Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2024 Vol. 12, No. 4
Article Contents

Yang Liu, Cheng Yan-pei, Wen Xue-ru, Liu Jun. 2024. Development, hotspots and trend directions of groundwater numerical simulation: A bibliometric and visualization analysis. Journal of Groundwater Science and Engineering, 12(4): 411-427. doi: 10.26599/JGSE.2024.9280031
Citation: Yang Liu, Cheng Yan-pei, Wen Xue-ru, Liu Jun. 2024. Development, hotspots and trend directions of groundwater numerical simulation: A bibliometric and visualization analysis. Journal of Groundwater Science and Engineering, 12(4): 411-427. doi: 10.26599/JGSE.2024.9280031

Development, hotspots and trend directions of groundwater numerical simulation: A bibliometric and visualization analysis

More Information
  • Groundwater is a vital component of the hydrological cycle and essential for the sustainable development of ecosystems. Numerical simulation methods are key tools for addressing scientific challenges in groundwater research. This study uses bibliometric visualization analysis to examine the progress and trends in groundwater numerical simulation methods. By analyzing literature indexed in the Web of Science database from January 1990 to February 2023, and employing tools such as Citespace and VOSviewer, we assessed publication volume, research institutions and their collaborations, prolific scholars, keyword clustering, and emerging trends. The findings indicate an overall upward trend in both the number of publications and citations concerning groundwater numerical simulations. Since 2010, the number of publications has tripled compared to the total before 2010, underscoring the increasing significance and potential of numerical simulation methods in groundwater science. China, in particular, has shown remarkable growth in this field over the past decade, surpassing the United States, Canada, and Germany. This progress is closely linked to strong national support and active participation from research institutions, especially the contributions from teams at Hohai University, China University of Geosciences, and the University of Science and Technology of China. Collaboration between research teams is primarily seen between China and the United States, with less noticeable cooperation among other countries, resulting in a diverse and dispersed development pattern. Keyword analysis highlights that international research hotspots include groundwater recharge, karst water, geothermal water migration, seawater intrusion, variable density flow, contaminant and solute transport, pollution remediation, and land subsidence. Looking ahead, groundwater numerical simulations are expected to play a more prominent role in areas such as climate change, surface water-groundwater interactions, the impact of groundwater nitrates on the environment and health, submarine groundwater discharge, ecological water use, groundwater management, and risk prevention.

  • 加载中
  • Ataie-Ashtiani B, Rajabi MM, Simmons CT. 2020. Improving model-data interaction in hydrogeology: Insights from different disciplines. Journal of Hydrology, 580: 124275. DOI:10.1016/j.jhydrol.2019.124275.

    Google Scholar

    Barry DA, Prommer H, Miller CT, et al. 2002. Modeling the fate of oxidisable organic contaminents in groundwater. Advances in Water Resources (25th Anniversary Edition), 25(8-12): 945−983. DOI:10.1016/S0309-1708(02)00044-1.

    CrossRef Google Scholar

    Bicakci N, Bicakci S. 2024. Footprint of emergency medicine physicians in disaster medicine publications: A bibliometric analysis. Prehospital and Disaster Medicine, 39(1): 13−19. DOI:10.1017/S1049023X23006738.

    CrossRef Google Scholar

    Boggs JM, Young SC, Beard LM. 1992. Field study of dispersion in a heterogeneous aquifer: Overview and site description. Water Resources Research, 28(12): 3281−3291. DOI:10.1029/92WR01756.

    CrossRef Google Scholar

    Cao T, Han D, Song X. 2021. Past, present, and future of global seawater intrusion research: A bibliometric analysis. Journal of Hydrology, 603: 126844. DOI:10.1016/j.jhydrol.2021.126844.

    CrossRef Google Scholar

    Chen C. 2016. CiteSpace: A practical guide for mapping scientific literature. Nova Science Publishers. ISBN: 978-1-53610-280-2

    Google Scholar

    Chen C, Leydesdorff L. 2014. Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. Journal of the Association for Information Science, 65: 334−351. DOI:10.1002/asi.22968.

    CrossRef Google Scholar

    Chen C. 2017. Science mapping: A systematic review of the literature. Journal of Data and Information Science, 2: 1−40. DOI:10.1515/jdis-2017-0006.

    CrossRef Google Scholar

    Chen CM. 2006. CiteSpaceII: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3): 359−377. DOI:10.1002/asi.20317.

    CrossRef Google Scholar

    Chen CM, Hu ZG, Liu SB, et al. 2012. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opinion Biological Therapy, 12(5): 593−608. DOI:10.1517/14712598.2012.674507.

    CrossRef Google Scholar

    Fang YH, Zheng TY, Wang H, et al. 2021. Experimental and numerical evidence on the influence of tidal activity on the effectiveness of subsurface dams. Journal of Hydrology, 603: 127149. DOI:10.1016/j.jhydrol.2021.127149.

    CrossRef Google Scholar

    Fu J, Ding JD. 2019. Comparison of visualization principles between Citespace and VOSviewer. Journal of Library and Information Science in Agriculture, 31(10): 31−37. DOI:10.13998/j.cnki.issn1002-1248.2019.10.19-0776.

    CrossRef Google Scholar

    Guo YL, Zhang C, Wu Q, et al. 2020. Analysis of focused topics in karst hydrogeology research based on bibliometrics. Carsologica, 39(6): 817−828. DOI:10.11932/karst2020y13.

    CrossRef Google Scholar

    Hou ZY, Lao WM, Wang Y, et al. 2021. Hybrid homotopy-PSO global searching approach with multi-kernel extreme learning machine for efficient source identification of DNAPL-polluted aquifer. Computers & Geosciences, 155: 104837. DOI:10.1016/j.cageo.2021.104837.

    CrossRef Google Scholar

    Jin GQ, Xu J, Mo YM, et al. 2020. Response of sediments and phosphorus to catchment characteristics and human activities under different rainfall patterns with Bayesian Networks. Journal of Hydrology, 584: 124695. DOI:10.1016/j.jhydrol.2020.124695.

    CrossRef Google Scholar

    Jing M, Lu CH, Sun CJ, et al. 2023. Assessing the effect of construction-induced consolidation on groundwater travel time distribution under unconfined conditions. Hydrogeology Journal, 31(2): 272−292. DOI:10.1007/s10040-022-02579-1.

    CrossRef Google Scholar

    LeBlanc DR, Garabedian SP, Hess KM, et al. 1991. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: Experimental design and observed tracer movement. Water Resources Research, 27(5): 895−910. DOI:10.1029/91WR00241.

    CrossRef Google Scholar

    Leng LJ, Bang BY, Xu DH, et al. 2024. Machine-learning-aided prediction and optimization of struvite recovery from synthetic wastewater. Journal of Water Process Engineering, 58: 104896. DOI:10.1016/j.jwpe.2024.104896.

    CrossRef Google Scholar

    Leydesdorff L, Persson O. 2010. Mapping the geography of science: Distribution patterns and networks of relations among cities and institutes. Journal of the Association for Information Science & Technology, 61(8): 1622−1634. DOI:10.1002/asi.21347.

    CrossRef Google Scholar

    Li C, Gao X, Li S, et al. 2020. A review of the distribution, sources, genesis, and environmental concerns of salinity in groundwater. Environmental Science and Pollution Research, 27: 41157−41174. DOI:10.1007/s11356-020-10354-6.

    CrossRef Google Scholar

    Li Y, Fang R, Liu Z, et al 2021. The association between toxic pesticide environmental exposure and Alzheimer's disease: A scientometric and visualization analysis. Chemosphere, 263: 128238. DOI:10.1016/j.chemosphere.2020.128238.

    Google Scholar

    Lin XY, Hou YW, Zou LZ, et al. 1985. A collection of codes for modeling groundwater quantity, Quality and Management. Changchun: Jilin Science and Technology Press. (in Chinese)

    Google Scholar

    Liu J, Cheng YP, Zhang FE, et al. 2023. Research hotspots and trends of groundwater and ecology studies: Based on a bibliometric approach. Journal of Groundwater Science and Engineering, 11(1): 20−36. DOI:10.26599/JGSE.2023.9280003.

    CrossRef Google Scholar

    Liu S, Sun YP, Gao XL, et al. 2019. Knowledge domain and emerging trends in Alzheimer's disease: A scientometric review based on CiteSpace analysis. Neural Regeneration Research, 14: 1643−1650. DOI:10.4103/1673-5374.255995.

    CrossRef Google Scholar

    Liu Z, Yang J, Zhang J, et al. 2019. A bibliometric analysis of research on acid rain. Sustainability, 11(11): 3077. DOI:10.3390/su11113077.

    CrossRef Google Scholar

    Lu CH, Xuan HW, Zhou YX, et al. 2020. Saturable and reverse saturable absorption in molybdenum disulfide dispersion and film by defect engineering. Photonics Research, 8(9): 1512−1521. DOI:10.1364/PRJ.395870.

    CrossRef Google Scholar

    MacKay DM, Freyberg DL, Roberts PV, et al. 1986. A natural gradient experiment on solute transport in a sand aquifer: Approach and overview of plume movement. Water Resources Research, 22(13): 2017−2029. DOI:10.1029/WR022i013p02017.

    CrossRef Google Scholar

    Mao G, Huang N, Chen L, et al. 2018. Research on biomass energy and environment from the past to the future: A bibliometric analysis. Science of the Total Environment, 635: 1081−1090. DOI:10.1016/j.scitotenv.2018.04.173.

    CrossRef Google Scholar

    Martinho VJPD. 2019. Best management practices from agricultural economics: Mitigating air, soil and water pollution. Science of the Total Environment, 688: 346−360. DOI:10.1016/j.scitotenv.2019.06.199.

    CrossRef Google Scholar

    Mohammad M, Behzad Ataie-Ashtiani, Craig TS. 2018. Model-data interaction in groundwater studies: Review of methods, applications and future directions. Journal of Hydrology, 567: 457−477. DOI:10.1016/j.jhydrol.2018.09.053.

    CrossRef Google Scholar

    National Academics of Sciences, Engineering and Medicine. 2018. Future water priorities for the nation: Directions for the US geological survey water mission area. National Academies Press.

    Google Scholar

    Neuman SP. 1977. Theoretical derivation of Darcy's Law. Acta Mechanica, 5(3): 153−170. DOI:10.1007/bf01376989.

    CrossRef Google Scholar

    Orduna-Malea E, Costas Comesana R. 2021. Link-based approach to study scientific software usage: The case of VOSviewer. Scientometrics, 126(9): 8153−8186. DOI:10.1007/s11192-021-04082-y.

    CrossRef Google Scholar

    Petersen PJD, Megdal SB, Gerlak AK, et al. 2018. Critical issues affecting groundwater quality governance and management in the United States. Water, 10(6): 735. DOI:10.3390/w10060735.

    CrossRef Google Scholar

    Qu WJ, Li HL, Wang CY, et al. 2020. Numerical simulations of seasonally oscillated groundwater dynamics in coastal confined aquifers. Groundwater, 58(4): 550−559. DOI:10.1111/gwat.12926.

    CrossRef Google Scholar

    Roy DK, Lal A, Sarker KK, et al. 2021. Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system. Agriculture Water Management, 255: 107003. DOI:10.1016/j.agwat.2021.107003.

    CrossRef Google Scholar

    Saffman PG. 1959. A theory of dispersion in a porous medium. Journal of Fluid Mechanics Digital Archive, 6(3): 321−349. DOI:10.1017/S0022112059000672.

    CrossRef Google Scholar

    Scheidegger AE. 1954. Statistical hydrodynamics in porous media. Journal of Applied Physics, 25(8): 994−1001. DOI:10.1063/1.1721815.

    CrossRef Google Scholar

    Song J, Yang Y, Yin ZY, et al. 2022. Satellite data-driven multi-objective simulation-optimization modeling for water-environment-agriculture nexus in an arid endorheic lake basin. Journal of Hydrology, 612: 128207. DOI:10.1016/j.jhydrol.2022.128207.

    CrossRef Google Scholar

    Stoeckl L, Walther M, Morgan LK , et al. 2019. Physical and numerical modelling of post-pumping seawater intrusion. Geofluids, UNSP7191370. DOI:10.1155/2019/7191370.

    Google Scholar

    Sun JX, Yue GF, Zhang W. 2023. Simulation of thermal breakthrough factors affecting carbonate geothermal-to-well systems. Jourrnal of Groundwater Science and Engineering, 11(4): 379−390. DOI:10.26599/JGSE.2023.9280030.

    CrossRef Google Scholar

    Sun XZ, Zeng XK, Wu JC. 2021. A two-stage Bayesian Data-Driven Method to improve model prediction. Water Resources Research, 57(12): e2021WR030436. DOI:10.1029/2021WR030436.

    CrossRef Google Scholar

    Taylor G. 1953. Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society of London, series A. 219 (1137) : 186–203. DOI:10.2307/99386.

    Google Scholar

    Van Eck NJ, Waltman L. 2010. Software survey: VOS viewer: A computer program for bibliometric mapping. Scientometrics, 84(2): 523−538. DOI:10.1007/s11192-009-0146-3.

    CrossRef Google Scholar

    Van Genuchten TM, Sudicky EA. 1999. Recent advances in vadose zone flow and transport modeling. Vadose Zone Hydrology: Cutting across Disciplines. New York: Oxford University Press. ISBN: 9780195109900.

    Google Scholar

    Wang GC, Wang YX, Liu F, et al. 2022. Advance and trends in hydrogeochemical studies: Insights from bibliometric analysis. Earth Science Frontiers, 29(3): 025−036. DOI:10.13745/j.esf.sf.2022.1.48.

    CrossRef Google Scholar

    Wang H, Zhang JP, Li H, et al. 2024. Groundwater pollution source and aquifer parameter estimation based on a stacked autoencoder substitute. Water, 16(18): 2564. DOI:10.3390/w16182564.

    CrossRef Google Scholar

    Wang L, Xue X, Zhang Y, et al. 2018. Exploring the emerging evolution trends of urban resilience research by scientometric analysis. International Journal of Environmental Research and Public Health, 15: 2181. DOI:10.3390/ijerph15102181.

    CrossRef Google Scholar

    Wang XW, Ma WF. 2019. Advances in research and practice of groundwater numerical simulation. Proceedings of the 2019. Annual Science and Technology Conference of the Chinese Society of Environmental Sciences: 08. DOI:10.26914/c.cnkihy.2019.071178.

    Google Scholar

    Woods JA, Teubner MD, Simmons CT, et al. 2003. Numerical error in groundwater flow and solute transport simulation. Water Resources Research, 39(6): 1158. DOI:10.1029/2001WR000586.

    CrossRef Google Scholar

    Xiao M, Qiu XH, Huang J, et al. 2013. Comparison of software tools for mapping knowledge domain. Library Journal, 61–69. (in Chinese) DOI:10.13663/j.cnki.lj.2013.03.007.

    Google Scholar

    Xie H, Li J, Zou SZ, et al. 2021. Research status of groundwater pollution base on bibliometric. South-to North- Water Transfers and Water Science and Technology, 19(10): 168–178.

    Google Scholar

    Xin P, Wang SSJ, Shen CJ, et al. 2018. Predictability and quantification of complex groundwater table dynamics driven by irregular surface water fluctuations. Water Resources Research, 54(3): 2436−2451. DOI:10.1002/2017WR021761.

    CrossRef Google Scholar

    Xu Y, Tang GQ, Li LJ, et al. 2024. Multi-source precipitation estimation using machine learning: Clarification and benchmarking. Journal of Hydrology, 635: 131195. DOI:10.1016/j.jhydrol.2024.131195.

    CrossRef Google Scholar

    Xue YQ. 2007. Grounwater numerical simulation. Beijing: Science Press. (in Chinese)

    Google Scholar

    Xue YQ, Wu JQ, Xie CH. 1997. Numerical simulation of groundwater pollution in a leaky aquifer system. Acta Geologica Sinica, 71(2): 186−192. (in Chinese) DOI:10.3109/10826087609056164.

    CrossRef Google Scholar

    Xue YQ, Xie CH, Wu JC. 1995. A three-dimensional miscible transport model for seawater intrusion in China. Water Resources Research, 31(4): 903−912. DOI:10.1029/94WR02379.

    CrossRef Google Scholar

    Yan M, Lu CH, Werner AD, et al. 2021. Analytical, experimental, and numerical investigation of partially penetrating barriers for expanding island freshwater lenses. Water Resources Research, 57(3): e2020WR028386. DOI:10.1029/2020WR028386.

    CrossRef Google Scholar

    Yang F, Jia C, Yang HT, et al. 2022. Development, hotspots and trend directions of groundwater salinization research in both coastal and inland areas: a bibliometric and visualization analysis from 1970 to 2021. Environmental Science and Pollution Research, 29: 67704−67727. DOI:10.1007/s11356-022-22134-5.

    CrossRef Google Scholar

    Yang L, Wen XR, Wu XL, et al. 2019. Height prediction of water flowing fractured zones based on BP artificial neural network. Journal of Groundwater Science and Engineering, 7(4): 354−359. DOI:10.19637/j.cnki.2305-7068.2019.04.006.

    CrossRef Google Scholar

    Yang Q. 2021. Comparative research on the analysis function of common bibliometrics tools. Information Research, 10: 87−93. DOI:10.3969/j.issn.1005-8095.2021.10.013.

    CrossRef Google Scholar

    Yang X, Cao HF, Adrian D. Werner, et al. 2024. Experimental and numerical investigation of the effect of air injection on seawater intrusion mitigation. Journal of Hydrology, 642: 131850. DOI:10.1016/j.jhydrol.2024.131850.

    CrossRef Google Scholar

    Yu XY, Xu XH, Zhan LC, et al. 2024. Seasonal temperature distributions and variations in salt marshes: Field Investigation and Numerical Simulation. Water Resources Research, 60(8): e2023WR037016. DOI:10.1029/2023WR037016.

    CrossRef Google Scholar

    Zhang J, Jiang L, Liu Z, et al. 2021. A bibliometric and visual analysis of indoor occupation environmental health risks: Development, hotspots and trend directions. Journal of Cleaner Production, 300: 126824. DOI:10.1016/j.jclepro.2021.126824.

    CrossRef Google Scholar

    Zhang J, Lu CH, Werner AD, et al. 2021. Analytical and experimental investigation of the impact of land reclamation on steady-state seawater extent in coastal aquifers. Water Resources Research, 57(6): e2020WR029028. DOI:10.1029/2020WR029028.

    CrossRef Google Scholar

    Zhang JX, Lu CH, Shen CJ, et al. 2024. Flow and transport in coastal aquifer-aquitard systems: Experimental and numerical analysis. Water Resources Research, 60(4): e2023WR035200. DOI:10.1029/2023WR035200.

    CrossRef Google Scholar

    Zhang S, Mao G, Crittenden J, et al. 2017. Groudwater remedation from the past to the future: A bibliometric analysis. Water Research, 119: 114−125. DOI:10.1016/j.watres.2017.01.029.

    CrossRef Google Scholar

    Zhang Y, Li L, Drik VE, et al. 2016. Effects of alongshore morphology on groundwater flow and solute transport in a nearshore aquifer. Water Resources Research, 52(2): 990−1008. DOI:10.1002/2015WR017420.

    CrossRef Google Scholar

    Zheng C, Gorelick SM. 2003. Analysis of the effect of decimeter scale preferential flow paths on solute transport. Ground Water, 41(2): 142−155. DOI:10.1111/j.1745-6584.2003.tb02578.x.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(6)

Article Metrics

Article views(125) PDF downloads(24) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint