Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2024 Vol. 12, No. 4
Article Contents

Ganie Parvaiz Ahmad, Posti Ravindra, Garima, Kunal Kishor, Pandey Nityanand, Pandey Pramod Kumar. 2024. Morphometric analysis and hydrological implications of the Himalayan River Basin, Goriganga, India, using Remote Sensing and GIS techniques. Journal of Groundwater Science and Engineering, 12(4): 360-386. doi: 10.26599/JGSE.2024.9280028
Citation: Ganie Parvaiz Ahmad, Posti Ravindra, Garima, Kunal Kishor, Pandey Nityanand, Pandey Pramod Kumar. 2024. Morphometric analysis and hydrological implications of the Himalayan River Basin, Goriganga, India, using Remote Sensing and GIS techniques. Journal of Groundwater Science and Engineering, 12(4): 360-386. doi: 10.26599/JGSE.2024.9280028

Morphometric analysis and hydrological implications of the Himalayan River Basin, Goriganga, India, using Remote Sensing and GIS techniques

More Information
  • The application of Geographic Information System (GIS) methodologies offers valuable insights into the hydrological behaviour of watersheds through the analysis of their morphometric attributes. This study focuses on the Goriganga River, a major tributary of the Ganga River system, by conducting a detailed morphometric analysis using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery with 30 m resolution, alongside survey of India topographic sheets. Thirty-two watersheds within the river basin were delineated to calculate linear, areal, and relief morphometric parameters, covering a total drainage area of 2,183.11 km2. The drainage pattern, primarily dendritic to sub-dendritic, is shaped by the region's topography, geological structure, and precipitation patterns. Classified as a 6th-order basin, the drainage density ranges from 1.21 km/km2 to 1.96 km/km2, underlining the significant influence of the regional physiography and lithological composition on the stream ordering. Relief analysis suggests the basin is in an early developmental stage, characterised by varying slope gradients and a low to moderate risk of soil erosion. The basin's hydrogeology is complex, with aquifer distribution primarily governed by lithological factors. Limestone, due to its high permeability and karst features, forms the principal aquifer, although it is susceptible to contamination. In contrast, groundwater potential in the Basement Gneissic Complex and Schist regions is limited to structurally controlled zones, while shale acts as an aquitard. The basin's heterogeneous aquifer characteristics emphasize the need for localized groundwater management strategies tailored to specific lithological units. The integration of remote sensing and GIS techniques effectively delineates the basin's morphometric and hydrogeological characteristics, providing critical information for the development of sustainable water resource management strategies.

  • 加载中
  • Abijith D, Saravanan S, Singh L, et al. 2020. GIS-based multi-criteria analysis for identification of potential groundwater recharge zones - a case study from Ponnaniyaru watershed, Tamil Nadu, India. Hydrological Research, 3: 1−14. DOI:10.1016/j.hydres.2020.02.002.

    CrossRef Google Scholar

    Abrams M, Hook S, Ramachandran B. 2002. ASTER User Handbook Version 2. Jet Propulsion Laboratory, 4800: 135.

    Google Scholar

    Aher PD, Adinarayana J, Gorantiwar SD. 2014. Quantifcation of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. Journal of Hydrology, 511: 850−860. DOI:10.1016/j.jhydrol.2014.02.028.

    CrossRef Google Scholar

    Ashok K. 2014. Studies on Ichthyofaunal Diversity with special reference to monthly and seasonal variations of fish landings in glacial fed Mountainous Goriganga River of Kumaun Himalaya, Uttarakhand, India. Research Journal of Animal, Veterinary and Fishery Sciences, 2(4): 1−12.

    Google Scholar

    ASTER G. 2011. Validation Team: ASTER global digital elevation model version 2–summary of validation results. NASA Land Processes Distributed Active Archive Center and Joint Japan-US ASTER Science Team, 435.

    Google Scholar

    Chorley RJ. 1957. Climate and morphometry. The Journal of Geology, 65(6): 628−638. DOI:10.1086/626468.

    CrossRef Google Scholar

    Clark L. 1985. Groundwater abstraction from basement complex areas of Africa. Quarterly Journal of Engineering Geology and Hydrogeology, 18(1): 25−34. DOI:10.1144/GSL.QJEG.1985.018.01.05.

    CrossRef Google Scholar

    Congalton RG, Green K. 2009. Assessing the accuracy of remotely sensed data - Principles and practices. Second edition. CRC Press, Taylor & Francis Group, Boca Raton, FL 978-1-4200-5512-2.

    Google Scholar

    Das PK. 2015. Global warming, glacial lakes and cloud burst events in Garhwal-Kumaon Himalaya: A hypothetical analysis. International Journal of Environmental Sciences, 5(4): 697−708. DOI:10.6088/ijes.2014050100065.

    CrossRef Google Scholar

    Esper Angillieri MY. 2008. Morphometric analysis of Colangüil River Basin and flash flood hazard, San Juan, Argentina. Environmental Geology, 55(1): 107−111. DOI:10.1007/s00254-007-0969-2.

    CrossRef Google Scholar

    Faniran A. 1968. The index of drainage intensity: A provisional new drainage factor. Australian Journal of Science, 31(9): 326−330.

    Google Scholar

    Ganie PA, Posti R, Pandey PK. 2024. Exploring and modelling the hydro-morphological landscape of a Himalayan basin: A geospatial study of Nandakini Basin in Uttarakhand, India. Discover Geoscience, 2(1): 27. DOI:10.1007/s44288-024-00032-2.

    CrossRef Google Scholar

    Ganie PA, Posti R, Aswal AS, et al. 2023a. A comparative analysis of the vertical accuracy of multiple open-source digital elevation models for the mountainous terrain of the north-western Himalaya. Modeling Earth Systems and Environment, 9(2): 2723−2743. DOI:10.1007/s40808-022-01641-x.

    CrossRef Google Scholar

    Ganie PA, Posti R, Bharti VS, et al. 2023b. Striking a balance between conservation and development: A geospatial approach to watershed prioritisation in the Himalayan Basin. Conservation, 3(4): 460−490. DOI:10.3390/conservation3040031.

    CrossRef Google Scholar

    Ganie PA, Posti R, Kumar P, et al. 2016. Morphometric analysis of a Kosi River Basin, Uttarakhand using geographical information system. International Journal of Multidisciplinary and Current Research, 4: 1190−1200.

    Google Scholar

    Ganie PA, Posti R, Kunal G, et al. 2024a. Principle and applications of Geographic Information System (GIS) in coldwater fisheries development in India. In: Sarma D, Chandra S, Mallik SK. (eds) Aquaculture and Conservation of Inland Coldwater Fishes. Springer, Singapore. DOI:10.1007/978-981-97-1790-3_25.

    Google Scholar

    Ganie PA, Posti R, Kunal K. 2023c. Modelling of the Himalayan Mountain river basin through hydro-morphological and compound factor-based approaches using geoinformatics tools. Modeling Earth Systems and Environment, 9(3): 3053−3084. DOI:10.1007/s40808-023-01691-9.

    CrossRef Google Scholar

    Ganie PA, Posti R, Kunal K, et al. 2022. Insights into the morphometric characteristics of the Himalayan River using remote sensing and GIS techniques: A case study of Saryu Basin, Uttarakhand, India. Applied Geomatics, 14(4): 707−730. DOI:10.1007/s12518-022-00461-z.

    CrossRef Google Scholar

    Gayen S, Bhunia GS, Shit PK. 2013. Morphometric analysis of Kangshabati-Darkeswar Interfuves area in West Bengal, India using ASTER DEM and GIS techniques. Journal of Geological Sciences, 2(4): 1−10. DOI:10.4172/2329-6755.1000133.

    CrossRef Google Scholar

    Geological Survey of India (GSI). 1981. Mineralogical map of Karnataka and Goa. Geological Survey of India.

    Google Scholar

    Giusti EV, Schneider WJ. 1965. The distribution of branches in river networks. USGS professional paper, 422G, US Geological Survey. DOI:10.3133/pp422G.

    Google Scholar

    Gottschalk LC. 1964. Reservoir sedimentation reservoir sedimentation. In: Chow VT, Ed. , Handbook of Applied Hydrology, McGraw Hill Book Company, New York.

    Google Scholar

    Guth PL. 2011. Drainage basin morphometry: A global snapshot from the shuttle radar topography mission. Hydrology and Earth System Sciences, Copernicus Publications. European Geosciences Union. DOI:10.5194/hess-15-2091-2011.

    Google Scholar

    Gustafson GU, Krásný J. 1994. Crystalline rock aquifers: Their occurrence, use and importance. Applied Hydrogeology, 2: 64−75. DOI:10.1007/s100400050051.

    CrossRef Google Scholar

    Lü QT, Yan JY, Chen XH, et al. 2020. Progress of deep geological survey project under the China geological survey. China Geology, 3(1): 153−72. DOI:10.31035/cg2020001.

    CrossRef Google Scholar

    Hoek E, Marinos P, Marinos V. 2005. Characterization and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses. International Journal of Rock Mechanics and Mining Sciences, 42/2: 277−285. DOI:10.1016/j.ijrmms.2004.09.015.

    CrossRef Google Scholar

    Horton RE. 1932. Drainage-basin characteristics. Transactions, American Geophysical Union, 13(1): 350−361. DOI:10.1029/TR013i001p00350.

    Google Scholar

    Horton RE. 1945. Erosional development of streams and their drainage basins, hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3): 275−370. DOI:10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.

    CrossRef Google Scholar

    Howard AD. 1990. Theoretical model of optimal drainage networks. Water Resources Research, 26(9): 2107−2117. DOI:10.1029/WR026i009p02107.

    CrossRef Google Scholar

    Joshi LM, Kotlia BS. 2015. Neotectonically triggered instability around the palaeolake regime in Central Kumaun Himalaya, India. Quaternary International, 371: 219−231. DOI:10.1016/j.quaint.2014.10.033.

    CrossRef Google Scholar

    Kabite G, Gessesse B. 2018. Hydro-geomorphological characterization of Dhidhessa River Basin, Ethiopia. International Soil and Water Conservation Research, 6: 175−83. DOI:10.1016/j.iswcr.2018.02.003.

    CrossRef Google Scholar

    Kaplan D, Hegarty CJ. 2006. Understanding GPS: Principles and applications. Artech House, Boston, London, 32.

    Google Scholar

    Kačaroğlu F. 1999. Review of groundwater pollution and protection in karst areas. Water, Air, and Soil Pollution, 113: 337−356. DOI:10.1023/A:1005014532330.

    Google Scholar

    Khatoon T, Javed A. 2022. Morphometric behavior of Shahzad Watershed, Lalitpur District, Uttar Pradesh, India: A geospatial approach. Journal of Geographic Information System, 14(3): 193−220. DOI:10.4236/jgis.2022.143011.

    CrossRef Google Scholar

    Krishnan A, Ramasamy J. 2022. Morphometric assessment and prioritization of the South India Moyar river basin sub-watersheds using a geo-computational approach. Geology, Ecology, and Landscapes, 1−11. DOI:10.1080/24749508.2022.2109819.

    Google Scholar

    Kumar L, Joshi G, Agarwal KK. 2020. Morphometry and morphostructural studies of the parts of Gola River and Kalsa River Basins, Chanphi-Okhalkanda Region, Kumaun Lesser Himalaya, India. Geotectonics, 54(3): 410−427. DOI:10.1134/S0016852120030048.

    CrossRef Google Scholar

    Kumar N, Singh SK, Singh VG, et al. 2018. Investigation of impacts of land use/land cover change on water availability of Tons River Basin, Madhya Pradesh, India. Modeling Earth System Environment, 4: 295−310. DOI:10.1007/s40808-018-0425-1.

    CrossRef Google Scholar

    Lachassagne P, Dewandel B, Wyns R. 2021. Hydrogeology of weathered crystalline/hard-rock aquifers—guidelines for the operational survey and management of their groundwater resources. Hydrogeology Journal, 29(8): 2561−94. DOI:10.1007/s10040-021-02339-7.

    Google Scholar

    Loritz R, Kleidon A, Jackisch C, et al. 2019. A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation. Hydrology and Earth System Sciences, 23(9): 3807−3821. DOI:10.5194/hess-23-3807-2019.

    CrossRef Google Scholar

    Mahadevaswamy G, Nagaraju D, Siddalingamurthy S, et al. 2011. Morphometric analysis of Nanjangud taluk, Mysore District, Karnataka, India, using GIS Techniques. International Journal of Geomatics and Geosciences, 1(4): 721−734.

    Google Scholar

    Miller VC. 1953. A quantitative geomorphologic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee, Project NR 389-042, Tech Report 3. Columbia University.

    Google Scholar

    Mohamed E. 2020. Watershed delineation and morphometric analysis using remote sensing and GIS mapping techniques in Qena-Safaga-Bir Queh, Central Eastern Desert. International Journal of Water Resources and Environmental Engineering, 12(2): 22–46. DOI:10.5897/ijwree2019.0896.

    Google Scholar

    Moharir K, Pande C, Patode RS, et al. 2021. Prioritization of sub-watersheds based on morphometric parameter analysis using geospatial technology. Water Management and Water Governance: Hydrological Modeling, 19−33. DOI: 10.1007/978-3-030-58051-3_2

    Google Scholar

    Morris DG, Heerdegen RG. 1988. Automatically derived catchment boundaries and channel networks and their hydrological applications. Geomorphology, 1(2): 131−141. DOI:10.1016/0169-555X(88)90011-6.

    CrossRef Google Scholar

    Mustak SK, Baghmar NK, Ratre CR. 2012. Measurement of dissection index of Pairi River basin using remote sensing and GIS. National Geographical Journal of India, 58(2): 97−106.

    Google Scholar

    Muthamilselvan A, Rajasekaran N, Suresh R. 2019. Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India. Journal of Groundwater Science and Engineering. 7(3): 264−281. DOI:10.19637/j.cnki.2305-7068.2019.03.007.

    Google Scholar

    Nag SK, Chakraborty S. 2003. Influence of rock types and structures in the development of drainage network in hard rock area. Journal of the Indian Society of Remote Sensing, 31(1): 25–35. DOI:10.1007/BF030 30749.

    Google Scholar

    Nag SK. 1998. Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. Journal of the Indian Society of Remote Sensing, 26(1): 69−76. DOI:10.1007/BF03007341.

    CrossRef Google Scholar

    Neuzil CE. 1994. How permeable are clays and shales? Water resources research, 30(2): 145−150. DOI:10.1029/93WR02930.

    CrossRef Google Scholar

    Nikhil Raj PP, Azeez PA. 2012. Morphometric analysis of a tropical medium river system: A case from Bharathapuzha river southern India. Open Journal of Modern Hydrology, 02: 91−98. DOI:10.4236/ojmh.2012.24011.

    CrossRef Google Scholar

    Olszevski N, Fernandes Filho EI, Costa LM, et al. 2011. Morphology and hydrological aspects of Black River Basin, division of state of Rio de Janeiro and Minas Gerais. Revi Árvore, 35(3): 485–492. DOI:10. 1590/S0100-67622011000300011.

    Google Scholar

    Pankaj A, Kumar P. 2009. GIS-based morphometric analysis of fve major sub-watersheds of Song River, Dehradun District, Uttarakhand with special reference to landslide incidences. Journal of the Indian Society of Remote Sensing, 37(1): 157−166. DOI:10.1007/s12524-009-0007-9.

    CrossRef Google Scholar

    Phillips JD. 2006. Evolutionary geomorphology: Thresholds and nonlinearity in landform response to environmental change. Hydrology and Earth System Sciences, 10(5): 731−742. DOI:10.5194/hess-10-731-2006.

    CrossRef Google Scholar

    Rai PK, Mohan K, Mishra S, et al. 2017. A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Applied Water Science, 7(1): 217−232. DOI:10.1007/s13201-014-0238-y.

    CrossRef Google Scholar

    Reddy GP, Maji AK, Gajbhiye KS. 2004. Drainage morphometry and its infuence on landform characteristics in a basaltic terrain, Central India–a remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6(1): 1–16. DOI:10.1016/j.jag.2004.06.003.

    Google Scholar

    Saha S, Das J, Mandal T. 2022. Investigation of the watershed hydro-morphologic characteristics through the morphometric analysis: A study on Rayeng basin in Darjeeling Himalaya. Environmental Challenges, 7: 100463. DOI:10.1016/j.envc.2022.100463.

    CrossRef Google Scholar

    Schumm SA. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5): 597−646. DOI:10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2.

    CrossRef Google Scholar

    Selvan MT, Ahmad S, Rashid SM. 2011. Analysis of the geomorphometric parameters in high altitude glaciered terrain using SRTM DEM data in Central Himalaya, India. ARPN Journal of Science and Technology, 1(1): 22−27.

    Google Scholar

    Shekar PR, Mathew A. 2022. Evaluation of morphometric and hypsometric analysis of the Bagh River basin using remote sensing and geographic information system techniques. Energy Nexus, 7: 100−104. DOI:10.1016/j.nexus.2022.100104.

    CrossRef Google Scholar

    Shrestha AB, Bajracharya SR, Sharma AR, et al. 2017. Observed trends and changes in daily temperature and precipitation extremes over the Koshi river basin 1975–2010. International Journal of Climatology, 37(2): 1066–1083. DOI:10.1002/joc.4761.

    Google Scholar

    Singh S, Singh MB. 1997. Morphometric analysis of Kanhar river basin. National Geographical Journal of India, 43(1): 31−43.

    Google Scholar

    Smith KG. 1950. Standards for grading texture of erosional topography. American Journal of Science, 248(9): 655−668. DOI:10.2475/ajs.248.9.655.

    CrossRef Google Scholar

    Sreedevi PD, Owais SHHK, Khan HH, et al. 2009. Morphometric analysis of a watershed of South India using SRTM data and GIS. Journal of Geological Society of India, 273(4): 543−552. DOI:10.1007/s12594-009-0038-4.

    CrossRef Google Scholar

    Strahler AN. 1952. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11): 1117−1142. DOI:10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.

    CrossRef Google Scholar

    Strahler AN. 1957. Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6): 913−920. DOI:10.1029/TR038i006p00913.

    Google Scholar

    Strahler AN. 1964. Part II. Quantitative geomorphology of drainage basins and channel networks. In: Chow V, Ed., Handbook of Applied Hydrology, McGraw Hill, New York, 439−476.

    Google Scholar

    Subayani AM, Qari MH, Matsah MI. 2012. Digital elevation model and multivariate statistical analysis of morphometric parameters of some wadis, western Saudi Arabia. Arabian Journal of Geosciences, 5(1): 147−157. DOI:10.1007/s12517-010-0149-7.

    CrossRef Google Scholar

    Tarboton DG, Baker ME. 2008. Towards an algebra for terrain-based flow analysis. Representing, Modeling and Visualizing the Natural Environment: Innovations in GIS, 13: 167−194. DOI:10.1201/9781420055504.

    Google Scholar

    Tassew BG, Belete MA, Miegel K. 2021. Assessment and analysis of morphometric characteristics of Lake Tana sub-basin, Upper Blue Nile Basin, Ethiopia. International Journal of River Basin Management, 21(2): 195−209. DOI:10.1080/15715124.2021.1938091.

    CrossRef Google Scholar

    Thomas J, Joseph S, Thrivikramaji KP. 2010. Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India. International Journal of Digital Earth, 3(2): 135−156. DOI:10.1080/17538940903464370.

    CrossRef Google Scholar

    UNAVCO facility. Geoid height calculator, Accessed on on 20 August 2024.

    Google Scholar

    Valdiya KS. 1976. Himalayan transverse faults and folds and their parallelism with subsurface structures of North Indian plains. Tectonophysics, 32(3/4): 353−386. DOI:10.1016/0040-1951(76)90069-X.

    CrossRef Google Scholar

    Valdiya KS. 1980. Geology of Kumaun lesser Himalaya (Vol. 280). Wadia Institute of Himalayan Geology. Rajpur Road Dehradun: Himachal times press.

    Google Scholar

    Vijith H, Satheesh R. 2006. GIS-based morphometric analysis of two major upland sub-watersheds of Meenachil river in Kerala. Journal of the Indian Society of Remote Sensing, 34(2): 181−185. DOI:10.1007/BF02991823.

    CrossRef Google Scholar

    Vinutha DN, Janardhana MR. 2014. Morphometry of The Payaswini Watershed, Coorg District, Karnataka, India, using remote sensing and GIS techniques. International Journal of Innovative Research in Science, Engineering and Technology, 3(5): 516–24.

    Google Scholar

    Vyas S, Singh GP. 2020. Morphometric analysis of hard rock terrain of Banne watershed, District Chattarpur, Madhya Pradesh, India using remote sensing and GIS. International Journal on Emerging Technologies, 11(2): 714−721.

    Google Scholar

    Wilson JSJ, Chandrasekar N, Magesh NS. 2012. Morphometric analysis of major sub-watersheds in Aiyar & Karai Pottanar Basin, Central Tamil Nadu, India using remote sensing & GIS techniques. Bonfring International Journal of Industrial Engineering and Management Science, 2 (Special Issue on Geospatial Technology Development in Natural Resource and Disaster Management), 08-15.

    Google Scholar

    Zhai X, Zhang Y, Zhang Y, et al. 2021. Simulating flash flood hydrographs and behavior metrics across China: Implications for flash flood management. Science of the Total Environment, 763: 142977. DOI:10.1016/j.scitotenv.2020.142977.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(6)

Article Metrics

Article views(463) PDF downloads(49) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint