Earth Sciences, 88(1), 192-216.

    Google Scholar

    [86] Singh B, Kumar S. 2005. Petrogenetic appraisal of early palaeozoic granitoids of Kinnaur district, higher Himachal Himalaya, India. Gondwana Research, 8(1), 67-76.

    Google Scholar

    [87] Stampfli GM, Hochard C, Verard C, Wilhenm C, Vonraumer J. 2013. The formation of Pangea. Tectonophysics, 593(3), 1-19.

    Google Scholar

    [88] Sun M, Long XP, Cai KD, Jiang YD, Wang BY, Yuan C, Xiao WJ, Wu FY. 2009. Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions. Science in China Series D: Earth Sciences, 52(9), 1345-1358.

    Google Scholar

    [89] Sun WD, Yang XY, Fan WM, Wu FY. 2013. Mesozoic large-scale magmatism and mineralization in South China: Preface. Lithos, 150(5), 1-5.

    Google Scholar

    [90] Sun Y, Ma CQ, Liu YY, Shen ZB. 2011. Geochronological and geochemical constraints on the petrogenesis of late Triassic aluminous A-type granites in southeast China. Journal of Asian Earth Sciences, 42(6), 1117-1131.

    Google Scholar

    [91] Tang J, WL, Wang F, Wang W, MJ, Zhang YH. 2014. Geochronology and geochemistry of Early-Middle Triassic magmatism in the Erguna Massif, NE China: Constraints on the tectonic evolution of the Mongol-Okhotsk Ocean. Lithos, 184-187(1), 1-16.

    Google Scholar

    [92] Tao Y, Bi XW, Li CS, Hu RZ, Li YB, Liao MY. 2014. Geochronology, petrogenesis and tectonic significance of the Jitang granitic pluton in eastern Tibet, SW China. Lithos, 184-187(1), 314-323.

    Google Scholar

    [93] Tong Y, Jahn BM, Wang T, Hong DW, Smith EI, Sun M, Gao JF, Yang QD, Huang W. 2015. Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance. Journal of Asian Earth Sciences, 97(B), 320-336.

    Google Scholar

    [94] Tong Y, Wang T, Jahn BM, Sun M, Hong DW, Gao JF. 2014. Post-accretionary Permian granitoids in the Chinese Altai orogen: geochronology, petrogenesis and tectonic implications. American Journal of Science, 314(1), 80-109.

    Google Scholar

    [95] Wan TF, Zhu H. 2007. Positions and kinematics of Chinese continental blocks in reconstruction of global Paleo-continents for Paleozoic and Triassic. Geoscience, 21(1), 1-13.

    Google Scholar

    [96] Wang N, Wu CL, Ma CQ. 2017. The Paleozoic granitic magmatism of the Eastern Altyn Tagh fault belt and its continental dynamic significance. Acta Geoscientica Sinica, 38, 33-37(in Chinese with English abstract).

    Google Scholar

    [97] Wang Q, Wyman DA, JF, Zhao ZH, Jian P, Xiong XL, Bao ZW, Li CF, Bai ZH. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 89(3-4), 424-446.

    Google Scholar

    [98] Wang Q, Zhao ZH. Jian P, Xiong XL, Bao ZW, Dai TM, Ma JL. 2005. Geochronology of Cretaceous A-type granitoids or alkaline intrusive rocks in the hinterland, South China: constraints for late-Mesozoic tectonic evolution. Acta Petrological Sinica, 21(3), 795-808.

    Google Scholar

    [99] Wang T, Guo L, Zhang L, Yang Q, Zhang J, Tong Y. 2015. Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia: implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings. Journal of Asian Earth Sciences, 97(Part B, 1), 365-392.

    Google Scholar

    [100] Wang T, Guo L, Zheng YD, Donskaya T, Gladkochub D, Zeng L, Li JB, Wang YB, Mazukabzov A. 2012. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos, 154(6), 315-345.

    Google Scholar

    [101] Wang T, Hong DW, Jahn BM, Tong Y, Wang YB, Han BF, Wang XX. 2006. Timing, petrogenesis, and setting of paleozoic synorogenic intrusions from the Altai mountains, northwest China: implications for the tectonic evolution of an accretionary orogen. The Journal of Geology, 114(6), 735-751.

    Google Scholar

    [102] Wang T, Jahn BM, Kovach VP, Tong Y, Hong DW, Han BF. 2009. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos, 110(1-4), 359-372.

    Google Scholar

    [103] Wang T, Pei XZ, Wang XX, Hu NG, Li WP, Zhang GW. 2005. Orogen-parallel westward oblique uplift of the Qinling complex in the core of the Qinling orogen (China), an example of oblique extrusion of deep-seated metamorphic rocks in a convergent orogen. Journal of Geology, 113(2), 181-200.

    Google Scholar

    [104] Wang T, Tong Y, Li S, Zhang JJ, Shi XJ, Li JY, Han BF, Hong DW. 2010. Spatial and temporal variations of granitoids in the Altay orogen and their implications for tectonic setting and crustal growth:perspectives from Chinese Altay. Acta Petrologica Et Mineralogica, 29(6), 595-618.

    Google Scholar

    [105] Wang T, Tong Y, Zhang L, Li S, Huang H, Zhang JJ, Guo L, Yang DD, Hong DW, Donskaya T. 2017a. Phanerozoic granitoids in the central and eastern parts of Central Asia and their tectonic significance. Journal of Asian Earth Sciences, 145, 368-392.

    Google Scholar

    [106] Wang T, Wang XX, Guo L, Zhang L, Tong Y, Li S, Huang H, Zhang JJ. 2017b. Granitoid and tectonics. Acta Petrologica Sinica, 33(5), 1459-1478.

    Google Scholar

    [107] Wang T, Wang XX, Li WP. 2000. Evaluation of multiple emplacement mechanisms of Huichizi granite pluton, Qinling orogenic belt, central China. Journal of Structural Geology, 22(4), 505-518.

    Google Scholar

    [108] Wang T, Zhang GW, Wang XX, Li WP. 1999. Growth patterns of granitoid plutons and their implications for tectonics, Kinematics and Ynamics: Examples from granitoid plutons in the core of the Qinling orogenic belt, China. Scientia Geologica Sinica, 34(3), 326-346.

    Google Scholar

    [109] Wang T, Zhang L, Guo L, Wang XX, Li S, Feng CY, WL, Tong Y, Zhang JJ, Zhang HR, Zhang CL, Mao JR, Yang QD. 2014. The Progress of the Preliminary Compilation of Map of Mesozoic Granitoid of Asia and the Research on Related Key Issues. Acta Geosciencentica Sinica, 35(6), 655-672.

    Google Scholar

    [110] Wang T, Zheng YD, Li TB, Gao YJ, Ma MB. 2002. Forceful emplacement of granitic plutons in an extensional tectonic setting: Syn-kinematic plutons in the Yagan-Onch Hayrhan metamorphic core complex. Acta Geological Sinica, 76(1), 81-88.

    Google Scholar

    [111] Wang XX, Hu NG, Castro A, Wang Tao, Lu XX. 2013a. Age, origin, and tectonic implications of Palaeozoic rapakivi granites in the North Qaidam orogen, Northwest China. International Geology Review, 55(9), 1087-1108.

    Google Scholar

    [112] Wang XX, Wang T, Castro A, Hu NG. 2015a. Proterozoic rapakivi granites from the North Qaidam orogen, NW China: Implications for basement attribution. Gondwana Research, 28(4), 1516-1529.

    Google Scholar

    [113] Wang XX, Wang T, Haapala I. 2008. P-T conditions of crystallization and origin of plagioclase-mantled alkali feldspar megacrysts in the Mesozoic granitoids in the Qinling orogen (China). Lithos, 103(3), 289-308.

    Google Scholar

    [114] Wang XX, Wang T, Ke CH, Yang Y, Li J, Li Y, Qi Q, Lu X. 2015b. Nd-Hf isotopic mapping of Late Mesozoic granitoids in the East Qinling orogen, central China: Constraint on the basements of terranes and distribution of Mo mineralization. Journal of Asian Earth Sciences, 103, 169-183.

    Google Scholar

    [115] Wang XX, Wang T, Lu XX, Xiao QH. 2003. Laojunshan and Qinlingliang rapakivi-textured granite plutons in North Qinling and their tectonic setting: a possible orogenic-type rapakivi granitoids. Acta Petrologica Sinica 19(4), 650-660 (in Chinese with English abstract).

    Google Scholar

    [116] Wang XX, Wang T, Zhang CL. 2013b. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process. Journal of Asian Earth Sciences, 72(4), 129-151.

    Google Scholar

    [117] Wang XX, Wang T, Lu XX,Hu NG, Xiao QH. 2016. A Unique Orogenic System with Three-Stage Rapakivi Granites in the World: Proterozoic, Palaeozoic and Mesozoic Rapakivi Granites in the China Central Orogenic System. Acta Geologica Sinica. 90(5),1909-1910

    Google Scholar

    [118] Wang Y. 2016. A discussion on some basic conceptions and problems related to the experimental study of adakite. Acta Petrologica Et Mineralogica, 35(1), 162-176.

    Google Scholar

    [119] Wang YF, Liu SA, Li SG, Akhrar SM, He YS. 2014. Zircon U-Pb ages, Hf-O isotopes and trace elements of Mesozoic high Sr/Y porphyries from Ningzhen, eastern China: Constraints on their petro-genesis, tectonic implications and Cu mineralization. Lithos, 200-201(1), 299-316.

    Google Scholar

    [120] Wu CL, Joseph LW, Paul TR, Gao YH, Wu SP, Chen QL, Frank KM, Chris M. 2009. Geochemistry and zircon SHRIMP U–Pb dating of granitoids from the west segment of the north Qaidam. Science in China, 52(11), 1771-1790.

    Google Scholar

    [121] Wu CL, Lei M, Wu D, Zhang X, Chen HJ, Li XT. 2016. Zircon U-Pb dating of Paleozoic granites from South Altun and response of the magmatic activity to the tectonic evolution of the Altun orogenic belt. Acta Geologica Sinica, 90(9), 2276-2315.

    Google Scholar

    [122] Wu CL, Yang, JS, Xu ZQ, Wooden JL, Ireland T, Li HB, Shi RD, Meng FC, Chen SY, Persing H, Meibom A. 2004. Granitic magmatism on the Early Paleozoic UHP belt of northern Qaidam, NW China. Acta Geologica Sinica, 78(5), 658-672.

    Google Scholar

    [123] Wu FY, Jahn BM, Wilde S, Sun DY. 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328(1-2), 89-113.

    Google Scholar

    [124] Wu FY, Ji WQ, Sun DH, Yang YH, Li XH. 2012. Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China. Lithos, 150(1), 6-25.

    Google Scholar

    [125] Wu FY, Li XH, Yang JH, Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6), 1217-1238.

    Google Scholar

    [126] Wu FY, Liu XC, Ji WQ, Wang JM, Yang L. 2017. Highly fractionated granites: Recognition and research. Science China Earth Sciences, 7, 1-19.

    Google Scholar

    [127] Wu FY, Liu ZZ, Liu XC, Ji WQ. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1), 1-36.

    Google Scholar

    [128] Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA, Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1), 1-30.

    Google Scholar

    [129] Wu FY, Sun DY, Jahn BM, Wilde S. 2004. A Jurassic garnet-bearing. 2004. A Jurassic garnet-bearing granitic Pluton from NE China showing tetrad REE patterns. Journal of Asian Earth Sciences, 23(5), 731-744.

    Google Scholar

    [130] Xia LQ, Xu XY, Li XM, Ma ZP, Xia ZC. 2012. Reassessment of petrogenesis of Carboniferous–Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas. Geoscience Frontiers, 3(4), 445-471.

    Google Scholar

    [131] Xia Y, Liu L, XS. 2016. Late Mesozoic A-Type granitoids in SE China and Paleo-Pacific plate subduction and slab rollback. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6), 1109-1119.

    Google Scholar

    [132] Xiao QH, Lu XX, Wang F, Sun YG, Yu XD, Xing ZY. 2003. Age of Yingfeng rapakivi granite pluton on the north flank of Qaidam and its geological significance. Science in China (Series D), 33(12), 1193-1200.

    Google Scholar

    [133] Xiao QH, Wang T, Deng JF, Mo XX, Lu XX, Hong DW, Xie CF, Luo ZH, Qiu RZ, Wang XX. 2009. Granitoids and continent growth of key orogene in China. Beijing, Geological Publishing House, 1-528(in Chinese).

    Google Scholar

    [134] Xu B, Charvet J, Chen Y, Zhao P, Shi GZ. 2013b. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4), 1342-1364.

    Google Scholar

    [135] Xu T, Chen QM, Guo QM, Zhang SH, Mao YL, Wang Q. 2017. Age and geochemical features of the Early devonian Xiangquan A-type syenogranites from Baoji area at the conjunction of Qinling and Qilian Orogen and their tectonic significance. Geological Bulletin of China, 36(7), 1118-1128.

    Google Scholar

    [136] Xu WL, Pei FP, Wang F, Meng E., Ji WQ, Yang DB, Wang W. 2013. Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic systems. Journal of Asian Earth Sciences, 74, 167-193.

    Google Scholar

    [137] Xu XS. 2008. Several problems worthy to be noticed in the research of granites and volcanic rocks in SE China. Geological Journal of China Universities, 14(3), 283-294.

    Google Scholar

    [138] Xu YG, Wei X, Luo ZY, Liu HQ, Cao J. 2014. The early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos, 204(3), 20-35.

    Google Scholar

    [139] Yan GX, Mu BL, BL, He GQ, Tan LK, Zhao H, He ZF, Zhang RG, Qiao GS. 2000. Geochronology and Sr, Nd, Pb isotopic characterist of alkaline intrusives from Yanliao-Yinshan. Science in China (Series D), 30(4), 383-387.

    Google Scholar

    [140] Yang JH, Chung SL, Wilde SA, Wu FY, Chu MF, Lo CH, Fan HR. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 214, 99-125.

    Google Scholar

    [141] Yang QD, Wang T, Guo L, Tong Y, Zhang L, Zhang JJ, Hou ZQ. 2017. Nd isotopic variation of Paleozoic-Mesozoic granitoids in the Da Hinggan Moutains and adjacent areas, NE Asia: impplications for the architecture and growth of continental crust. Lithos, 272-273, 164-184.

    Google Scholar

    [142] Yang TN, Hou ZQ, Wang Y, Zhang HR, Wang ZL. 2012. Late Paleozoic to Early Mesozoic tectonic evolution of northeast Tibet. Tectonics, 31, TC4004.http://dx.doi.org/10.1029/2011TC003044.

    Google Scholar

    [143] Yang TN, Zhang HR, Liu YC, Wang ZL, Song YC, Yang ZS, Tian SY, Xie HQ, Hou KJ. 2011. Permo-Triassic arc magmatism in central Tibet: Evidence from zircon U-Pb geochronology, Hf isotopes, rare earth elements, and bulk geochemistry. Chemical Geology, 284(3), 270-282.

    Google Scholar

    [144] Yang WB, Niu HC, Shan Q, Sun WD, Zhang H, Li NB, Jiang YH, Yu XY. 2014. Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr-REE-Nb mineralization. Mineralium Deposita, 49(4), 451-470.

    Google Scholar

    [145] Ye HM, Mao JR, Zhao XL, Liu K, Chen DD. 2013. Revisiting to the Early Yanshanian (190~170 Ma) igneous activity in Nanling Mountains, South China: Geochemistry and geodynamic implications. Journal of Asian Earth Sciences, 72, 108-117.

    Google Scholar

    [146] Yin R, Wang RC, Zhang AC, Hu H, Zhu JC, Rao C, Zhang H. 2013. Extreme fractionation from zircon to hafnon in the Koktokay No. 1 granitic pegmatite, Altai, northwestern China. American Mineralogist, 98(10), 1714-1724.

    Google Scholar

    [147] Yu JH, Fu HQ, Zhang FL, Wan FX. Ilmari H, Tapanio R, Matti V. 1996. Anorogenic rapakivi granite and related rocks in the Northern part of North China Craton. Beijing, China Science and Technology Press(in Chinese).

    Google Scholar

    [148] Yuan C, Zhou MF, Sun M, Zhao Y, Wilde S, Long X, Yan D. 2010. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters, 290(3-4), 481-492.

    Google Scholar

    [149] Zeng LS, Gao LE. 2017. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt. Acta Petrologica Sinica, 33(5), 1420-1444.

    Google Scholar

    [150] Zeng LS, Liu J, Gao LE, Xie KJ, Wen L. 2009. Early Oligocene anatexis in the Yardoi gneiss dome, southern Tibet and geological implications. Chinese Science Bulletin, 54(3), 373-381.

    Google Scholar

    [151] Zhai MG, Zhang YB, Zhang XH, Wu FY, Peng P, Li QL, Hou QL, Li TS, Zhao L. 2016. Renewed profile of the Mesozoic magmatism in Korean Peninsula: Regional correlation and broader implication for cratonic destruction in the North China Craton. Science China Earth Sciences, 59(12), 2355-2388.

    Google Scholar

    [152] Zhang HF, Parrish R, Zhang L, WC, Yuan HL, Gao S, Crowley QG. 2007a. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination. Lithos, 97(3-4), 323-335.

    Google Scholar

    [153] Zhang HF, WC, Guo JQ, Zong KQ, Cai HM, Yuan HL. 2007b. Indosinian orogenesis of the Gangdise Terrane: Evidences from Zircon U-Pb Dating and petrogenesis of granitoids. Earth Science (Journal of China University of Geosciences), 32(2), 155-166.

    Google Scholar

    [154] Zhang HR, Hou ZQ, Yang TN, Song YC, Li Z, Wang ZL, Wang XH, Wang YK, Liu Q. 2010. Subduction-related quartz syenite porphyries in the eastern Qiangtang Terrane, Qinghai-Xizang Plateau: Constraints from geochemical analyses. Geological Review, 56(3), 403-412.

    Google Scholar

    [155] Zhang HR, Yang TN, Hou ZQ, Dai MN, Hou KJ. 2017. Permian back-arc basin basalts in the Yushu area: New constrain on the Paleo-Tethyan evolution of the north-central Tibet. Lithos, 286-287, 216-226.

    Google Scholar

    [156] Zhang HR, Yang TN, Hou ZQ, Jia JW, Hu MD, Fan JW, Dai MN, Hou KJ. 2015. Paleocene adakitic porphyry in the northern Qiangtang area, north-central Tibet: Evidence for early uplift of the Tibetan Plateau. Lithos, 212-215, 45-58.

    Google Scholar

    [157] Zhang HR, Yang TN, Hou ZQ, Song YC, Cheng XF, Ding Y, Chen W, Hou KJ. 2013a. Chronology and geochemistry of mylonitic quartz diorites in the Yushu mélange, central Tibet. Acta Petrologica Sinica, 29(11), 3871-3882.

    Google Scholar

    [158] Zhang HR, Yang TN, Hou ZQ, Song YC, Ding Y, Cheng XF. 2013b. Petrogenesis and tectonics of late Permian felsic volcanic rocks, eastern Qiangtang block, north-central Tibet: Sr and Nd isotopic evidence. International Geology Review, 55(8), 1017-1028.

    Google Scholar

    [159] Zhang JJ, Santosh M, Wang XX, Guo L, Yang XY, Zhang B. 2012. Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Research, 21(4), 939-960.

    Google Scholar

    [160] Zhang JJ, Wang T, Antonio C, Zhang L, Shi XJ, Tong Y, Guo L, Zhang ZC, Yang QD, Linda MI. 2016. Multiple Mixing and Hybridization from Magma Source to Final Emplacement in the Permian Yamatu Pluton, the Northern Alxa Block, China. Journal of Petrology, 57, 933-980.

    Google Scholar

    [161] Zhang JJ, Wang T, Zhang L, Tong Y, Zhang ZC, Shi XJ, Guo L, Huang H, Yang QD, Wei H, Zhao JX, Ye K, Hou JY. 2015. Tracking deep crust by zircon xenocrysts within igneous rocks from the northern Alxa, China: Constraints on the southern boundary of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 108, 150-169.

    Google Scholar

    [162] Zhang LY, Ding L, Pullen A, Q, Liu DL, Cai FL, Yue YH, Lai QZ, Shi RD, Ducea MN, Kapp P, Chapman A. 2014. Age and geochemistry of western Hoh-Xil-Songpan-Ganzi granitoids, northern Tibet: implications for the Mesozoic closure of the Paleo-Tethys ocean. Lithos, 190-191, 328-348.

    Google Scholar

    [163] Zhao XF, Zhou MF, Li JW, Wu FY. 2008. Association of Neoproterozoic A- and I-type granites in South China: Implications for generation of A-type granites in a subduction-related environment. Chemical Geology, 257(1-2), 1-15.

    Google Scholar

    [164] Zhao XL, Mao JR, Liu K, Li ZL, Ye HM, Zhou J, Hu YZ. 2017. Petrogenesis of the Jurassic adakitic rocks in Gan‐Hang Belt South China: Response to the Palaeo‐Pacific Plate oblique subduction. Geological Journal, https: //doi.org/10.1002/gj.3032.

    Google Scholar

    [165] Zhao ZB, Bons PD, Wang GH, Liu Y, Zheng YL. 2014. Origin and pre-Cenozoic evolution of the south Qiangtang basement, Central Tibet. Tectonophysics, 623(7), 52-66.

    Google Scholar

    [166] Zhao ZH, Xiong XL, Han XD, Wang YX, Wang Q, Bao ZW, Jahn B. 2002. Controls on the REE tetrad effectin granites: Evidence from the Qianlishan and Baerzhe Granites, China. Geochemical Journal, 36(6), 527-543.

    Google Scholar

    [167] Zhao ZH, Xiong XL, Wang Q, Bao ZW, Zhang YQ, Xie YW, Ren SK. 2003. Alkali-rich igneous rocks and related Au and Cu large and superlarge deposits in China. Science in China (Series D), 46, 1-13.

    Google Scholar

    [168] Zhao ZH, Zhou LD. 1994. Some of China’s rich base of rare earth elements geochemistry intrusive rocks. Science in China (Series B), 24(10), 1109-1120.

    Google Scholar

    [169] Zheng YF, Xiao WJ, Zhao GC. 2013. Introduction to tectonics of China. Gondwana Research, 23(4), 1189-1206.

    Google Scholar

    [170] Zheng YF, Xiao WJ, Zhao GC. 2012. Pogress of geological study in the Middle-Lower Yangtze River Valley metallogenic belt. Acta Petrologica Sinica, 28(10), 3051-3066.

    Google Scholar

    [171] Zhou TF, Wang SW, Yuan F, Fan Y, Zhang DY, Chang YF, Noel CW. 2016. Magmatism and related mineralization of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley Metallogenic belt. Acta Petrologica Sinica, 32(2), 271-288.

    Google Scholar

    [172] Zhou XM, Chen PR, XS, Liu CS, Shen WZ, Shu L. 2007. The lithosphere Dynamical Evolution of Late Mesozoic Granites in Nanling Area. Beijing, Science Press,, 1-691.

    Google Scholar

    [173] Zhou XM, Li WX. 2000. Origin of Late Mesozoic rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3), 269-287.

    Google Scholar

    [174] Zhou XM, Sun T, Shen WZ, Shu LS, Niu YL. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1), 26-33.

    Google Scholar

    [175] Zhu DC, Mo XX, Zhao ZD, Niu Y, Wang LQ, Chu QH, Pan GT, JF, Zhou CY. 2010. Presence of Permian extension-and arc-type magmatism in southern Tibet: Paleogeographic implications. Bulletin of the Geological Society of America, 122(7-8), 979-993.

    Google Scholar

    [176] Zhu DC, Mo XX, Zhao ZD, Niu YL, Pan GT, Wang LQ, Liao ZL. 2009. Permian and Early Cretaceous tectonomagmatism in southern Tibet and Tethyan evolution: New perspective. Earth Science Frontiers, 16(2), 1-20.

    Google Scholar

    [177] Zhu DC, Pan GT, Wang LQ, Mo XX, Zhao ZD, Zhou CY, Liao ZL, Dong GC, Yuan SH. 2008. Spatial-temporal distribution and tectonic setting of Jurassic magmatism in the Gangdise belt, Tibet, China. Geological Bulletin of China, 27(4), 458-468.

    Google Scholar

    [178] Zhu DC, Zhao ZD, Niu Y, Dilek Y, Hou ZQ, Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4), 1429-1454.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(2785) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint