2025 Vol. 45, No. 1
Article Contents

LIAO Jialong, ZHANG Qizhi, HE Liang, DONG Yu, ZUNZHU Sangmu. 2025. Problems and countermeasures to the New Round of Prospecting Breakthrough Strategy in Xizang. Sedimentary Geology and Tethyan Geology, 45(1): 152-167. doi: 10.19826/j.cnki.1009-3850.2025.01004
Citation: LIAO Jialong, ZHANG Qizhi, HE Liang, DONG Yu, ZUNZHU Sangmu. 2025. Problems and countermeasures to the New Round of Prospecting Breakthrough Strategy in Xizang. Sedimentary Geology and Tethyan Geology, 45(1): 152-167. doi: 10.19826/j.cnki.1009-3850.2025.01004

Problems and countermeasures to the New Round of Prospecting Breakthrough Strategy in Xizang

More Information
  • Xizang is located in the eastern segment of the Tethys Himalayan metallogenic belt, one of the three major metallogenic belts in the world. The unique geological evolution process and superior metallogenic geological conditions have produced abundant mineral resources. However, due to the influence of the high-altitude climate, special geographical environment, and policy factors, mineral exploration and development work in the region faces many problems such as low level of basic geological work, significant impact of the ecological redline policy, lack of new technologies for deep ore prospecting, insufficient leadership in science and technology innovation, and shortage of geological and technological talents. In view of this, this article takes the background of the new round of prospecting breakthrough strategic action as a starting point, and outlines the main issues that restrict the implementation of the New Round of Prospecting Breakthrough Strategy from the overview of mineral resources and the current situation of exploration and development in Xizang. It also puts forward targeted recommendations to enhance the leading role of scientific and technological innovation, improve basic geological work, strengthen the exploration and evaluation of advantageous resources, coordinate the relationship between mineral exploration and development and ecological protection policies, improve the management mechanism for scientific and technological talents, and improve the policy and institutional system of geological exploration, in order to provide decision-making basis for the improvement and scientific advancement of the new round of prospecting breakthrough strategic action.

  • 加载中
  • [1] 陈明,孙伟,陈浩,等,2020. 西藏南羌塘鄂斯玛地区中侏罗统布曲组沉积特征及油气地质意义[J]. 沉积与特提斯地质,40(3):96 − 101.

    Google Scholar

    Chen M,Sun W,Chen H,et al.,2020. Sedimentary characteristics and oil-gas geological significance of the Middle Jurassic Buqu Formation in the Ersma area,Southern Qiangtang Basin,Xizang[J]. Sedimentary Geology and Tethyan Geology,40(3):96 − 101 (in Chinese with English abstract).

    Google Scholar

    [2] Chen X,Zheng Y Y,Gao S B,et al.,2020. Ages and Petrogenesis of the Late Triassic Andesitic Rocks at the Luerma Porphyry Cu Deposit,Western Gangdese,and Implications for Regional Metallogeny[J]. Gondwana Research,85:103 − 123. doi: 10.1016/j.gr.2020.04.006

    CrossRef Google Scholar

    [3] 陈毓川, 1999. 中国主要成矿区带矿产资源远景评价[M]. 北京: 地震出版社.

    Google Scholar

    Chen Y C,1999. Assessment of Mineral Resources Prospects in China's Major Ore-Forming Belts[M]. Beijing:The Press of Seismology(in Chinese).

    Google Scholar

    [4] Chen Y C,Wang D H,2001. The research on Himalayan endogenetic metallogenesis[M]. Beijing:The Press of Seismology(in Chinese).

    Google Scholar

    [5] 程文斌,顾雪祥,唐菊兴,等,2010. 西藏冈底斯−念青唐古拉成矿带典型矿床硫化物 Pb 同位素特征——对成矿元素组合分带性的指示[J]. 岩石学报,26(11):3350 − 3362.

    Google Scholar

    Cheng W B,Gu X X,Tang J X,et al.,2010. Lead isotope characteristics of ore sulfides from typical deposits in the Gangdese-Nyainqentanglha metallogenic belt:Implications for the zonation of ore forming elements.[J]. Acta Petrologica Sinica,26(11):3350 − 3362 (in Chinese with English abstract).

    Google Scholar

    [6] 方向,宋扬,唐菊兴,等,2020. 西藏班公湖−怒江成矿带商旭金矿成矿时代探讨及其地质意义[J]. 地质学报,94(11):3376 − 3390.

    Google Scholar

    Fang X,Song Y,Tang J X,et al.,2020. Metallogenic epoch study on the Shangxu gold deposit,Bangong-Nujiang suture zone,Xizang and its geological implications[J]. Acta Geologica Sinica,94(11):3376 − 3390 (in Chinese with English abstract).

    Google Scholar

    [7] 程文斌, 顾雪祥, 唐菊兴, 等, 2010. 西藏冈底斯−念青唐古拉成矿带典型矿床硫化物 Pb 同位素特征——对成矿元素组合分带性的指示[J]. 岩石学报, 26(11): 3350 − 3362.

    Google Scholar

    Fan J J,Li C,Wang M,et al.,2018. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Xizang Plateau[J]. International Journal of Earth Sciences,107(1):231 − 249.

    Google Scholar

    [8] 付建刚,李光明,董随亮,等,2022. 西藏拉隆穹窿淡色花岗岩中石榴子石矿物学研究及对岩浆−热液过程的指示[J]. 沉积与特提斯地质,42(2):288 − 299. doi: 10.3969/j.issn.0001-5717.2020.11.013

    CrossRef Google Scholar

    Fu J G,Li G M,Dong S L,et al.,2022. Mineral chemistry of garnet and its implication for the magmatic-hydrothermal transition in rare metal leucogranites in the Lalong dome,southern Xizang,China[J]. Sedimentary Geology and Tethyan Geology,42(2):288 − 299 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.11.013

    CrossRef Google Scholar

    [9] Groves D I,Bierlein F P,2007. Geodynamic Settings of Mineral Deposit Systems[J]. Journal of the Geological Society,164(1):19 − 30. doi: 10.1007/s00531-017-1487-4

    CrossRef Google Scholar

    [10] 韩春明,肖文交,方爱民,等,2021. 西昆仑及邻区成矿规律和成矿系列[J]. 岩石学报,37(12):3615 − 3644.

    Google Scholar

    Han C M,Xiao W J,Fang A M,et al.,2021. Metallogenic regularity and metallogenic series of West Kunlun and its adjacent areas.[J]. Acta Petrologica Sinica,37(12):3615 − 3644 (in Chinese with English abstract).

    Google Scholar

    [11] 何登发,王成善,管树巍,等,2023. 分层滑脱:羌塘盆地构造研究的新概念[J]. 地质科学,58(1):1 − 17. doi: 10.1144/0016-76492006-065

    CrossRef Google Scholar

    He D F,Wang C X,Guan S W,et al.,2023. Stratified detachment deformation:New concept for studies on the tectonics of Qiangtang Basin[J]. Chinese Journal of Geology,58(1):1 − 17 (in Chinese with English abstract). doi: 10.1144/0016-76492006-065

    CrossRef Google Scholar

    [12] 韩春明, 肖文交, 方爱民, 等, 2021. 西昆仑及邻区成矿规律和成矿系列[J]. 岩石学报, 37(12): 3615 − 3644. doi: 10.18654/1000-0569/2021.12.03

    CrossRef Google Scholar

    Hou Z Q,Cook N J,2009. Metallogenesis of the Xizang Collisional Orogen:A review and introduction to the special issue[J]. Ore Geology Reviews,36(1-3):2 − 24. doi: 10.18654/1000-0569/2021.12.03

    CrossRef Google Scholar

    [13] 何登发, 王成善, 管树巍, 等, 2023. 分层滑脱: 羌塘盆地构造研究的新概念[J]. 地质科学, 58(1): 1 − 17. doi: 10.12017/dzkx.2023.001

    CrossRef Google Scholar

    Hou Z Q,Yang Z M,Lu Y J,et al.,2015. A genetic linkage between subduction and collision-related porphyry Cu deposits in continental collision zones[J]. Geology,43(3):247 − 250. doi: 10.12017/dzkx.2023.001

    CrossRef Google Scholar

    [14] Hou Z Q,Zhang H,2015. Geographical and metallogeny of the eastern Tethyan metallogenic domain[J]. Ore Geology Review,70:346 − 384.

    Google Scholar

    [15] 侯增谦,莫宣学,杨志明,等,2006. 青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J]. 中国地质,36(4):809 − 818. doi: 10.1130/G36362.1

    CrossRef Google Scholar

    Hou Z Q,Mo X X,Yang Z M,et al.,2006. Metallogeneses in the collisional orogen of the Qinghai-Xizang Plateau:Tectonic setting,tempo-spatial distribution and ore deposit types[J]. Geology in China,36(4):809 − 818 (in Chinese with English abstract). doi: 10.1130/G36362.1

    CrossRef Google Scholar

    [16] 侯增谦,郑远川,卢占武,等,2020. 青藏高原巨厚地壳:生长、加厚与演化[J]. 地质学报,94(10):797 − 2815. doi: 10.1016/j.oregeorev.2014.10.026

    CrossRef Google Scholar

    Hou Z Q,Zheng Y C,Lu Z W,et al.,2020. Growth,thickening and evolution of the thickened crust of the Xizang Plateau[J]. Acta Geologica Sinica,94(10):797 − 2815. https://kns.cnki.net/ kcms2/detail/11.1167.P.20230717.2046.004.html (in Chinese with English abstract). doi: 10.1016/j.oregeorev.2014.10.026

    CrossRef Google Scholar

    [17] 姜贞贞,刘高令,卓玛曲西,等,2021. 我国锂资源供需现状下西藏盐湖锂产业现状及对策建议[J]. 盐湖研究,29(3):104 − 110.

    Google Scholar

    Jiang Z Z,Liu G L,Zhuoma Q X,et al.,2021. Present Situation and Suggestions of Saline Lake Lithium Resource in Xizang under the Current Situation of Supply and Demand of LithiumResources in China[J]. Journal of Salt Lake Research,29(3):104 − 110 (in Chinese with English abstract).

    Google Scholar

    [18] 鞠建华,2022. “双碳”目标背景下矿业发展新机遇与实现路径[J]. 中国矿业,31(1):1 − 5.

    Google Scholar

    Ju J H,2022. New opportunities and implementation path of mining development under the background of "double carbon" goal[J]. China Mining Magazine,31(1):1 − 5 (in Chinese with English abstract).

    Google Scholar

    [19] 姜贞贞, 刘高令, 卓玛曲西, 等, 2021. 我国锂资源供需现状下西藏盐湖锂产业现状及对策建议[J]. 盐湖研究, 29(3): 104 − 110.

    Google Scholar

    Kapp P,Murphy M A,Yin A,et al.,2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Xizang[J]. Tectonics,22(4):1 − 24.

    Google Scholar

    [20] 鞠建华, 2022. “双碳”目标背景下矿业发展新机遇与实现路径[J]. 中国矿业, 31(1): 1 − 5. doi: 10.12075/j.issn.1004-4051.2022.1.zgky202201002

    CrossRef Google Scholar

    Lang X H,Tang J X,Li Z J,et al.,2014. U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun District in the Gangdese porphyry copper belt,southern Xizang,PRC[J]. Journal of Asian Earth Sciences,79:608 − 622. doi: 10.12075/j.issn.1004-4051.2022.1.zgky202201002

    CrossRef Google Scholar

    [21] 冷秋锋,李文昌,戴成龙,等,2023. 西藏那茶淌铅锌矿床S-Pb 同位素组成及其示踪成矿物质来源[J]. 沉积与特提斯地质,43(1):168 − 179.

    Google Scholar

    Leng Q F,Li W C,Dai C L,et al.,2023. Sulfur and lead isotope composition tracing for the ore-forming material source of Nachatang Pb-Zn deposit in Xizang[J]. Sedimentary Geology and Tethyan Geology,43(1):168 − 179 (in Chinese with English abstract).

    Google Scholar

    [22] 李国政,2019. 新中国成立后西藏矿业发展述论[J]. 河南理工大学学报: 社会科学版,20(2):40 − 46. doi: 10.1016/j.jseaes.2013.08.009

    CrossRef Google Scholar

    Li G Z,2019. A review of the development of mining industry in Xizang after the founding of New China[J]. Journal of Henan Polytechnic University ( Social Sciences),20(2):40 − 46 (in Chinese with English abstract). doi: 10.1016/j.jseaes.2013.08.009

    CrossRef Google Scholar

    [23] 李建康,刘喜方,王登红,2014. 中国锂矿成矿规律概要[J]. 地质学报,88(12):2269 − 2283.

    Google Scholar

    Li J K,Liu X F,Wang D H,2014. The Metallogenetic Regularity of Lithium Deposit in China[J]. Acta Geologica Sinica,88(12):2269 − 2283 (in Chinese with English abstract).

    Google Scholar

    [24] 李国政, 2019. 新中国成立后西藏矿业发展述论[J]. 河南理工大学学报: 社会科学版, 20(2): 40 − 46.

    Google Scholar

    Li L H,Xie C M,Ren Y S,et al.,2020. Discovery of Late Triassic mineralization in the Gangdese metallogenic belt,Xizang:The Banduo Pb-Zn deposit,Somdo area[J]. Ore Geology Reviews,126:103754.

    Google Scholar

    [25] 李阳,宋扬,唐菊兴,等,2024. 西藏锑矿分布、类型及其成矿规律研究[J]. 中国地质,51(5)1570 − 1600.

    Google Scholar

    Li Y,Song Y,Tang J X,et al.,2024. Distribution,types and metallogenic regularity of antimony deposits in Xizang[J]. Geology in China,51(5):1570 − 1600 (in Chinese with English abstract).

    Google Scholar

    [26] 刘洪,黄瀚霄,张林奎,等,2021. 西藏冈底斯成矿带西段鲁尔玛晚三叠世斑岩型铜(金) 矿点的发现及意义[J]. 沉积与特提斯地质,41(4):599 − 611. doi: 10.1016/j.oregeorev.2020.103754

    CrossRef Google Scholar

    Liu H,Huang H X,Zhang L K,et al.,2021. Luerma,a newly discovered Late Triassic porphyry copper-gold ore-spot in the western Gangdise metallogenic belt,Xizang[J]. Sedimentary Geology and Tethyan Geology,41(4):599 − 611 (in Chinese with English abstract). doi: 10.1016/j.oregeorev.2020.103754

    CrossRef Google Scholar

    [27] 刘中戎,张佳伟,2017. 西藏羌塘盆地中生代晚期构造事件与油气的关系[J]. 沉积与特提斯地质,37(2):23 − 29.

    Google Scholar

    Liu Z R,Zhang J W,2017. Late Mesozoic tectonic events and hydrocarbon accumulation in the Qiangtang Basin,northern Xizang[J]. Sedimentary Geology and Tethyan Geology,37(2):23 − 29 (in Chinese with English abstract).

    Google Scholar

    [28] 路耀祖,杨晓刚,2016. 青海南巴颜喀拉造山带扎开陇巴地区地质特征及金矿找矿前景[J]. 黄金科学技术,24(1):28 − 34.

    Google Scholar

    Lu Y Z,Yang X G,2016. Geological characteristics and prospecting of gold deposit in Zhakailongba area,south Bayan Har orogenic belt of Qinghai Province[J]. Gold Science and Technology,24(1):28 − 34 (in Chinese with English abstract).

    Google Scholar

    [29] 罗梅,潘凤雏,李巨初,等,2014. 西藏羌塘−三江区金属矿床成矿系列研究[J]. 地质学报,88(12):2556 − 2571. doi: 10.3969/j.issn.1009-3850.2017.02.003

    CrossRef Google Scholar

    Luo M,Pan F C,Li J C,et al.,2014. Metallogenic series study of ore deposits in the Xizang Qiangtang-Sanjiang District[J]. Acta Geologica Sinica,88(12):2556 − 2571 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2017.02.003

    CrossRef Google Scholar

    [30] 吕忠梅,马鑫,2023. 打造特殊空间区域保护的“中国样本”[J]. 环境保护,51(16):10 − 17. doi: 10.11872/j.issn.1005-2518.2016.01.028

    CrossRef Google Scholar

    Lü Z M,Ma X,2023. Create a "Chinese sample" for the protection of special space areas[J]. Environmental Protection,51(16):10 − 17 (in Chinese with English abstract). doi: 10.11872/j.issn.1005-2518.2016.01.028

    CrossRef Google Scholar

    [31] 马冠卿,1998. 西藏区域地质基本特征[J]. 中国区域地质,17(1):16 − 24.

    Google Scholar

    Ma G Q,1998. Basic regional geological features of Xizang[J]. Regional Geology of China,17(1):16 − 24 (in Chinese with English abstract).

    Google Scholar

    [32] 吕忠梅, 马鑫, 2023. 打造特殊空间区域保护的“中国样本”[J]. 环境保护, 51(16): 10 − 17.

    Google Scholar

    Pan G T,Wang L Q,Li R S,et al.,2012. Tectonic evolution of the Qinghai–Xizang Plateau[J]. Journal of Asian Earth Sciences,53:3 − 14.

    Google Scholar

    [33] 潘桂棠,李振兴,王立全,等,2002. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报,21(11):701 − 707.

    Google Scholar

    Pan G T,Li Z X,Wang L Q,et al.,2002. Preliminary division of tectonic units of the Qinghai-Xizang Plateau and its adjacent regions[J]. Geological Bulletin of China,21(11):701 − 707 (in Chinese with English abstract).

    Google Scholar

    [34] 潘桂棠,王立全,尹福光,等,2022. 青藏高原形成演化研究回顾、进展与展望[J]. 沉积与特提斯地质,42(2):151 − 175. doi: 10.1016/j.jseaes.2011.12.018

    CrossRef Google Scholar

    Pan G T,Wang L Q,Yin F G,et al.,2022. Researches on geological-tectonic evolution of Xizang Plateau:A review,recent advances,and directions in the future[J]. Sedimentary Geology and Tethyan Geology,42(2):151 − 175 (in Chinese with English abstract). doi: 10.1016/j.jseaes.2011.12.018

    CrossRef Google Scholar

    [35] 秦克章,周起凤,赵俊兴,等,2021. 喜马拉雅淡色花岗岩带伟晶岩的富铍成矿特点及向更高处找锂[J]. 地质学报,95(10):3146 − 3162. doi: 10.3969/j.issn.1671-2552.2002.11.002

    CrossRef Google Scholar

    Qin K Z,Zhou Q F,Zhao J X,et al.,2021. Be-rich mineralization features of Himalayan leucogranite belt and prospects for lithium-bearing pegmatites in higher altitudes[J]. Acta Geologica Sinica,95(10):3146 − 3162 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2002.11.002

    CrossRef Google Scholar

    [36] 潘桂棠, 王立全, 尹福光, 等, 2022. 青藏高原形成演化研究回顾、进展与展望[J]. 沉积与特提斯地质, 42(2): 151 − 175.

    Google Scholar

    Qu X M,Wang R J,Xin H B,et al.,2012. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture,Xizang plateau[J]. Lithos,146-147:264 − 275.

    Google Scholar

    [37] 秦克章, 周起凤, 赵俊兴, 等, 2021. 喜马拉雅淡色花岗岩带伟晶岩的富铍成矿特点及向更高处找锂[J]. 地质学报, 95(10): 3146 − 3162. doi: 10.3969/j.issn.0001-5717.2021.10.014

    CrossRef Google Scholar

    Seltman R,Faragher A E,1994. Collisional orogens and their related metallogeny - a preface[C]. Metallogeny of Collisional orogens,7 − 20. doi: 10.3969/j.issn.0001-5717.2021.10.014

    CrossRef Google Scholar

    [38] 史长义,2021. 西藏玉龙Cu成矿带及其外围地区异常结构模式找矿预测研究[J]. 地质学报,95(11):3163 − 3177. doi: 10.1016/j.lithos.2012.05.006

    CrossRef Google Scholar

    Shi C Y,2021. Research on prospecting prediction for the Yulong Cu metallogenic belt and its peripheral areas based on the model for spatial structures of regional geochemical multi-element anomalies,Xizang[J]. Acta Geologica Sinica,95(11):3163 − 3177 (in Chinese with English abstract). doi: 10.1016/j.lithos.2012.05.006

    CrossRef Google Scholar

    [39] 宋扬,曾庆高,刘海永,等,2019. 班公湖−怒江洋形成演化新视角:兼论西藏中部古−新特提斯转换[J]. 岩石学报,35(3):625 − 641.

    Google Scholar

    Song Y,Zeng Q G,Liu H Y,et al.,2019. An innovative perspective for the evolution of Bangong-Nujiang Ocean:Also discussing the Paleo-and Neo-Tethys conversion[J]. Acta Petrologica Sinica,35(3):625 − 641 (in Chinese with English abstract).

    Google Scholar

    [40] 宋扬,唐菊兴,曲晓明,等,2014. 西藏班公湖−怒江成矿带研究进展及一些新认识[J]. 地球科学进展,29(7):795 − 809. doi: 10.3969/j.issn.0001-5717.2021.11.001

    CrossRef Google Scholar

    Song Y,Tang J X,Qu X M,et al.,2014. Progress in the study of mineralization in the Bangongco-Nujiang metallogenic belt and some new recognition[J]. Advances in Earth Science,29(7):795 − 809 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.11.001

    CrossRef Google Scholar

    [41] 宋扬, 曾庆高, 刘海永, 等, 2019. 班公湖−怒江洋形成演化新视角: 兼论西藏中部古−新特提斯转换[J]. 岩石学报, 35(3): 625 − 641. doi: 10.18654/1000-0569/2019.03.02

    CrossRef Google Scholar

    Stampfli G M,Hochard C,Vérard C,et a1.,2013. The formation of Pangea[J]. Tectonophysics,593(Complete):1 − 19. doi: 10.18654/1000-0569/2019.03.02

    CrossRef Google Scholar

    [42] 孙晓明,韦慧晓,翟伟,等,2010. 南邦布大型造山型金矿成矿流体地球化学和成矿机制[J]. 岩石学报,26(6):1672 − 1684.

    Google Scholar

    Sun X M,Wei H X,Zhai W,et al.,2010. Ore-forming fluid geochemistry and metallogenic mechanisn of Bangbu large-scale orogenic gold deposit in southern Xizang China[J]. Acta Petrologica Sinica,26(6):1672 − 1684 (in Chinese with English abstract).

    Google Scholar

    [43] 唐菊兴,王勤,2019. 西藏铜矿资源优势及开发利用展望[J]. 中国工程科学,21(1):140 − 147.

    Google Scholar

    Tang J X,Wang Q,2019. Advantages of copper resources and prospects for their exploitation and utilization in Xizang[J]. Strategic Study of CAE,21(1):140 − 147 (in Chinese with English abstract).

    Google Scholar

    [44] 陶琰,毕献武,辛忠雷,等,2011. 西藏昌都地区拉诺玛锑铅锌多金属矿床地质地球化学特征及成因分析[J]. 矿床地质,30(4):599 − 615.

    Google Scholar

    Tao Y,Bi X W,Xin Z L,et al.,2011. Geology,geochemistry and origin of Lanuoma Pb-Zn-Sb deposit in Changdu area,Xizang[J]. Mineral Deposits,30(4):599 − 615 (in Chinese with English abstract).

    Google Scholar

    [45] 陶琰,朱飞霖,辛忠雷,等,2010. 西藏昌都地区拉诺玛锑铅锌多金属矿成矿模式探讨[J]. 矿床地质( 增刊 ):283 − 284. doi: 10.15302/J-SSCAE-2019.01.020

    CrossRef Google Scholar

    Tao Y,Zhu F L,Xin Z L,et al.,2010. Research on the mineralization model of the Lanoma antimony-lead-zinc polymetallic deposit in Changdu area of Xizang[J]. Mineral Deposits (Suppl):283 − 284 (in Chinese with English abstract). doi: 10.15302/J-SSCAE-2019.01.020

    CrossRef Google Scholar

    [46] 陶琰, 毕献武, 辛忠雷, 等, 2011. 西藏昌都地区拉诺玛锑铅锌多金属矿床地质地球化学特征及成因分析[J]. 矿床地质, 30(4): 599 − 615. doi: 10.3969/j.issn.0258-7106.2011.04.002

    CrossRef Google Scholar

    Wang B D,Wang L Q,Chung S L,et al.,2016. Evolution of the Bangong-Nujiang Tethyan ocean:Insights from the geochronology and geochemistry of mafic rocks within ophiolites[J]. Lithos,245:18 − 33. doi: 10.3969/j.issn.0258-7106.2011.04.002

    CrossRef Google Scholar

    [47] 王璞,2018. 西藏铜资源开发利用现状[J]. 中国钼业,42(2):26 − 30.

    Google Scholar

    Wang P,2018. The status of copper resource exploitation and utilization in Xizang[J]. China Molybdenum Industry,42(2):26 − 30 (in Chinese with English abstract).

    Google Scholar

    [48] 王汝成,吴福元,谢磊,等,2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学(地球科学),47(8):871 − 880. doi: 10.1016/j.lithos.2015.07.016

    CrossRef Google Scholar

    Wang R C,Wu F Y,Xie L,et al.,2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts,South Xizang.[J]. Scientia Sinica(Terrae),47(8):871 − 880 (in Chinese with English abstract). doi: 10.1016/j.lithos.2015.07.016

    CrossRef Google Scholar

    [49] 王修,刘冲昊,范凤岩,等,2022. 西藏矿业资源开发现状与环境保护协调发展对策探讨[J]. 有色金属(矿山部分),74(6):37 − 43.

    Google Scholar

    Wang X,Liu C H,Fan F Y,et al.,2022. Discussion on coordinative development countermeasure of mineral resources exploitation and environmental protection in Xizang,China[J]. Nonferrous Metals(Mining Section),74(6):37 − 43 (in Chinese with English abstract).

    Google Scholar

    [50] 王卓,黄冉笑,吴大天,等,2023. 盐湖卤水型锂矿基本特征及其开发利用潜力评价[J]. 中国地质,50(1):102 − 117.

    Google Scholar

    Wang Z,Huang R X,Wu D T,et al.,2023. The basic characteristics and development potential evaluation of salt lake brine-type lithium deposits[J]. Geology in China,50(1):102 − 117 (in Chinese with English abstract).

    Google Scholar

    [51] 王修, 刘冲昊, 范凤岩, 等, 2022. 西藏矿业资源开发现状与环境保护协调发展对策探讨[J]. 有色金属(矿山部分), 74(6): 37 − 43. doi: 10.3969/j.issn.1671-4172.2022.06.006

    CrossRef Google Scholar

    Wu F Y,Liu X C,Liu Z C,Wang R C,et al.,2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization[J]. Lithos,352-353:105319. doi: 10.3969/j.issn.1671-4172.2022.06.006

    CrossRef Google Scholar

    [52] 吴福元,刘小驰,纪伟强,等,2017. 高分异花岗岩的识别与研究[J]. 中国科学(地球科学),47(7):745 − 765. doi: 10.12029/gc20220808001

    CrossRef Google Scholar

    Wu F Y,Liu X C,Ji W Q,et al.,2017. Highly fractionated granites:Recognition and research[J]. Scientia Sinica(Terrae),47(7):745 − 765 (in Chinese with English abstract). doi: 10.12029/gc20220808001

    CrossRef Google Scholar

    [53] 吴福元,王汝成,刘小驰,等,2021. 喜马拉雅稀有金属成矿作用研究的新突破[J]. 岩石学报,37(11):3261 − 3276. doi: 10.1016/j.lithos.2019.105319

    CrossRef Google Scholar

    Wu F Y,Wang R C,Liu X C,et al.,2021. New breakthroughs in the studies of Himalayan rare-metal mineralization[J]. Acta Petrologica Sinica,37(11):3261 − 3276 (in Chinese with English abstract). doi: 10.1016/j.lithos.2019.105319

    CrossRef Google Scholar

    [54] 吴珍汉,季长军,赵珍,等,2019. 羌塘盆地半岛湖—东湖地区主力烃源岩及油气资源潜力[J]. 地质学报,93(7):1738 − 1753.

    Google Scholar

    Wu Z H,Ji C J,Zhao Z,et al.,2019. Main source rock and oil resource potential of the Bandaohu-Donghu area in the northern Qiangtang Basin[J]. Acta Geologica Sinica,93(7):1738 − 1753 (in Chinese with English abstract).

    Google Scholar

    [55] 席伟杰,肖克炎,2016. 冈底斯−藏南Cu-Au-Pb-Zn-Mo成矿带成矿地质特征与资源潜力分析[J]. 地质学报,90(7):1636 − 1649. doi: 10.18654/1000-0569/2021.11.01

    CrossRef Google Scholar

    Xi W J,Xiao K Y,2016. Geological features and resource potential of the Gangdise-southern Xizang Cu-Ag-Pb-Zn-Mo metallogenic belt[J]. Acta Geologica Sinica,90(7):1636 − 1649 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.01

    CrossRef Google Scholar

    [56] 吴珍汉, 季长军, 赵珍, 等, 2019. 羌塘盆地半岛湖—东湖地区主力烃源岩及油气资源潜力[J]. 地质学报, 93(7): 1738 − 1753. doi: 10.3969/j.issn.0001-5717.2019.07.013

    CrossRef Google Scholar

    Xie F W,Tang J X,2021. The Late Triassic-Jurassic magmatic belt and its implications for the double subduction of the Neo-Tethys Ocean in the southern Lhasa subterrane,Xizang[J]. Gondwana Research,97:1 − 21. doi: 10.3969/j.issn.0001-5717.2019.07.013

    CrossRef Google Scholar

    [57] 谢富伟,郎兴海,唐菊兴,等,2022. 西藏冈底斯成矿带成矿规律[J]. 矿床地质,41(5):952 − 974. doi: 10.3969/j.issn.0001-5717.2016.07.026

    CrossRef Google Scholar

    Xie F W,Lang X H,Tang J X,et al.,2022. Metallogenic regularity of Gangdese metallogenic belt,Xizang[J]. Mineral Deposits,41(5):952 − 974 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.07.026

    CrossRef Google Scholar

    [58] 徐琳,罗绍强,唐华,等,2020. 西藏南羌塘盆地达卓玛地区油气地质条件研究[J]. 中国地质调查,7(5):16 − 24. doi: 10.1016/j.gr.2021.05.007

    CrossRef Google Scholar

    Xu L,Luo S Q,Tang H,et al.,2022. Study on petroleum geological conditions in Dazhuom area of Southern Qiangtang Basin of Xizang[J]. Geological Survey of China,7(5):16 − 24 (in Chinese with English abstract). doi: 10.1016/j.gr.2021.05.007

    CrossRef Google Scholar

    [59] 徐志刚,陈毓川,王登红,等,2008. 中国成矿区带划分方案[M]. 北京:地质出版社.

    Google Scholar

    Xu Z G,Chen Y C,Wang D H,et al.,2008. The scheme of the classification of the minerogenetic units in China[M]. Beijing:Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    [60] 姚传江,2018. 西藏生态脆弱区绿色矿业开发模式研究[J]. 中国有色金属(S1):432 − 434.

    Google Scholar

    Yao C J,2018. Research on green mining development model in ecologically fragile areas of Xizang[J]. China Nonferrous Metals(S1):432 − 434 (in Chinese with English abstract).

    Google Scholar

    [61] 易建洲,王啸祎,林德才,等,2023. 新一轮找矿突破战略行动背景下西藏矿业绿色发展建议[J]. 中国矿业,3(7):45 − 49.

    Google Scholar

    Yi J Z,Wang X Y,Lin D C,et al.,2023. Suggestions for green development of mining industry in Xizang against the background of a new round of strategic breakthrough in mineral exploration[J]. China Mining Magazine,3(7):45 − 49 (in Chinese with English abstract).

    Google Scholar

    [62] 尹莉洁,易建洲,林毅斌,等,2023. 新形势下西藏绿色矿山建设高质量发展研究[J]. 中国国土资源经济,36(4):73 − 81.

    Google Scholar

    Yin L J,Yi J Z,Lin Y B,et al.,2023. Research on high-quality development of green mine construction in Xizang under the new situation[J]. Natural Resource Economics of China,36(4):73 − 81 (in Chinese with English abstract).

    Google Scholar

    [63] 张大伟,2011. 西藏地区油气资源潜力与战略选区[J]. 中国矿业,20(3):1 − 5. doi: 10.12075/j.issn.1004-4051.20230510

    CrossRef Google Scholar

    Zhang D W,2011. Potential of hydrocarbon resources and strategic research in Xizang area[J]. China Mining Magazine,20(3):1 − 5 (in Chinese with English abstract). doi: 10.12075/j.issn.1004-4051.20230510

    CrossRef Google Scholar

    [64] 张洪瑞,侯增谦,2023. 大陆碰撞成矿作用:深部动力学机制与成矿[J]. 东华理工大学学报:自然科学版,46(6):525 − 536.

    Google Scholar

    Zhang H R,Hou Z Q,2023. Metallogenesis within collisional orogen:The deep dynamics and formation of mineral deposits[J]. Journal of East China University of Technology(Natural Science),46(6):525 − 536 (in Chinese with English abstract).

    Google Scholar

    [65] 张培震,王伟涛,甘卫军,等,2022. 青藏高原的现今构造变形与地球动力过程[J]. 地质学报,96(10):3297 − 3313. doi: 10.3969/j.issn.1004-4051.2011.03.001

    CrossRef Google Scholar

    Zhang P Z,Wang W T,Gan W J,et al.,2022. Present-day deformation and geodynamic processes of the Xizang Plateau[J]. Acta Geologica Sinica,96(10):3297 − 3313 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-4051.2011.03.001

    CrossRef Google Scholar

    [66] 张晓旭,唐菊兴,林彬,等,2022. 西藏玉龙铜矿带南段马牧普铜多金属矿床矿物学特征[J]. 地质学报,96(6):2062 − 2077.

    Google Scholar

    Zhang X X,Tang J X,Lin B,et al.,2022. Mineralogical characteristics of the Mamupu copper polymetallic deposit in the southern section of the Yulong copper belt,Xizang[J]. Acta Geologica Sinica,96(6):2062 − 2077 (in Chinese with English abstract).

    Google Scholar

    [67] 张志,李光明,张林奎,2022. 西藏喜马拉雅带稀有金属矿勘查与研究进展[J]. 沉积与特提斯地质,42(2):176 − 188. doi: 10.3969/j.issn.0001-5717.2022.10.003

    CrossRef Google Scholar

    Zhang Z,Li G M,Zhang L K,et al.,2022. Exploration and research progresses of rare metals in Himalayan belt,Xizang[J]. Sedimentary Geology and Tethyan Geology,42(2):176 − 188 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.10.003

    CrossRef Google Scholar

    [68] 张晓旭, 唐菊兴, 林彬, 等, 2022. 西藏玉龙铜矿带南段马牧普铜多金属矿床矿物学特征[J]. 地质学报, 96(6): 2062 − 2077. doi: 10.3969/j.issn.0001-5717.2022.06.010

    CrossRef Google Scholar

    Zheng Y Y,Sun X,Gao S B,et al.,2014. Multiple mineralization events at the Jiru porphyry copper deposit,southern Xizang:Implications for Eocene and Miocene magma sources and resource potential[J]. Journal of Asian Earth Sciences,79:842 − 857. doi: 10.3969/j.issn.0001-5717.2022.06.010

    CrossRef Google Scholar

    [69] 郑有业,次琼,高顺宝,等,2021a. 西藏冈底斯西段银锡铜多金属成矿系列与找矿方向[J]. 地学前缘,28(3):379 − 402.

    Google Scholar

    Zheng Y Y,Ci Q,Gao S B,et al.,2021a. The Ag-Sn-Cu polymetallic minerogenetic series and prospecting direction in the western Gangdese belt,Xizang[J]. Earth Science Frontiers,28(3):379 − 402 (in Chinese with English abstract).

    Google Scholar

    [70] 郑有业,吴松,次琼,等,2021b. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列[J]. 地球科学,46(6):1909 − 1940. doi: 10.1016/j.jseaes.2013.03.029

    CrossRef Google Scholar

    Zheng Y Y,Wu S,Ci Q,et al.,2021b. Cu-Mo-Au metallogenesis and minerogenetic series during superimposed orogenesis process in Gangdese[J]. Earth Science,46(6):1909 − 1940 (in Chinese with English abstract). doi: 10.1016/j.jseaes.2013.03.029

    CrossRef Google Scholar

    [71] 郑有业,赵永鑫,王苹,等,2004. 藏南金锑成矿带成矿规律研究及找矿取得重大进展[J]. 地球科学,29(1):44 − 48.

    Google Scholar

    Zheng Y Y,Zhao Y X,Wang P,et al.,2004. The mining law of the gold-antimony metallogenic belt in southern Xizang has made significant progress in the research and exploration.[J]. Earth Science,29(1):44 − 48 (in Chinese with English abstract).

    Google Scholar

    [72] 郑有业, 吴松, 次琼, 等, 2021b. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列[J]. 地球科学, 46(6): 1909 − 1940.

    Google Scholar

    Zhou G J,Huan Y Z,Wang L Q,et al.,2023. Identifying ecological priority areas for synergistic conservation across scales in the Asian Water Tower region[J]. Ecosystem Health and Sustainability,(9):36.

    Google Scholar

    [73] 周玉,龚大兴,周雄,等,2018. 东昆仑西段卧龙岗花岗斑岩岩石地球化学特征和锆石U-Pb年龄——对可可西里−松潘−甘孜地块构造环境及区域锑成矿时代的限定[J]. 地质通报,37(10):1853 − 1865. doi: 10.3321/j.issn:1000-2383.2004.01.021

    CrossRef Google Scholar

    Zhou Y,Gong D X,Zhou X,et al.,2018. Petrogeochemistry and zircon geochronology of the Wolonggang granite porphyry in the western segment of the East Kunlun: Implications for tectonic setting of the Hoh Xil-Songpan-Ganzi Block and regional antimony mineralization timing[J]. Geological Bulletin of China,37(10):1853 − 1865 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2004.01.021

    CrossRef Google Scholar

    [74] 陈毓川,1999. 中国主要成矿区带矿产资源远景评价[M]. 北京:地震出版社.

    Google Scholar

    Zhou G J, Huan Y Z, Wang L Q, et al., 2023. Identifying ecological priority areas for synergistic conservation across scales in the Asian Water Tower region[J]. Ecosystem Health and Sustainability, (9): 36.

    Google Scholar

    [75] 陈毓川,王登红,2001. 喜马拉雅期内生成矿作用研究[M]. 北京:地震出版社.

    Google Scholar

    Zhou Y, Gong D X, Zhou X, et al., 2018. Petrogeochemistry and zircon geochronology of the Wolonggang granite porphyry in the western segment of the East Kunlun: Implications for tectonic setting of the Hoh Xil-Songpan-Ganzi Block and regional antimony mineralization timing[J]. Geological Bulletin of China, 37(10): 1853 − 1865.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(5)

Article Metrics

Article views(976) PDF downloads(50) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint