Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2025 Vol. 13, No. 4
Article Contents

Sulistiani, Lubis Rachmat Fajar, Santikayasa I Putu, Taufik Muh., Nugraha Gumilar Utamas. 2025. Groundwater recharge modeling with integration of land use/land cover and climate change projections in Surakarta City, Indonesia. Journal of Groundwater Science and Engineering, 13(4): 352-370. doi: 10.26599/JGSE.2025.9280059
Citation: Sulistiani, Lubis Rachmat Fajar, Santikayasa I Putu, Taufik Muh., Nugraha Gumilar Utamas. 2025. Groundwater recharge modeling with integration of land use/land cover and climate change projections in Surakarta City, Indonesia. Journal of Groundwater Science and Engineering, 13(4): 352-370. doi: 10.26599/JGSE.2025.9280059

Groundwater recharge modeling with integration of land use/land cover and climate change projections in Surakarta City, Indonesia

More Information
  • Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover (LULC), which directly impact groundwater recharge capacity. This study aims to predict LULC changes in 2030 and 2040, analyse groundwater recharge quantities for historical, current, and projected conditions, and evaluate the combined impacts of LULC and climate change. The Cellular Automata-Artificial Neural Network (CA-ANN) method was employed to predict LULC changes, using classified and interpreted land use data from Landsat 7 ETM+ (2000 and 2010) and Landsat 8 OLI (2020) imagery. The Soil and Water Assessment Tool (SWAT) model was used to simulate groundwater recharge. Input data for the SWAT model included Digital Elevation Model (DEM), soil type, LULC, slope, and climate data. Climate projections were based on five Regional Climate Models (RCMs) for two time periods, 2021–2030 and 2031–2040, under Shared Socioeconomic Pathways (SSP) scenarios 2–45 and 5–85. The results indicate a significant increase in built-up areas, accounting for 71.08% in 2030 and 71.83% in 2040. Groundwater recharge projections show a decline, with average monthly recharge decreasing from 83.85 mm/month under SSP2-45 to 78.25 mm/month under SSP5-85 in 2030, and further declining to 82.10 mm/month (SSP2-45) and 77.44 mm/month (SSP5-85) in 2040. The expansion of impervious surfaces due to urbanization is the primary factor driving this decline. This study highlights the innovative integration of CA-ANN-based LULC predictions with climate projections from RCMs, offering a robust framework for analysing urban groundwater dynamics. The findings underscore the need for sustainable urban planning and water resource management to mitigate the adverse effects of urbanization and climate change. Additionally, the methodological framework and insights gained from this research can be applied to other urban areas facing similar challenges, thus contributing to broader efforts in groundwater conservation.

  • 加载中
  • Abbas Z, Yang G, Zhong Y, et al. 2021. Spatiotemporal change analysis and future scenario of lulc using the CA-ANN approach: A case study of the greater bay area, China. Land, 10(6): 584. DOI: 10.3390/land10060584

    Google Scholar

    Adhikari RK, Mohanasundaram S, Shrestha, S. 2020. Impacts of land-use changes on the groundwater recharge in the Ho Chi Minh city, Vietnam. Environmental Research, 185: 109440. DOI: 10.1016/j.envres.2020.109440

    Google Scholar

    Alfandhani RS, Hizbaron DR, Widyastuti M. 2021. Kajian Pengaruh Kondisi Resapan Air pada Pola Pemanfaatan Ruang di Sub DAS Jlantah-Walikun pada Wilayah DAS Bengawan Solo Hulu. Jurnal Pendidikan Tambusai, 5(3): 11236–11244. (in Indonesian

    Google Scholar

    Arnold JG, Kiniry R, Srinivasan R, et al. 2012. Input/output documentation soil & water assessment tool.Texas Water Resources Institute: Thrall, TX, USA, 1-650.

    Google Scholar

    As-syakur AR, Suarna IW, Adnyana IWS, et al. 2008. Studi Perubahan Penggunaan Lahan di DAS Badung. Bumi Lestari, 10(2): 200–207. (in Indonesian

    Google Scholar

    Boretti A, Rosa L. 2019. Reassessing the projections of the world water development report. NPJ Clean Water, 2(1): 15. DOI: 10.1038/s41545-019-0039-9.

    Google Scholar

    Bucton BGB, Shrestha S, Mohanasundaram S, et al. 2022. Impacts of climate and land use change on groundwater recharge under shared socioeconomic pathways: A case of Siem Reap, Cambodia. Environmental Research, 211: 113070. DOI: 10.1016/j.envres.2022.113070.

    CrossRef Google Scholar

    Desky AF. 2022. Sosiologi pedesaan dan perkotaan. (In Indonesian

    Google Scholar

    DLH Kota Surakarta. 2021. Indeks Kualitas Lingkungan Hidup Kota Surakarta Tahun 2021. (In Indonesian

    Google Scholar

    DLH Kota Surakarta. 2022. Indeks Kualitas Lingkungan Hidup Kota Surakarta Tahun 2022. (In Indonesian

    Google Scholar

    Ferreira RS, Uagoda RE. 2017. Revista Brasileira de Geografia Física Análise da predição do balanço hídrico da bacia do ribeirão do Gama-DF através do modelo SWAT. In Revista Brasileira de Geografia Física, 10(03): 880-893. (in Portuguese

    Google Scholar

    Fitriana AL, Subiyanto S, Firdaus HS. 2017. Model Cellular Automata Markov untuk Prediksi Perkembangan Fisik Wilayah Permukiman Kota Surakarta menggunakan Sistem Informasi Geografis. Jurnal Geodesi Undip Oktober, 6(4): 246-253. (In Indonesian

    Google Scholar

    Guo H, Hu Q, Jiang T. 2008. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China. Journal of Hydrology, 355(1-4): 106−122. DOI: 10.1016/j.jhydrol.2008.03.020.

    CrossRef Google Scholar

    Guo XD, Liu Q, Li WP, et al. 2024. Groundwater imbalance and its mutual feedback relationship with land use in West Liaohe Plain. Hydrogeology & Engineering Geology, 51(4): 77−87. DOI: 10.16030/j.cnki.issn.1000-3665.202310001.

    CrossRef Google Scholar

    Halefom A, Sisay E, Khare D, et al. 2017. Hydrological modeling of urban catchment using semi-distributed model. Modeling Earth Systems and Environment, 3(2): 683−692. DOI: 10.1007/s40808-017-0327-7.

    CrossRef Google Scholar

    Indhanu N, Chalermyanont T, Chub-Uppakarn T. 2025. Spatial assessment of land use and land cover change impacts on groundwater recharge and groundwater level: A case study of the Hat Yai basin. Journal of Hydrology: Regional Studies, 57: 102097. DOI: 10.1016/j.ejrh.2024.102097.

    Google Scholar

    Landis JR, Koch GG. 1977. The measurement of observer agreement for categorical data. Biometrics, 159-174.

    Google Scholar

    Lei Z, Yang J, Yang Y, et al. 2019. Impact of urban sprawl on dry island effects and its countermeasures. Sustainable Cities and Society, 51.

    Google Scholar

    Luetkemeier R, Söller L, Frick-Trzebitzky F. 2022. Anthropogenic pressures on groundwater. In Encyclopedia of Inland Waters, Second Edition (3): 548-559. DOI: 10.1016/B978-0-12-819166-8.00183-3

    Google Scholar

    Meaurio M, Zabaleta A, Uriarte JA, et al. 2015. Evaluation of SWAT models performance to simulate streamflow spatial origin: The case of a small forested watershed. Journal of Hydrology, 525: 326−334. DOI: 10.1016/j.jhydrol.2015.03.050.

    CrossRef Google Scholar

    Mengistu TD, Chung IM, Kim MG, et al. 2022. Impacts and implications of land use land cover dynamics on groundwater recharge and surface runoff in east african watershed. Water (Switzerland), 14(13): 2068. DOI: 10.3390/w14132068.

    Google Scholar

    Moriasi DN, Arnold JG, Van Liew MW, et al. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3): 885−900. DOI: 10.13031/2013.23153.

    CrossRef Google Scholar

    Muhammad R, Zhang W, Abbas Z, et al. 2022. Spatiotemporal change analysis and prediction of future land use and land cover changes using QGIS MOLUSCE Plugin and remote sensing big data: A case study of Linyi, China. Land, 11(3): 419. DOI: 10.3390/land11030419.

    Google Scholar

    Mustafa A, Van Rompaey A, Cools M, et al. 2018. Addressing the determinants of built-up expansion and densification processes at the regional scale. Urban Studies, 55(15): 3279−3298. DOI: 10.1177/0042098017749176.

    CrossRef Google Scholar