Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2024 Vol. 12, No. 4
Article Contents

Rasheed Shamla, Abraham Marykutty. 2024. Conventional and futuristic approaches for the computation of groundwater recharge: A comprehensive review. Journal of Groundwater Science and Engineering, 12(4): 428-452. doi: 10.26599/JGSE.2024.9280027
Citation: Rasheed Shamla, Abraham Marykutty. 2024. Conventional and futuristic approaches for the computation of groundwater recharge: A comprehensive review. Journal of Groundwater Science and Engineering, 12(4): 428-452. doi: 10.26599/JGSE.2024.9280027

Conventional and futuristic approaches for the computation of groundwater recharge: A comprehensive review

More Information
  • Groundwater recharge is a critical hydrologic component that determines groundwater availability and sustainability. Groundwater recharge estimation can be performed in a variety of ways, ranging from direct procedures to simulation models. The optimal strategy for recharge estimation depends on several factors, such as study objectives, climatic zones, hydrogeological conditions, data availability, methodology, and temporal and spatial constraints. Groundwater recharge is influenced by uncertainties in weather and hydrology. This study discusses conventional recharge estimation techniques and their application for optimal recharge calculation, and it also offers an overview of recent advances in recharge estimation methods. Most methods provide direct or indirect estimation of recharge across a small region on a point scale for a shorter time. With recent technological advancements and increased data availability, several advanced computational tools, including numerical, empirical, and artificial intelligence models, have been developed for efficient and reliable computation of groundwater recharge. This review article provides a thorough discussion of the techniques, assumptions, advantages, limitations, and selection procedures for estimating groundwater recharge.

  • 加载中
  • Abd-Elmaboud ME, Abdel-Gawad HA, El-Alfy KS, et al. 2021. Estimation of groundwater recharge using simulation-optimization model and cascade forward ANN at East Nile Delta aquifer, Egypt. Journal of Hydrology: Regional Studies, 34: 100784−100790. DOI:10.1016/j.ejrh.2021.100784.

    CrossRef Google Scholar

    Abraham M, Mohan S. 2019. Effectiveness of check dam and percolation pond with percolation wells for artificial groundwater recharge using groundwater models. Water Supply, 19(7): 2107−2115. DOI:10.2166/ws.2019.091.

    CrossRef Google Scholar

    Adomako D, Maloszewski P, Stumpp C, et al. 2010. Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River Basin, Ghana. Hydrological Sciences Journal, 55(8): 1405−1416. DOI:10.1080/02626667.2010.527847.

    CrossRef Google Scholar

    Ahmadi A, Olyaei M, Heydari Z, et al. 2022. Groundwater level modeling with machine learning: A systematic review and meta-analysis. Water, 14(6): 949−955. DOI:10.3390/w14060949.

    CrossRef Google Scholar

    Ahmed AN, Yafouz A, Birima AH, et al. 2022. Water level prediction using various machine learning algorithms: A case study of Durian Tunggal River, Malaysia. Engineering Applications of Computational Fluid Mechanics, 16(1): 422−440. DOI:10.1080/19942060.2021.2019128.

    CrossRef Google Scholar

    Ali MH. 2017. Quantifying natural groundwater recharge using tracer and other techniques. Asian Journal of Environment & Ecology, 5(1): 1−12. DOI:10.9734/AJEE/2017/36811.

    CrossRef Google Scholar

    Ali MH, Mubarak S. 2017. Approaches and methods of quantifying natural groundwater recharge–a review. Asian Journal of Environment & Ecology, 5(1): 1−27. DOI:10.9734/AJEE/2017/36987.

    CrossRef Google Scholar

    Ali MH, Islam MA. 2020. Application of tracer method in determining groundwater recharge: A case study at Mymensingh Area, Bangladesh. Research and Development in Agricultural Sciences, 2: 106−116. DOI:10.9734/bpi/rdas/v2.

    CrossRef Google Scholar

    Allison GB, Hughes MW. 1983. The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. Journal of Hydrology, 60(1-4): 157−173. DOI:10.1016/0022-1694(83)90019-7.

    CrossRef Google Scholar

    Allison GB, Gee GW, Tyler SW. 1994. Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Science Society of America Journal, 58(1): 6−14. DOI:10.2136/sssaj1994.03615995005800010002x.

    CrossRef Google Scholar

    Anh DT, Pandey M, Mishra VN, et al. 2023. Assessment of groundwater potential modeling using support vector machine optimization based on Bayesian multi-objective hyperparameter algorithm. Applied Soft Computing, 132: 109848. DOI:10.1016/j.asoc.2022.109848.

    CrossRef Google Scholar

    Asoka A, Wada Y, Fishman R, et al. 2018. Strong linkage between precipitation intensity and monsoon season groundwater recharge in India. Geophysical Research Letters, 45(11): 5536−5544. DOI:10.1029/2018GL078466.

    CrossRef Google Scholar

    Bak GM, Bae YC. 2019. Groundwater level prediction using ANFIS algorithm. The Journal of the Korea Institute of Electronic Communication Sciences, 14(6): 1235−1240. DOI:10.13067/JKIECS.2019.14.6.1235.

    CrossRef Google Scholar

    Banerjee D, Ganguly S, Kushwaha S. 2024. Forecasting future groundwater recharge from rainfall under different climate change scenarios using comparative analysis of deep learning and ensemble learning techniques. Water Resources Management, 1-19. DOI:10.1007/s11269-024-03850-8.

    Google Scholar

    Batelaan O, De Smedt F. 2007. GIS-based recharge estimation by coupling surface–subsurface water balances. Journal of Hydrology, 337(3-4): 337−355. DOI:10.1016/j.jhydrol.2007.02.001.

    CrossRef Google Scholar

    Beyene TD, Zimale FA, Gebrekristos ST. 2024. A review on sources of uncertainties for groundwater recharge estimates: Insight into data scarce tropical, arid, and semiarid regions. Hydrology Research, 55(1): 51−66. DOI:10.2166/nh.2023.221.

    CrossRef Google Scholar

    Breiman L. 2001. Random forests. Machine learning, 45: 5−32. DOI:10.1023/A:1010933404324.

    CrossRef Google Scholar

    Brunner P, Simmons CT. 2012. Hydro Geosphere: A fully integrated, physically based hydrological model. Groundwater, 50(2): 170−176. DOI:10.1111/j.1745-6584.2011.00882.x.

    CrossRef Google Scholar

    Chapman T. 1999. A comparison of algorithms for stream flow recession and baseflow separation. Hydrological Processes, 13(5): 701−714. DOI:10.1002/(SICI)1099-1085(19990415)13:5%3C701.

    CrossRef Google Scholar

    Chaturvedi RS. 1973. A note on the investigation of groundwater resources in western districts of Uttar Pradesh, Annual Report. UP Irrigation Research Institute: 86–122.

    Google Scholar

    Chen ZY, Wan L, Nie ZL, et al. 2006. Identification of groundwater recharge in the Heihe Basin using environmental isotopes. Hydrogeology & Engineering Geology, 6: 9−14. DOI:10.3969/j.issn.1000-3665.2006.06.003.

    CrossRef Google Scholar

    Chen X, Zhang ZC, Zhang XN, et al. 2008. Estimation of groundwater recharge from precipitation and evapotranspiration by lysimeter measurement and soil moisture model. Journal of Hydrologic Engineering, 13(5): 333−340. DOI:10.1061/(ASCE)1084-0699(2008)13:5(333).

    CrossRef Google Scholar

    Chen X, Huang Y, Ling M, et al. 2012. Numerical modeling groundwater recharge and its implication in water cycles of two interdunal valleys in the Sand Hills of Nebraska. Physics and Chemistry of the Earth, Parts A/B/C, 53-54: 10–18. DOI:10.1016/j.pce.2011.08.022.

    Google Scholar

    Cheng D, Wang W, Zhan H, et al. 2020. Quantification of transient specific yield considering unsaturated-saturated flow. Journal of hydrology, 580: 124043. DOI:10.1016/j.jhydrol.2019.124043.

    CrossRef Google Scholar

    Cook PG, Bohlke JK. 2000. Determining timescales for groundwater flow and solute transport. In: Cook PG, Herczeg AL. (eds) Environmental Tracers in Subsurface Hydrology. Springer, Boston, MA: 1–30. DOI:10.1007/978-1-4615-4557-6_1.

    Google Scholar

    Cook PG, Solomon DK. 1995. Transport of atmospheric trace gases to the water table: Implications for groundwater dating with chlorofluorocarbons and krypton 85. Water Resources Research, 31(2): 263−270. DOI:10.1029/94WR02232.

    CrossRef Google Scholar

    Cooper JD, Gardner CM, Mackenzie N. 1990. Soil controls on recharge to aquifers. Journal of Soil Science, 41(4): 613−630. DOI:10.1111/j.1365-2389.1990.tb00231.x.

    CrossRef Google Scholar

    Coplen TB. 1993. Uses of environmental isotopes: Regional ground-water quality. van Nostrand Reinhold, 227-254.

    Google Scholar

    Dang XY, Zhang MS. 2008. Mode of occurrence of karst groundwater in the Northern Shaanxi Energy and Chemical Industry Base and its influence factors. Geological Bulletin of China, 27(08): 1138−1142.

    Google Scholar

    Daniel EB, Camp JV, LeBoeuf EJ, et al. 2011. Watershed modeling and its applications: A state-of-the-art review. The Open Hydrology Journal, 5: 26−50. DOI:10.2174/1874378101105010026.

    CrossRef Google Scholar

    De Vries JJ, Simmers I. 2002. Groundwater recharge: An overview of processes and challenges. Hydrogeology Journal, 10: 5−17. DOI:10.1007/s10040-001-0171-7.

    CrossRef Google Scholar

    Delin GN, Healy RW, Landon MK, et al. 2000. Effects of topography and soil properties on recharge at two sites in an agricultural Field 1. Journal of the American Water Resources Association, 36(6): 1401−1416. DOI:10.1111/j.1752-1688.2000.tb05735.x.

    CrossRef Google Scholar

    Dereje B, Nedaw D. 2019. Groundwater recharge estimation using WetSpass modeling in Upper Bilate Catchment, Southern Ethiopia. Momona Ethiopian Journal of Science, 11(1): 37−51. DOI:10.4314/mejs.v11i1.3.

    CrossRef Google Scholar

    Derbela M, Nouiri I. 2020. Intelligent approach to predict future groundwater level based on Artificial Neural Networks (ANN). Euro-Mediterranean Journal for Environmental Integration, 5: 51. DOI:10.1007/s41207-020-00185-9.

    CrossRef Google Scholar

    Di Salvo C. 2022. Improving results of existing groundwater numerical models using machine learning techniques: A review. Water, 14(15): 2307−2315. DOI:10.3390/w14152307.

    CrossRef Google Scholar

    Eckhardt K. 2008. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. Journal of Hydrology, 352(1): 168−173. DOI:10.1016/j.jhydrol.2008.01.005.

    CrossRef Google Scholar

    Edmunds WM, Gaye CB. 1994. Estimating the spatial variability of groundwater recharge in the Sahel using chloride. Journal of Hydrology, 156(1-4): 47−59. DOI:10.1016/0022-1694(94)90070-1.

    CrossRef Google Scholar

    Facchi A, Ortuani B, Maggi D, et al. 2004. Coupled SVAT–groundwater model for water resources simulation in irrigated alluvial plains. Environmental Modelling & Software, 19(11): 1053−1063. DOI:10.1016/j.envsoft.2003.11.008.

    CrossRef Google Scholar

    Fahim AKF, Kamal AM, Shahid S. 2024. Modeling spatial groundwater level patterns of Bangladesh using physio-climatic variables and machine learning algorithms. Groundwater for Sustainable Development, 25: 101142. DOI:10.1016/j.gsd.2024.101142.

    CrossRef Google Scholar

    Feddes RA, Kabat P, Van Bakel P, et al. 1988. Modelling soil water dynamics in the unsaturated zone—state of the art. Journal of Hydrology, 100(1-3): 69−111. DOI:10.1016/0022-1694(88)90182-5.

    CrossRef Google Scholar

    Feddes RA, Kowalik P, Kolinska MK, et al. 1976. Simulation of field water uptake by plants using a soil water dependent root extraction function. Journal of Hydrology, 31(1-2): 13−26. DOI:10.1016/0022-1694(76)90017-2.

    CrossRef Google Scholar

    Flint AL, Flint LE, Kwicklis EM, et al. 2002. Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods. Hydrogeology Journal, 10: 180−204. DOI:10.1007/s10040-001-0169-1.

    CrossRef Google Scholar

    Gee GW, Hillel D. 1988. Groundwater recharge in arid regions: Review and critique of estimation methods. Hydrological processes, 2(3): 255−266. DOI:10.1002/hyp.3360020306.

    CrossRef Google Scholar

    Giudici M. 2023. Modeling water flow in variably saturated porous soils and alluvial sediments. Sustainability, 15(22): 15723−15730. DOI:10.3390/su152215723.

    CrossRef Google Scholar

    Gong C, Zhang Z, Wang W, et al. 2021. An assessment of different methods to determine specific yield for estimating groundwater recharge using lysimeters. Science of the Total Environment, 788: 147799. DOI:10.1016/j.scitotenv.2021.147799.

    CrossRef Google Scholar

    Gong C, Cook PG, Therrien R, et al. 2023. On groundwater recharge in variably saturated subsurface flow models. Water Resources Research, 59(9): DOI:10.1029/2023WR034920.

    Google Scholar

    Healy RW, Cook PG. 2002. Using groundwater levels to estimate recharge. Hydrogeology Journal, 10(January): 91−109. DOI:10.1007/s10040-001-0178-0.

    CrossRef Google Scholar

    Healy RW. 2010. Estimating groundwater recharge, Cambridge University Press, Cambridge. DOI:10.1017/CBO9780511780745.

    Google Scholar

    Hendrickx JMH. 1992. Groundwater recharge. A guide to understanding and estimating natural recharge (Volume 8, International Contributions to Hydrogeology). Journal of Environmental Quality, 21(3): 512–520. DOI:10.2134/jeq1992.00472425002100030036x.

    Google Scholar

    Hsieh PA, Wingle WL, Healy RW. 2000. VS2DI-A graphical software package for simulating fluid flow and solute or energy transport in variably saturated porous media. Water-Resources Investigations Report. US Geological Survey. DOI:10.3133/wri994130.

    Google Scholar

    Huang X, Gao L, Crosbie RS, et al. 2019. Groundwater recharge prediction using Linear Regression, multi-Layer perception network and deep learning. Water, 11(9): 1879−1897. DOI:10.3390/w11091879.

    CrossRef Google Scholar

    Huang X, Gao L, Zhang N, et al. 2023. A top-down deep learning model for predicting spatio-temporal dynamics of groundwater recharge. Environmental Modelling & Software, 167: 105778. DOI:10.1016/j.envsoft.2023.105778.

    CrossRef Google Scholar

    Hughes A, Mansour M, Ward R, et al. 2021. The impact of climate change on groundwater recharge: National-scale assessment for the British mainland. Journal of Hydrology, 598(July): 126336. DOI:10.1016/j.jhydrol.2021.126336.

    CrossRef Google Scholar

    Hussein EA, Thron C, Ghaziasgar M, et al. 2020. Groundwater prediction using machine-learning tools. Algorithms, 13(11): 300. DOI:10.3390/a13110300.

    CrossRef Google Scholar

    Jasechko S. 2019. Global isotope hydrogeology-review. Reviews of Geophysics, 57(3): 835−965. DOI:10.1029/2018RG000627.

    CrossRef Google Scholar

    Kemper KE. 2004. Groundwater from development to management. Hydrogeology Journal, 12(February): 3−5. DOI:10.1007/s10040-003-0305-1.

    CrossRef Google Scholar

    Kendy E, Gérard-Marchant P, Todd WM, et al. 2003. A soil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain. Hydrological Processes, 17(10): 2011−2031. DOI:10.1002/hyp.1240.

    CrossRef Google Scholar

    Khalil M, Sakai M, Mizoguchi M, et al. 2003. Current and prospective applications of Zero Flux Plane (ZFP) method. Journal of the Japanese Society of Soil Physics, 95: 75−90. DOI:10.34467/jssoilphysics.95.0_75.

    CrossRef Google Scholar

    Kinzelbach W, Aeschbach W, Alberich C, et al. 2002. A survey of methods for analyzing groundwater recharge in arid and semi-arid regions (Vol. 2). Early Warning and Assessment Report Series, UNEP/DEWA/RS. 02-2. United Nations Environment Programme, Nairobi, ISBN 92-80702131-80702133.

    Google Scholar

    Kumar CP, Seethapathi PV. 2002. Assessment of natural groundwater recharge in Upper Ganga Canal command area. Journal of Applied Hydrology, 15(4): 13-20.

    Google Scholar

    Kumar CP. 2004. Groundwater flow models: An overview. In groundwater modelling and management. Ghosh NC, Sharma KD (Eds.), Capital Publishing Company: New Delhi: 153–178.

    Google Scholar

    Kumar CP. 2012. Climate change and its impact on groundwater resources. International Journal of Engineering and Science, 1(5): 43–60.

    Google Scholar

    Kuruppath N, Raviraj A, Kannan B, et al. 2018. Estimation of groundwater recharge using water table fluctuation method. International Journal of Current Microbiology and Applied Sciences, 7(10): 3404−3412. DOI:10.20546/ijcmas.2018.710.395.

    CrossRef Google Scholar

    Kurylyk BL, Irvine DJ, Carey SK, et al. 2017. Heat as a groundwater tracer in shallow and deep heterogeneous media: Analytical solution, spreadsheet tool, and field applications. Hydrological Processes, 31(4): 2648−2661. DOI:10.1002/hyp.11216.

    CrossRef Google Scholar

    Lapham W. 1989. Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity. Technical Report NO.2337, Department of the Interior, US Geological Survey Open-File Report, USGPO: 5–44. DOI:10.3133/wsp2337.

    Google Scholar

    Lee DR, Cherry JA. 1979. A field exercise on groundwater flow using seepage meters and mini-piezometers. Journal of Geological Education, 27(1): 6−10. DOI:10.5408/0022-1368-27.1.6.

    CrossRef Google Scholar

    Leibundgut C, Maloszewski P, Külls C, et al. 2009. Tracers in hydrology. John Wiley & Sons, Ltd. 5−12. DOI:10.1002/9780470747148.

    Google Scholar

    Lerner DN. 1990. Groundwater recharge in urban areas. Atmospheric Environment. Part B. Urban Atmosphere, 24(1): 29−33. DOI:10.1016/0957-1272(90)90006-G.

    CrossRef Google Scholar

    Liaw A, Wiener M. 2002. Classification and regression by random Forest. R news, 2(3): 18−22. DOI:10.32614/RJ-2002-028.

    CrossRef Google Scholar

    McConville C, Kalin RM, Johnston H, et al. 2001. Evaluation of recharge in a small temperate catchment using natural and applied δ18O profiles in the unsaturated zone. Groundwater, 39(4): 616−623. DOI:10.1111/j.1745-6584.2001.tb02349.x.

    CrossRef Google Scholar

    McDonald MG, Harbaugh AW. 1988. A modular three-dimensional finite-difference ground-water flow model. Techniques of Water-Resources Investigations 06-A1. US Geological Survey. DOI:10.3133/twri06A1.

    Google Scholar

    Mekonen SS, Boyce SE, Mohammed AK, et al. 2023. Recharge estimation approach in a Data-Scarce semi-arid region, Northern Ethiopian Rift Valley. Sustainability, 15(22): 15887. DOI:10.3390/su152215887.

    CrossRef Google Scholar

    Moeck C, Grech-Cumbo N, Podgorski J, et al. 2020. A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and relationships. Science of the Total Environment, 717: 137042. DOI:10.1016/j.scitotenv.2020.137042.

    CrossRef Google Scholar

    Mogaji KA, Lim HS, Abdullah K. 2015. Modeling of groundwater recharge using a Multiple Linear Regression (MLR) recharge model developed from geophysical parameters: A case of groundwater resources management. Environmental Earth Sciences, 73(July): 1217−1230. DOI:10.1007/s12665-014-3476-2.

    CrossRef Google Scholar

    Mohan S, Abraham M. 2010. Derivations of simple site-specific recharge-precipitation relationships: A case study from the Cuddalore Basin, India. Environmental Geosciences, 17(1): 37−44. DOI:10.1306/eg.07170909010.

    CrossRef Google Scholar

    Mohan S, Pramada SK. 2023. Natural groundwater recharge estimation using multiple methods combined with an experimental study. Water Supply, 23(5): 1972−1986. DOI:10.2166/ws.2023.090.

    CrossRef Google Scholar

    Naghibi SA, Moghaddam DD, Kalantar B, et al. 2017. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. Journal of Hydrology, 548(May): 471−483. DOI:10.1016/j.jhydrol.2017.03.020.

    CrossRef Google Scholar

    Nathan RJ, McMahon TA. 1990. Evaluation of automated techniques for base flow and recession analyses. Water Resources Research, 26(7): 1465−1473. DOI:10.1029/WR026i007p01465.

    CrossRef Google Scholar

    Nativ R, Adar E, Dahan O, et al. 1995. Water recharge and solute transport through the vadose zone of fractured chalk under desert conditions. Water Resources Research, 31(2): 253−261. DOI:10.1029/94WR02536.

    CrossRef Google Scholar

    Nimmo JR, Healy RW, Stonestrom DA. 2005. Aquifer Recharge. Encyclopedia of Hydrological Science: Part 13, Groundwater, 4: 2229–2246. DOI:10.1002/0470848944.hsa161a.

    Google Scholar

    Osman AI, Ahmed AN, Chow MF, et al. 2021. Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Engineering Journal, 12(2): 1545−1556. DOI:10.1016/j.asej.2020.11.011.

    CrossRef Google Scholar

    Park E. 2012. Delineation of recharge rate from a hybrid water table fluctuation method. Water Resources Research, 48(7): 1−6. DOI:10.1029/2011WR011696.

    CrossRef Google Scholar

    Rajaee T, Ebrahimi H, Nourani V. 2019. A review of the artificial intelligence methods in groundwater level modeling. Journal of hydrology, 572(May): 336−351. DOI:10.1016/j.jhydrol.2018.12.037.

    CrossRef Google Scholar

    Reichstein M, Camps-Valls G, Stevens B, et al. 2019. Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743): 195−204. DOI:10.1038/s41586-019-0912-1.

    CrossRef Google Scholar

    Reynolds D. 2009. Gaussian mixture models, Encyclopedia of Biometrics, Springer US, Boston, MA: 659–663. DOI:10.1007/978-0-387-73003-5_196.

    Google Scholar

    Richards LA. 1931. Capillary conduction of liquids through porous mediums. Journal of Applied Physics, 1(5): 318−333. DOI:10.1063/1.1745010.

    CrossRef Google Scholar

    Rosenberry DO, Duque C, Lee DR. 2020. History, and evolution of seepage meters for quantifying flow between groundwater and surface water: Part 1 – Freshwater settings. Earth-Science Reviews, 204(May): 103167. DOI:10.1016/j.earscirev.2020.103167.

    CrossRef Google Scholar

    Ross PJ. 1990. SWIM: A simulation model for soil water infiltration and movement: Reference manual. CSIRO Division of Soils, Report No. 59.

    Google Scholar

    Sajil Kumar PJ, Schneider M, Elango L, et al. 2021. The State-of-the-Art estimation of groundwater recharge and water balance with a special emphasis on India: A critical review. Sustainability, 14(1): 340. DOI:10.3390/su14010340.

    CrossRef Google Scholar

    Sanford W. 2002. Recharge and groundwater models: An overview. Hydrogeology Journal, 10(1): 110−120. DOI:10.1007/s10040-001-0173-5.

    CrossRef Google Scholar

    Scanlon BR. 2000. Uncertainties in estimating water fluxes and residence times using environmental tracers in an arid unsaturated zone. Water Resources Research, 36(2): 395−409. DOI:10.1029/1999WR900240.

    CrossRef Google Scholar

    Scanlon BR, Healy RW, Cook PG. 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10(January): 18−39. DOI:10.1007/s10040-001-0176-2.

    CrossRef Google Scholar

    Sehgal SR. 1973. Ground water resources of Punjab State. Third Annual Research Session, Central Board of Irrigation and Power, New Delhi, India.

    Google Scholar

    Sena D, Nagwani NK. 2016. A time-series forecasting-based prediction model to estimate groundwater levels in India. Current Science, 111(6): 1083−1090. DOI:10.18520/cs/v111/i6/1083-1090.

    CrossRef Google Scholar

    Shamsi E, Ziaei AN, Naghedifar SM, et al. 2020. Groundwater recharge assessment of different irrigation scenarios by using unsaturated zone modeling (case study: Neishabour plain). Iranian Journal of Soil and Water Research, 51(2): 311−323. DOI:10.22059/ijswr.2019.282466.668222.

    CrossRef Google Scholar

    Sharafati A, Asadollah SB, Neshat A. 2020. A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran. Journal of Hydrology, 591(December): 125468. DOI:10.1016/j.jhydrol.2020.125468.

    CrossRef Google Scholar

    Shu Y, Wang HQ. 2005. The development of groundwater management models. Hydrogeology and Engineering Geology, 32 (6): 85-90. DOI:10.3969/j.issn.1000-3665.2005.06.021.

    Google Scholar

    Sihag P, Angelaki A, Chaplot B. 2020. Estimation of the recharging rate of groundwater using random forest technique. Applied Water Science, 10(182): 1−11. DOI:10.1007/s13201-020-01267-3.

    CrossRef Google Scholar

    Simmers I. 1998. Groundwater recharge: An overview of estimation 'problems' and recent developments. Geological Society, London, Special Publications, 130: 107–115. DOI:10.1144/GSL.SP.1998.130.01.10.

    Google Scholar

    Simunek J, Sejna M, Van Genuchten MT. 1998. The Hydrus-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Version 1.0, IGWMC - TPS - 70, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado: 186.

    Google Scholar

    Simunek J, Van Genuchten MT, Sejna M. 2005. The HYDRUS software package for simulating one-, two-, and three-dimensional movement of water, heat, and multiple solutes in variably-saturated porous media, technical manual II, Hydrus 2D/3D. Version 5.0, PC Progress, Prague, Czech Republic: 283.

    Google Scholar

    Sophocleous M, Perkins SP. 2000. Methodology and application of combined watershed and ground-water models in Kansas. Journal of Hydrology, 236(3-4): 185−201. DOI:10.1016/S0022-1694(00)00293-6.

    CrossRef Google Scholar

    Sophocleous M. 2002. Interactions between groundwater and surface water: The state of the science. Hydrogeology Journal, 10(January): 52−67. DOI:10.1007/s10040-001-0170-8.

    CrossRef Google Scholar

    Sophocleous MA. 1991. Combining the soil-water balance and water-level fluctuation methods to estimate natural groundwater recharge: Practical aspects. Journal of Hydrology, 124(3-4): 229−241. DOI:10.1016/0022-1694(91)90016-B.

    CrossRef Google Scholar

    Stepanov S, Spiridonov D, Mai T. 2023. Prediction of numerical homogenization using deep learning for the Richards equation. Journal of Computational and Applied Mathematics, 424(May): 114980. DOI:10.1016/j.cam.2022.114980.

    CrossRef Google Scholar

    Stern MA, Flint LE, Flint AL et al. 2021. A Basin-scale approach to estimating recharge in the desert: Anza-Cahuilla groundwater Basin, CA. Journal of the American Water Resources Association, 57(6): 990–1003. DOI:10.1111/1752-1688.12971.

    Google Scholar

    Stonestrom DA, Constantz J. 2003. Heat as a tool for studying the movement of groundwater near streams. Technical Report US Geological Survey Circular, 1260: 1−96. DOI:10.3133/cir1260.

    CrossRef Google Scholar

    Sun FQ, Yin LH, Jia WH, et al. 2020. Soil water movement and deep drainage through thick vadose ones on the northern slope of the Tianshan Mountain: Croplands vs natural lands. China Geology, 3(1): 113−123. DOI:10.31035/cg2020008.

    CrossRef Google Scholar

    Tao H, Hameed MM, Marhoon HA, et al. 2022. Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing, 489(June): 271−308. DOI:10.1016/j.neucom.2022.03.014.

    CrossRef Google Scholar

    Tladi TM, Ndambuki JM, Olwal TO, et al. 2023. Groundwater level trend analysis and prediction in the Upper Crocodile (West) Basin, South Africa. Water, 15(17): 3025. DOI:10.3390/w15173025.

    CrossRef Google Scholar

    Trefry MG, Muffels C. 2007. FEFLOW: A finite-element groundwater flow and transport modeling tool. Groundwater, 45(5): 525−528. DOI:10.1111/j.1745-6584.2007.00358.x.

    CrossRef Google Scholar

    Van Genuchten MT. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5): 892–898. DOI:10.2136/sssaj1980.03615995004400050002x.

    Google Scholar

    Wang D, Tang Y. 2024. Analysis of groundwater level dynamic characteristics and influencing factors in Valley Plain of Lhasa City. Geological Bulletin of China, 43(6): 971−983. (in Chinese) DOI:10.12097/gbc.2022.07.051.

    CrossRef Google Scholar

    Wood WW, Sanford WE. 1995. Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Groundwater, 33(3): 458−468. DOI:10.1111/j.1745-6584.1995.tb00302.x.

    CrossRef Google Scholar

    Yeh GT, Huang G, Cheng HP, et al. 2006. A first-principle, physics-based watershed model: WASH123D. Watershed models, 211: 244. DOI:10.1201/9781420037432.ch9.

    Google Scholar

    Zeinali M, Azari A, Heidari MM. 2020. Simulating unsaturated zone of soil for estimating the recharge rate and flow exchange between a river and an aquifer. Water Resources Management, 34(1-2): 425−443. DOI:10.1007/s11269-019-02458-7.

    CrossRef Google Scholar

    Zeng J, Xie L, Liu ZQ. 2008. Type-2 Fuzzy Gaussian Mixture models. Pattern Recognition, 41(12): 3636−3643. DOI:10.1016/j.patcog.2008.06.006.

    CrossRef Google Scholar

    Zhang L, Walker GR, Fleming M. 2002. Surface water balance for recharge estimation-Part 9. Csiro Publishing. DOI:10.1071/9780643105416.

    Google Scholar

    Zhang X, Wang N, Cao L, et al. 2024. Analysis of the contribution of rainfall to recharge in the Mu Us Desert (China) based on lysimeter data. Hydrogeology Journal, 32(1): 279−288. DOI:10.1007/s10040-023-02750-2.

    CrossRef Google Scholar

    Zhao W, Lin YZ, Zhou PP, et al. 2021. Characteristics of groundwater in Northeast Qinghai-Xizang Plateau and its response to climate change and human activities: A case study of Delingha, Qaidam Basin. China Geology, 4(3): 377−388. DOI:10.31035/cg2021053.

    CrossRef Google Scholar

    Zyvoloski G. 2007. FEHM: A control volume finite element code for simulating subsurface multi-phase multi-fluid heat and mass transfer. The subsurface flow and transport team at the Los Alamos National Laboratory (LANL). LAUR-07-3359.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(3)

Article Metrics

Article views(395) PDF downloads(55) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint