Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2024 Vol. 12, No. 4
Article Contents

Zhang Zi-xuan, Wu Lin, Kong Xiang-ke, Li Hui, Song Le, Wang Ping, Wang Yan-yan. 2024. Impact of Cr(III) complexation with organic acid on its adsorption in silts and fine sands. Journal of Groundwater Science and Engineering, 12(4): 347-359. doi: 10.26599/JGSE.2024.9280026
Citation: Zhang Zi-xuan, Wu Lin, Kong Xiang-ke, Li Hui, Song Le, Wang Ping, Wang Yan-yan. 2024. Impact of Cr(III) complexation with organic acid on its adsorption in silts and fine sands. Journal of Groundwater Science and Engineering, 12(4): 347-359. doi: 10.26599/JGSE.2024.9280026

Impact of Cr(III) complexation with organic acid on its adsorption in silts and fine sands

More Information
  • Trivalent chromium (Cr(III)) can form stable soluble complexes with organic components, altering its adsorption properties in the water-soil environment. This increases the risk of Cr(III) migrating to deeper soils and transforming into toxic Cr(VI) due to the presence of manganese oxides in sediments. In this study, Citric Acid (CA) was selected as a representative organic ligand to prepare and characterize Cr(III)-CA complexes. The characteristics, mechanisms and environmental factors influencing the adsorption of Cr(III)-CA on porous media (silts and fine sands) were investigated in the study. The results show that Cr(III) coordinates with CA at a 1:1 molar ratio, forming stable and soluble Cr(III)-CA complexes. Compared to Cr(III) ions, the equilibrium adsorption capacity of Cr(III)-CA is an order of magnitude lower in silts and fine sands. The adsorption of Cr(III)-CA in silts and fine sands is dominated by chemical adsorption of monolayers, following the pseudo-second-order kinetic equation and the Langmuir isotherm adsorption model. Varying contents of clay minerals and iron-aluminum oxides prove to be the main causes of differences in adsorption capacity of Cr(III)-CA in silts and fine sands. Changes in solution pH affect the adsorption rate and capacity of Cr(III)-CA by altering its ionic form. The adsorption process is irreversible and only minimally influenced by ionic strength, suggesting that inner-sphere complexation serves as the dominant Cr(III)-CA adsorption mechanism.

  • 加载中
  • Cooper E, Vasudevan D. 2009. Hydroxynaphthoic acid isomer sorption onto goethite. Journal of Colloid and Interface Science, 333(1): 85−96. DOI:10.1016/j.jcis.2009.02.023.

    CrossRef Google Scholar

    Cao XH, Guo J, Mao JD, et al. 2011. Adsorption and mobility of Cr(III)-organic acid complexes in soils. Journal of Hazardous Materials, 192(3): 1533−1548. DOI:10.1016/j.jhazmat.2011.06.076.

    CrossRef Google Scholar

    Chiavola A, Amato E, Boni M. 2019. Comparison of different iron oxide adsorbents for combined arsenic, vanadium and fluoride removal from drinking water. International Journal of Environmental Science & Technology, 16(10): 6053−6064. DOI:10.1007/s13762-019-02316-4.

    CrossRef Google Scholar

    Dai RN, Liu J, Yu CY, et al. 2009. A comparative study of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite). Chemosphere, 76(4): 536−541. DOI:10.1016/j.chemosphere.2009.03.009.

    CrossRef Google Scholar

    Gustafsson J, Persson I, Oromieh A, et al. 2014. Chromium(III) complexation to natural organic matter: Mechanisms and modeling. Environment Science & Technology, 48: 1753−1761. DOI:10.1021/es404557e.

    CrossRef Google Scholar

    Gérard F. 2016. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils—A myth revisited. Geoderma, 262(15): 213−226. DOI:10.1016/j.geoderma.2015.08.036.

    CrossRef Google Scholar

    Guo HM, Chen Y, Hu HY, et al. 2020. High hexavalent chromium concentration in groundwater from a deep aquifer in the baiyangdian basin of the north China plain. Environmental Science & Technology, 54(16): 10068−10077. DOI:10.1021/acs.est.0c02357.

    CrossRef Google Scholar

    Hizal J, Apak R. 2013. Kinetic investigation and surface complexation modeling of Cd(Ⅱ) adsorption onto feldspar. Fresenius Environmental Bulletin, 22(3): 766−771. DOI:10.1021/ma00183a057.

    CrossRef Google Scholar

    Hao YY, Ma HR, Wang Q, et al. 2022. Complexation behavior and removal of organic-Cr(III) complexes from the environment: A review. Ecotoxicology and Environmental Safety, 240: 113676. DOI:10.1016/j.ecoenv.2022.113676.

    CrossRef Google Scholar

    James B, Bartlett R. 1983. Behavior of chromium in soils: V. Fate of organically complexed Cr(III) added to soil. Journal of Environmental Quality, 12(2): 169−172. DOI:10.2134/jeq1983.00472425001200020003x.

    CrossRef Google Scholar

    Kah M, Sigmund G, Xiao F, et al. 2017. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. Water Research, 124: 673−692. DOI:10.1016/j.watres.2017.07.070.

    CrossRef Google Scholar

    Kanagaraj G, Elango L. 2019. Chromium and fluoride contamination in groundwater around leather tanning industries in southern India: implications from stable isotopic ratio Delta Cr-53/Delta Cr-52, geochemical and geostatistical modelling. Chemosphere, 220: 943−953. DOI:10.1016/j.chemosphere.2018.12.105.

    CrossRef Google Scholar

    Kong XK, Li CH, Wang P, et al. 2019. Soil pollution characteristics and microbial responses in a vertical profile with long-term tannery sludge contamination in Hebei, China. International Journal of Environmental Research and Public Health, 16(4): 563−570. DOI:10.3390/ijerph16040563.

    CrossRef Google Scholar

    Kong XK, Wang Y, Ma LS, et al. 2020. Leaching behaviors of chromium (III) and ammonium-nitrogen from a tannery sludge in north China: Comparison of batch and column investigations. International Journal of Environmental Research and Public Health, 17: 6003. DOI:10.3390/ijerph17166003.

    CrossRef Google Scholar

    Luo Z, Wadhawan A, Bouwer E. 2010. Sorption behavior of nine chromium (III) organic complexes in soil. International Journal of Environmental Science and Technology, 7(1): 1−10. DOI:10.1007/BF03326111.

    CrossRef Google Scholar

    Li F. 2009. Synthesis, characterization and preliminary application of several organic chromium complexes. MS thesis, Zhenjiang: Jiangsu University: 23. (in Chinese)

    Google Scholar

    Li H, Han ZT, Deng Q, et al. 2023. Assessing the effectiveness of nanoscale zero-valent iron particles produced by green tea for Cr(VI)-contaminated groundwater remediation. Journal of Groundwater Science and Engineering, 11(1): 55−67. DOI:10.26599/JGSE.2023.9280006.

    CrossRef Google Scholar

    Liu W, Zhang J, Zhang C, et al. 2011. Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: Mechanisms, isotherms and kinetics. Chemical Engineering Journal, 171(2): 431–438. DOI:10.1016/j.cej.2011.03.099.

    Google Scholar

    Li BR, Liao P, Liu P, et al. 2022. Formation, aggregation and transport of NOM-Cr(III) colloids in aquatic environments. Environmental Science-Nano, 9(3): 1133−1145. DOI:10.1039/d1en00861g.

    CrossRef Google Scholar

    Martin S, Shchukarev A, Hanna K, et al. 2015. Kinetics and mechanisms of ciprofloxacin oxidation on hematite surfaces. Environment Science & Technology, 49(20): 12197−12205. DOI:10.1021/acs.est.5b02851.

    CrossRef Google Scholar

    Merdoud O, Cameselle C, Boulakradeche MO, et al. 2016. Removal of heavy metals from contaminated soil by electro dialytic remediation enhanced with organic acids. Environmental Science-Processes & Impacts, 18(11): 1440−1448. DOI:10.1039/c6em00380j.

    CrossRef Google Scholar

    Marsac R, Martin S, Boily J, et al. 2016. Oxolinic acid binding at goethite and akaganeite surfaces: Experimental study and modeling. Environmental Science & Technology, 50(2): 660−678. DOI:10.1021/acs.est.5b04940.

    CrossRef Google Scholar

    Ma H, Zhou J, Hua L, et al. 2017. Chromium recovery from tannery sludge by bioleaching and its reuse in tanning process. Journal of Cleaner Production, 142(8): 2752−2760. DOI:10.1016/j.jclepro.2016.10.193.

    CrossRef Google Scholar

    Manoj S, RamyaPriya R, Elango L. 2021. Long-term exposure to chromium contaminated waters and the associated human health risk in a highly contaminated industrialized region. Environmental Science and Pollution Research, 28(4): 4276−4288. DOI:10.1007/s11356-020-10762-8.

    CrossRef Google Scholar

    Puzon G, Tokala R, Zhang H, et al. 2008. Mobility and recalcitrance of organo-chromium(III) complexes. Chemosphere, 70(11): 2054−2059. DOI:10.1016/j.chemosphere.2007.09.010.

    CrossRef Google Scholar

    Pantazopoulou E, Zouboulis A. et al. 2017. Chemical toxicity and ecotoxicity evaluation of tannery sludge stabilized with ladle furnace slag. Journal of Environmental Management, 216: 257−262. DOI:10.1016/j.jenvman.2017.03.077.

    CrossRef Google Scholar

    Qiang TT, Bu QQ, Ren LF, et al. 2014. Adsorption behaviors of Cr(III) on carboxylated collagen fiber. Journal of Applied Polymer Science, 131(11): 2928−2935. DOI:10.1002/app.40285.

    CrossRef Google Scholar

    Reijonen I, Hartikainen H. 2016. Oxidation mechanisms and chemical bioavailability of chromium in agricultural soil-pH as the master variable. Applied Geochemistry, 74: 84−93. DOI:10.1016/j.apgeochem.2016.08.017.

    CrossRef Google Scholar

    Schwab A, He Y, Banks M. 2005. The influence of organic ligands on the retention of lead in soil. Chemosphere, 61(6): 856−866. DOI:10.1016/j.chemosphere.2005.04.098.

    CrossRef Google Scholar

    Sethunathan N, Megharaj M, Smith L, et al. 2005. Microbial role in the failure of natural attenuation of Chromium(Ⅵ) in long-term tannery waste contaminated soil. Agriculture, Ecosystems & Environment, 105(4): 657–661. DOI:10.1016/j.agee.2004.08.008.

    Google Scholar

    Shashirekha V, Sridharan MR, Swamy, M. 2015. Biochemical response of cyanobacterial species to trivalent chromium stress. Algal Research, 12: 421−430. DOI:10.1016/j.algal.2015.10.003.

    CrossRef Google Scholar

    Shi GW, Li YS, Liu YC, et al. 2023. Predicting the speciation of ionizable antibiotic ciprofloxacin by biochars with varying carbonization degrees. RSC Advances, 13: 9892−9902. DOI:10.1039/d3ra00122a.

    CrossRef Google Scholar

    Tripathi S, Chaurasia S. 2020. Detection of chromium in surface and groundwater and its bio-absorption using bio-wastes and vermiculite. Engineering Science and Technology-an International Journal-Jestech, 23(5): 1153−1161. DOI:10.1016/j.jestch.2019.12.002.

    CrossRef Google Scholar

    Marsac R, Martin S, Boily J, et al. 2010. Oxolinic acid binding at goethite and akaganeite surfaces: Experimental study and modeling. Environmental Science & Technology, 29(6): 997−1003. (in Chinese)

    Google Scholar

    Wang CL, Liu CL, Pang YJ, et al. 2013. Adsorption behavior of hexavalent chromium in vadose zone. Journal of Groundwater Science and Engineering, 1(3): 83−88. DOI:10.26599/JGSE.2013.9280034.

    CrossRef Google Scholar

    Wang DD, He SY, Shan C, et al. 2016. Chromium speciation in tannery effluent after alkaline precipitation: Isolation and characterization. Journal of Hazardous Materials, 316: 169−177. DOI:10.1016/j.jhazmat.2016.05.021.

    CrossRef Google Scholar

    Wang P, Kong XK, Ma LS, et al. 2022. Metal(loid)s removal by zeolite-supported iron particles from mine contaminated groundwater: Performance and mechanistic insights. Environmental Pollution, 313: 120155. DOI: 10.1016/j.envpol.2022.120155.

    Google Scholar

    Yang SY, Cheng Y, Zou HT, et al. 2022. Synergistic roles of montmorillonite and organic matter in reducing bioavailable state of chromium in tannery sludge. Environmental Science and Pollution Research, 29(58): 87298−87309. DOI:10.1007/s11356-022-21897-1.

    CrossRef Google Scholar

    Zeng J, Gou M, Tang YQ, et al. 2016. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community. Bioresource Technology, 218: 859−866. DOI:10.1016/j.biortech.2016.07.051.

    CrossRef Google Scholar

    Zhang W, Chen Z, Han ZT, et al. 2022. Adsorption characteristics of Pb(Ⅱ) and Cd(Ⅱ) in water bodies onto biochars derived from 7-ACA fermented residue. Safety and Environmental Engineering, 29(4): 212−220. (in Chinese) DOI:10.13578/i.cnki.issn.1671-1556.20210694.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(126) PDF downloads(23) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint