2025 Vol. 45, No. 1
Article Contents

WAN Pingyi, CHENG Wenbin, CAI Jimin, WU Chunzhang, CHEN Hao, LANG Xinghai, WANG Chuan, YE Xiaochun, PENG Jianhua, LIU Qingqiang. 2025. The depositional environment and manganese mineralization mechanism of the ore-bearing rock series from the No. Ⅲ ore body of the early Cambrian Maojiashan manganese deposit, Longmenshan tectonic belt. Sedimentary Geology and Tethyan Geology, 45(1): 134-151. doi: 10.19826/j.cnki.1009-3850.2024.12010
Citation: WAN Pingyi, CHENG Wenbin, CAI Jimin, WU Chunzhang, CHEN Hao, LANG Xinghai, WANG Chuan, YE Xiaochun, PENG Jianhua, LIU Qingqiang. 2025. The depositional environment and manganese mineralization mechanism of the ore-bearing rock series from the No. Ⅲ ore body of the early Cambrian Maojiashan manganese deposit, Longmenshan tectonic belt. Sedimentary Geology and Tethyan Geology, 45(1): 134-151. doi: 10.19826/j.cnki.1009-3850.2024.12010

The depositional environment and manganese mineralization mechanism of the ore-bearing rock series from the No. Ⅲ ore body of the early Cambrian Maojiashan manganese deposit, Longmenshan tectonic belt

More Information
  • Addressing the scientific question of the unclear mechanism of manganese enrichment and precipitation in the early Cambrian manganese deposits of the Longmenshan tectonic belt, this paper focuses on the No. Ⅲ ore body of the Maojiashan manganese deposit in this belt as the research object. Based on detailed field geological surveys and thin-section identification, a systematic total organic carbon (TOC) and elemental geochemical test was conducted to preliminarily explore the source of manganese, depositional environment, and enrichment mechanism. The study shows: (1) The ore-bearing rock series from the No. Ⅲ ore body of the Maojiashan manganese deposit belongs to the fifth member of the lower Cambrian Qiujiahe Formation, primarily composed of manganese ore layers (No. Ⅲ manganese ore body), pyrite layers, manganese-bearing siliceous dolostone, carbonaceous mudstone, siliceous rock, and dolostone. The manganese ore layer is composed of centimeter- to millimeter-scale multi-cycle manganese-rich sulfide layers and manganese-rich carbonate layers. The main ore minerals are alabandite and kutnahorite, and the main gangue minerals are pyrite framboids and quartz, with a small amount of organic matter. (2) The CIA value of the ore-bearing rock series mainly ranges from 65 to 85, indicating moderate continental weathering conditions, favorable for the migration of terrigenous manganese. However, there is a negative correlation between Al2O3 and MnO, suggesting that continental weathering is likely not the main source of manganese. In the (Cu+Co+Ni)×10–Fe–Mn, (Zr+Y+Ce)×100–(Cu+Ni)×15–(Fe+Mn)/4, Ce/Ce* vs. (Y/Ho)PAAS, Ce/Ce* vs. Nd, and Fe/Ti vs. Al/(Al+Fe+Mn) discriminant diagrams, the data pertaining to rocks and ores of the ore-bearing rock series are mainly plotted on the hydrothermal origin area or the aqueous-hydrothermal mixed area, indicating that manganese is likely derived from submarine hydrothermal input. (3) The size of pyrite framboids, as well as redox indicators such as the EFMo/EFU ratio, V/Cr ratio, and V/(V+Ni) ratio, indicate that the ore-bearing rock series formed in a bottom water environment with fluctuating suboxic-anoxic-sulfidic conditions; paleoceanic productivity indicators P and Cd indicate high paleoproductivity; TOC vs. Mo and Mo vs. Cd diagrams show that the ore-bearing rock series mainly formed in a weakly restricted upwelling environment. (4) The mechanism of manganese enrichment and precipitation is likely controlled by microbial-induced mineralization and bacterial sulfate reduction (BSR).

  • 加载中
  • [1] Algeo T J,Li C,2020. Redox classification and calibration of redox thresholds in sedimentary systems[J]. Geochimica et Cosmochimica Acta,287:8 − 26. doi: 10.1016/j.gca.2020.01.055

    CrossRef Google Scholar

    [2] Algeo T J,Liu J,2020. A re-assessment of elemental proxies for paleoredox analysis[J]. Chemical Geology,540:119549. doi: 10.1016/j.chemgeo.2020.119549

    CrossRef Google Scholar

    [3] Algeo T J,Lyons T W,2006. Mo-total organic carbon covariation in modern anoxic marine environments:Implication for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography,21:1 − 23.

    Google Scholar

    [4] Algeo T J,Lyons T W,Blakey R C,et al.,2007. Hydrographic conditions of the Devono-Carboniferous North American Seaway inferred from sedimentary Mo-TOC relationships[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,256:204 − 230.

    Google Scholar

    [5] Algeo T J,Rowe H,2012. Paleoceanographic applications of trace-metal concentration data[J]. Chemical Geology,324:6 − 18.

    Google Scholar

    [6] Algeo T J,Tribovillard N,2009. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation[J]. Chemical Geology,268(3):211 − 225.

    Google Scholar

    [7] 白新会,王挽琼,袁明强,等,2022. 四川省平武县箭竹垭锰矿地质特征及矿床成因探讨[J]. 中国锰业,40(4):18 − 22.

    Google Scholar

    Bai X H,Wang W Q,Yuan M Q,et al.,2022. Geological characteristics and genesis of Jianzhuya manganese deposit in Pingwu,Sichuan,China[J]. Manganese Industry,40(4):18 − 22. (in Chinese with English abstract).

    Google Scholar

    [8] 包万铖,夏国清,路畅,等,2023. 西藏伦坡拉盆地牛堡组二段晚始新世−早渐新世地球化学特征与古气候意义[J]. 沉积与特提斯地质,43(3):580 − 591.

    Google Scholar

    Bao W C,Xia G Q,Lu C,et al.,2023. Late Eocene to early Oligocene geochemical characteristics and paleoclimatic significance of the second member of Niubao Formation in the Lunpola Basin,Xizang[J]. Sedimentary Geology and Tethyan Geology,43(3):580 − 591 (in Chinese with English abstract).

    Google Scholar

    [9] Bau M,Dulski P,1996. Distribution of yttrium and rare earth elements in the Penge and Kuruman iron formations,Transvaal supergroup South Africa[J]. Precambrian Research,79:37 − 55. doi: 10.1016/0301-9268(95)00087-9

    CrossRef Google Scholar

    [10] Bau M,Schmidt K,Koschinsky A,et al.,2014. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium[J]. Chemical Geology,381:1 − 9. doi: 10.1016/j.chemgeo.2014.05.004

    CrossRef Google Scholar

    [11] Bennett W W,Canfield D E,2020. Redox-sensitive trace metals as paleoredox proxies:A review and analysis of data from modern sediments[J]. Earth-Science Reviews,204:103175. doi: 10.1016/j.earscirev.2020.103175

    CrossRef Google Scholar

    [12] Bolton B R,Frakes L A,1985. Geology and genesis of manganese oolite,Chiatura,Georgia,U.S.S.R.[J]. Geological Society of America Bulletin,96:1398 − 1406. doi: 10.1130/0016-7606(1985)96<1398:GAGOMO>2.0.CO;2

    CrossRef Google Scholar

    [13] Bonatti E,Kraemer T,Rydell H,1972. Classification and genesis of submarine iron-manganese deposits [C]//Horn D R (ed),Ferromanganese deposits on the ocean floor. Natl. Sci. Found.,Washington:149 − 165.

    Google Scholar

    [14] Bond D P,Wignall P B,2010. Pyrite framboid study of marine Permian–Triassic boundary sections:A complex anoxic event and its relationship to contemporaneous mass extinction[J]. Geological Society of America Bulletin,122(7 − 8):1265 − 1279.

    Google Scholar

    [15] Boström K,1983. Genesis of Ferromanganese Deposits-Diagnostic Criteria for Recent and Old Deposits [C]//Rona P A.,Eds.,Hydrothermal processes at seafloor spreading centers. Springer,Berlin:473 − 489.

    Google Scholar

    [16] Bruland K W,1980. Oceanographic distributions of cadmium,zinc,nickel,and copper in the North Pacific[J]. Earth and Planetary Science Letters,47(2):176 − 198. doi: 10.1016/0012-821X(80)90035-7

    CrossRef Google Scholar

    [17] Brumsack H J,2006. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,232(2-4):344 − 361.

    Google Scholar

    [18] Calvert S E,Pedersen T F,1993. Geochemistry of recent oxic and anoxic sediments: implications for the geological record[J]. Marine Geology,113:67 − 88.

    Google Scholar

    [19] Chen F G,Pufahl P K,Wang Q F,et al.,2022. A new model for the genesis of carboniferous Mn ores,Longtou deposit,South China block[J]. Economic Geology,117(1):107 − 125. doi: 10.5382/econgeo.4855

    CrossRef Google Scholar

    [20] Chen F G,Wang Q F,Pufahl P K,et al.,2023. Carbonate-hosted manganese deposits and ocean anoxia[J]. Earth and Planetary Science Letters,622:118385. doi: 10.1016/j.jpgl.2023.118385

    CrossRef Google Scholar

    [21] 程文斌,顾雪祥,胡修棉,等,2008. 现代大洋红色粘土与白垩纪大洋红层元素地球化学对比[J]. 地质学报,82(1):37 − 47. doi: 10.3321/j.issn:0001-5717.2008.01.005

    CrossRef Google Scholar

    Cheng W B,Gu X X,Hu X M,et al.,2008. Comparative element geochemistry of recent oceanic red clay and Cretaceous oceanic red bed[J]. Acta Geologica Sinica,82(1):37 − 47 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2008.01.005

    CrossRef Google Scholar

    [22] Conway T M,John S G,2015. Biogeochemical cycling of cadmium isotopes along a highresolution section through the North Atlantic Ocean [J]. Geochimica et Cosmochimica Acta,148:269 − 283.

    Google Scholar

    [23] De Baar H J W,Schijf J,Byrne R H,1991. Solution chemistry of the rare-earth elements in seawater[J]. Eur. J. Solid State Inorg. Chem.,28:357 − 373.

    Google Scholar

    [24] Dong Z G,Peng Z D,Robbins L J,et al.,2023. Episodic ventilation of euxinic bottom waters triggers the formation of black shale-hosted Mn carbonate deposits[J]. Geochimica et Cosmochimica Acta,341:132 − 149.

    Google Scholar

    [25] Föllmi K B,1996. The phosphorus cycle,phosphogenesis and marine phosphate-rich deposits[J]. Earth Science Reviews,40:55 − 124. doi: 10.1016/0012-8252(95)00049-6

    CrossRef Google Scholar

    [26] Frakes L A,Bolton B R,1984. Origin of manganese giants:Sea level change and anoxic-oxic history [J]. Geology,12(2):83 − 86.

    Google Scholar

    [27] Gao Z F,Zhu X K,Wang D,et al.,2021. Insights into hydrothermal controls and processes leading to the formation of the late Ediacaran gaoyan stratiform manganese-carbonate deposit,southwest China[J]. Ore Geology Reviews,139:104524. doi: 10.1016/j.oregeorev.2021.104524

    CrossRef Google Scholar

    [28] 葛祥英,牟传龙,余谦,等,2021. 四川盆地东部五峰组—龙马溪组黑色页岩有机质富集规律探讨[J]. 沉积与特提斯地质,41(3):418 − 435.

    Google Scholar

    Ge X Y,Mou C L,Yu Q,et al.,2021. A study on the enrichment of organic materials in black shales of the Wufeng to Longmaxi Formations in eastern Sichuan Basin [J]. Sedimentary Geology and Tethyan Geology,41(3):418 − 435 (in Chinese with English abstract).

    Google Scholar

    [29] Han T,Peng Y B,Bao H M,2022. Sulfate-limited euxinic seawater facilitated Paleozoic massively bedded barite deposition[J]. Earth and Planetary Science Letters,582:117419. doi: 10.1016/j.jpgl.2022.117419

    CrossRef Google Scholar

    [30] Hatch J R,Leventhal J S,1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,USA[J]. Chem. Geol.,99(1 − 3):65 − 82. doi: 10.1016/0009-2541(92)90031-Y

    CrossRef Google Scholar

    [31] Hein J R,Fan D L,Ye J,et al.,1999. Composition and origin of early Cambrian Tiantaishan phosphorite–Mn carbonate ores,Shaanxi province,China[J]. Ore Geology Reviews,15(1 − 3):95 − 134. doi: 10.1016/S0169-1368(99)00017-7

    CrossRef Google Scholar

    [32] Herndon E M,Havig J R,Singer D M,et al.,2018. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake[J]. Geochimica et Cosmochimica Acta,231:50 − 63. doi: 10.1016/j.gca.2018.04.013

    CrossRef Google Scholar

    [33] Jarvis I,Burnett W C,Nathan Y,et al.,1994. Phosphorite geochemistry:State of the art and environmental concerns[J]. Eclogae Geologicae Helvetiae,87(3):643 − 700.

    Google Scholar

    [34] Polgári M,Okita P M,Hein J R,1991. Stable isotope evidence for the origin of the Úrkút manganese ore deposit,Hungary[J]. Journal of Sedimentary Research,61(3):384 − 393.

    Google Scholar

    [35] 纪冬平,王朋,高政伟,等,2022. 陕西宁强县中坝锰矿床地球化学特征及成矿模式[J]. 矿床地质,41(3):469 − 488.

    Google Scholar

    Ji D P,Wang P,Gao Z W,et al.,2022. Geochemical characteristics and metallogenic model of Zhongba manganese deposit in Ningqiang County,Shaanxi,China[J]. Mineral Deposits,41(3):469 − 488 (in Chinese with English abstract).

    Google Scholar

    [36] 纪冬平,王朋,张凯,等,2021. 陕西宁强县中坝地区发现沉积型锰(钴)矿[J]. 矿产与地质,35(2):365 − 369.

    Google Scholar

    Ji D P,Wang P,Zhang K,et al.,2021. Discovery of the sedimentary Mn (Co) deposit in Zhongba area,Ningqiang County of Shaanxi[J]. Mineral Resources and Geology,35(2):365 − 369 (in Chinese with English abstract).

    Google Scholar

    [37] Johnson J E,Webb S M,Ma C,et al.,2016. Manganese mineralogy and diagenesis in the sedimentary rock record [J]. Geochimica et Cosmochimica Acta,173:210 − 231.

    Google Scholar

    [38] Jones B,Manning D A C,1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chem. Geol.,111:111 − 129.

    Google Scholar

    [39] Josso P,Pelleter E,Pourret O,et al.,2017. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements[J]. Ore Geology Reviews,87:3 − 15. doi: 10.1016/j.oregeorev.2016.09.003

    CrossRef Google Scholar

    [40] 李贤凯,罗润,2018. 四川平武杏子树矿产地质特征及成矿模式浅析[J]. 世界有色金属(1):131 − 132.

    Google Scholar

    Li X K,Luo R,2018. Analysis of mineral geological characteristics and metallogenic model of apricot tree in Pingwu,Sichuan[J]. World Nonferrous Metals(1):131 − 132. (in Chinese with English abstract).

    Google Scholar

    [41] Li Y H,Schoonmaker J E,2003. Chemical composition and mineralogy of marine sediments [A]// In:Rudnick R L,eds. Treatise on geochemistry,volume 7,sediments,diagenesis,and sedimentary rocks [C]. New York:Elsevier Sciences:1 − 35.

    Google Scholar

    [42] 李佐臣,2009. 扬子地块西北缘后龙门山造山带(北段)物质组成、构造特征及其形成演化[D]. 西安:长安大学.

    Google Scholar

    Li Z C,2009. Composition,structural characteristics and evolution of Back-Longmenshan orogen (north section) in the northwest margin of Yangtze Block [D]. Xi'an:Chang'an University (in Chinese with English abstract).

    Google Scholar

    [43] 李佐臣,裴先治,李瑞保,等,2013. 扬子地块西北缘刘家坪地区大滩花岗岩体年代学、地球化学及其构造环境[J]. 地质论评,59(5):869 − 884.

    Google Scholar

    Li Z C,Pei X Z,Li R B,et al.,2013. Geochronological and geochemical study on Datan granite in Liujiaping area,northwest Yangtze block and its tectonic sitting[J]. Geological Review,59(5):869 − 884 (in Chinese with English abstract).

    Google Scholar

    [44] Liu H,Sun L,Liu L,et al.,2024. Neoarchean subduction to back-arc extension in the North China Craton:Insights from the Dengfeng basic rock[J]. Solid Earth Sciences,9(3):100192. doi: 10.1016/j.sesci.2024.100192

    CrossRef Google Scholar

    [45] 罗绍强,张懿,刘增达,等,2024. 扬子西缘“平溪式”锰矿锰碳酸盐岩沉积成因[J/OL]. 地质通报. http://kns.cnki.net/kcms/detail/11.4648.p.20240508.1812.006.html.

    Google Scholar

    Luo S Q,Zhang Y,Liu Z D,et al. ,2024. Sedimentary genesis of Mn-carbonates of the “Pingxi type” Mn deposits in the western Yangtze margin [J/OL]. Geological Bulletin of China. http://kns. cnki.net/kcms/detail/11.4648.p.20240508.1812.006.html (in Chinese with English abstract).

    Google Scholar

    [46] Lyons T W,Reinhard C T,Planavsky N J,2014. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature,506(7488):307 − 315. doi: 10.1038/nature13068

    CrossRef Google Scholar

    [47] Marchig V,Gundlach H,Möller P,et al.,1982. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments[J]. Marine Geology,50(3):241 − 256.

    Google Scholar

    [48] Maynard J B,2010. The chemistry of manganese ores through time:A signal of increasing diversity of Earth-surface environments[J]. Economic Geology,105:535 − 552. doi: 10.2113/gsecongeo.105.3.535

    CrossRef Google Scholar

    [49] Maynard J B,2014. Manganiferous sediments,rocks,and ores [A]// In:Holland H,and Turekian K eds. Treatise on geochemistry [M].Volume 9,New York:Elsevier Sciences:327 − 349.

    Google Scholar

    [50] McLennan S M,1989. Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes [J].Reviews in Mineralogy and Geochemistry,21:169 − 200.

    Google Scholar

    [51] Melaku A A,Getaneh W,Atnafu B,2022. Genesis of the Enkafela Mn deposit:a record of submarine hydrothermal activity in the Afar Depression,Northeast Ethiopia[J]. Applied Earth Science,131(1):2 − 14. doi: 10.1080/25726838.2022.2035640

    CrossRef Google Scholar

    [52] Morford J L,Emerson S,1999. The geochemistry of redox sensitive trace metals in sediments[J]. Geochim. Cosmochim. Acta,63:1735 − 1750. doi: 10.1016/S0016-7037(99)00126-X

    CrossRef Google Scholar

    [53] Nesbitt H W,Young G M,1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,299:715 − 717. doi: 10.1038/299715a0

    CrossRef Google Scholar

    [54] Pagès A,Barnes S,Schmid S,et al.,2019. Micron-scale distribution of metals in Cambrian metalliferous shales,South China:Insights into local biologically driven redox disequilibrium[J]. Chemical Geology,528:119283. doi: 10.1016/j.chemgeo.2019.119283

    CrossRef Google Scholar

    [55] 裴先治,李佐臣,丁仨平,等,2009. 扬子地块西北缘轿子顶新元古代过铝质花岗岩:锆石SHRIMP U-Pb年龄和岩石地球化学及其构造意义[J]. 地学前缘,16(3):231 − 249.

    Google Scholar

    Pei X Z,Li Z C,Ding S P,et al. 2009. Neoproterozoic Jiaoziding peraluminous granite in the northwest margin of Yangtze Block:Zircon SHRIMP U-Pb age and geochemistry,and their tectonic significance[J]. Earth Science Frontiers,16(3):231 − 249 (in Chinese with English abstract).

    Google Scholar

    [56] Piper D Z,Perkins R B,2004. A modern vs. Permian black shale—the hydrography,primary productivity,and water-column chemistry of deposition[J]. Chemical Geology,206:177 − 197. doi: 10.1016/j.chemgeo.2003.12.006

    CrossRef Google Scholar

    [57] Piper D Z,Calvert S E,2009. A marine biogeochemical perspective on black shale deposition[J]. Earth-Science Reviews,95:63 − 96. doi: 10.1016/j.earscirev.2009.03.001

    CrossRef Google Scholar

    [58] Polgári M,Hein J R,Vigh T,et al.,2012. Microbial processes and the origin of the Úrkút manganese deposit,Hungary[J]. Ore geology Reviews,47:87 − 109. doi: 10.1016/j.oregeorev.2011.10.001

    CrossRef Google Scholar

    [59] Rollinson H R,Pease V,2021. Using geochemical data:To understand geological processes [M]. Cambridge University Press.

    Google Scholar

    [60] Schoepfer S D,Shen J,Wei H,et al.,2015. Total organic carbon,organic phosphorus,and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Reviews,149:23 − 52. doi: 10.1016/j.earscirev.2014.08.017

    CrossRef Google Scholar

    [61] Stolper D A,Keller C B,2018. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts[J]. Nature,2018,553(7688):323 − 327.

    Google Scholar

    [62] Su C X,Wang M,Luo D,et al.,2024. Petrological and geochemical insights into the magma plumbing system of the Daliuchong dacite eruption,Tengchong Volcanic Field,SW China[J]. Frontiers in Earth Science,12:1376492. doi: 10.3389/feart.2024.1376492

    CrossRef Google Scholar

    [63] Sweere T,van den Boorn S,Dickson A J,et al.,2016. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn,Co,Mo and Cd concentrations[J]. Chemical Geology,441:235 − 245. doi: 10.1016/j.chemgeo.2016.08.028

    CrossRef Google Scholar

    [64] Tribovillard N,Algeo T J,Baudin F,et al.,2012. Analysis of marine environmental conditions based on molybdenum-uranium covariation Applications to Mesozoic paleoceanography[J]. Chemical Geology,324:46 − 58.

    Google Scholar

    [65] Tribovillard N,Algeo T J,Lyons T,et al.,2006. Trace metals as paleoredox and paleoproductivity proxies:An update[J]. Chem. Geol.,232(1):12 − 32.

    Google Scholar

    [66] Turgeon S,Brumsack H J,2006. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian Boundary Event (Cretaceous) in the Umbria–Marche Basin of central Italy[J]. Chemical Geology,234(3 − 4):321 − 339. doi: 10.1016/j.chemgeo.2006.05.008

    CrossRef Google Scholar

    [67] Tyrrell T,1999. The relative influence of nitrogen and phosphorus on oceanic primary production[J]. Nature,400:525 − 529. doi: 10.1038/22941

    CrossRef Google Scholar

    [68] 王畅,程文斌,张玙,等,2024. 川西南雷波小沟早寒武世磷矿床磷酸盐富集沉降机制探讨[J]. 地质论评,70(2):563 − 576.

    Google Scholar

    Wang C,Cheng W B,Zhang Y,et al.,2024. Discussion on the enrichment and sedimentation mechanisms of phosphates in the Early Cambrian Xiaogou phosphate deposit in Leibo,southwestern Sichuan[J]. Geological Review,70(2):563 − 576 (in Chinese with English abstract).

    Google Scholar

    [69] Wang P,Du Y S,Yu W C,et al.,2020. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history[J]. Earth-Science Reviews,201:103032. doi: 10.1016/j.earscirev.2019.103032

    CrossRef Google Scholar

    [70] Wei G Y,Ling H F,Shields G A,et al.,2021. Revisiting stepwise ocean oxygenation with authigenic barium enrichments in marine mudrocks[J]. Geology,49(9):1059 − 1063. doi: 10.1130/G48825.1

    CrossRef Google Scholar

    [71] 卫炜,隋佩珊,陈婷婷,等,2024. 新元古代氧化事件驱动海洋Ba循环变化[J]. 高校地质学报,30(3):288 − 296.

    Google Scholar

    Wei W,Sui P S,Chen T T,et al.,2024. Changes in oceanic Ba cycle driven by the Neoproterozoic Oxygenation Event[J]. Geological Journal of China Universities,30(3):288 − 296 (in Chinese with English abstract).

    Google Scholar

    [72] Wittkop C,Swanner E D,Grengs A,et al.,2020. Evaluating a primary carbonate pathway for manganese enrichments in reducing environments[J]. Earth and Planetary Science Letters,538:116201. doi: 10.1016/j.jpgl.2020.116201

    CrossRef Google Scholar

    [73] Wood R,Liu A G,Bowyer F,et al.,2019. Integrated records of environmental change and evolution challenge the Cambrian Explosion[J]. Nature Ecology & Evolution ,3(4):528 − 538.

    Google Scholar

    [74] Wu C Q,Zhang Z W,Xiao J F,et al.,2016. Nanhuan manganese deposits within restricted basins of the southeastern Yangtze Platform,China:Constraints from geological and geochemical evidence[J]. Ore Geology Reviews,75:76 − 99. doi: 10.1016/j.oregeorev.2015.12.003

    CrossRef Google Scholar

    [75] Xin H,Jiang S Y,Yang J H,et al.,2015. Rare earth element and Sr-Nd isotope geochemistry of phosphatic rocks in Neoproterozoic Ediacaran Doushantuo Formation in Zhangcunping section from western Hubei Province,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,440:712 − 724.

    Google Scholar

    [76] 许骏,周科宇,熊宇轩,等,2022. 四川省青川县马公锰矿地质特征及找矿预测[J]. 地质找矿论丛,37(1):38 − 43.

    Google Scholar

    Xu J,Zhou K Y,Xiong Y X,et al.,2022. Geological characteristics and ore prediction of Magong Mn deposit in Qingchuan county,Sichuan province[J]. Contributions to Geology and Mineral Resources Research,37(1):38 − 43 (in Chinese with English abstract).

    Google Scholar

    [77] Xu L G,Lehmann B,Mao J W,et al.,2016. Strontium,sulfur,carbon,and oxygen isotope geochemistry of the Early Cambrian strata-bound barite and witherite deposits of the Qinling-Daba region,northern margin of the Yangtze Craton,China[J]. Economic Geology,111(3):695 − 718. doi: 10.2113/econgeo.111.3.695

    CrossRef Google Scholar

    [78] Yang C,Li X H,Li Z X,et al.,2020. Provenance evolution of age-calibrated strata reveals when and how South China Block collided with Gondwana[J]. Geophysical Research Letters,47(19):e2020GL090282. doi: 10.1029/2020GL090282

    CrossRef Google Scholar

    [79] Yang H Y,Xiao J F,Xia Y,et al.,2022. Diagenesis of Ediacaran − early Cambrian phosphorite: Comparisons with recent phosphate sediments based on LA-ICP-MS and EMPA[J]. Ore Geology Reviews,144:104813. doi: 10.1016/j.oregeorev.2022.104813

    CrossRef Google Scholar

    [80] 杨绍许,赵祥庭,1996. 天台山磷质岩系锰矿的成因及磷锰离析成矿的规律[J]. 中国锰业,14(3):9 − 13+23.

    Google Scholar

    Yang S X,Zhao X T,1996. Genesis of manganese deposit in Tiantaishan phosphatic rock formation and principle of segregation forming of phosphor and manganese minerals [J]. Manganese Industry,14(3):9 − 13+23 (in Chinese with English abstract).

    Google Scholar

    [81] 杨先光, 李仕荣, 杨永鹏, 等, 2016. 四川省锰矿成矿规律及资源评价[M]. 北京: 科学出版社.

    Google Scholar

    Yang X G,Li S R,Yang Y P,et al.,2016. Metallogenic regularity and resource evaluation of manganese deposits in Sichuan Province [M]. Beijing:China Science Publishing(in Chinese).

    Google Scholar

    [82] Yao W H,Li Z X,Li W X,et al.,2014. From Rodinia to Gondwanaland:A tale of detrital zircon provenance analyses from the southern Nanhua basin,South China[J]. American Journal of Science,14(1):278 − 313.

    Google Scholar

    [83] 叶连俊,1963. 外生矿床陆源汲取成矿论[J]. 地质科学(2):67 − 87.

    Google Scholar

    Ye L J,1963. Metallogenic theory of the exogenous deposits terrigenous draw [J]. Scientia Geologica Sinica(2):67 − 87 (in Chinese with English abstract).

    Google Scholar

    [84] 叶连俊, 1963. 外生矿床陆源汲取成矿论[J]. 地质科学(2): 67 − 87.

    Google Scholar

    Yu W C,Algeo T J,Du Y S,et al.,2016. Genesis of Cryogenian Datangpo manganese deposit:Hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,459:321 − 337.

    Google Scholar

    [85] Yu W C,Polgári M,Gyollai I,et al.,2019. Microbial metallogenesis of Cryogenian manganese ore deposits in South China[J]. Precambrian Research,322:122 − 135.

    Google Scholar

    [86] Zeng L K,Wu R S,Luo D X,et al.,1992. Paleogeography of Cambrian rock facies and sedimentary hosted mineral deposits in Sichuan Province [M]. Chengdu:Sichuan Publishing House of Science and Technology(in Chinese). doi: 10.1016/j.precamres.2019.01.004

    CrossRef Google Scholar

    [87] 曾良鍷, 吴荣森, 罗代锡, 等, 1992. 四川省寒武纪岩相古地理及沉积层控矿产[M]. 成都: 四川科学技术出版社.

    Google Scholar

    Zhang B L,Wang C L,Robbins L J,et al.,2020. Petrography and geochemistry of the Carboniferous Ortokarnash manganese deposit in the Western Kunlun Mountains,Xinjiang Province,China:Implications for the depositional environment and the origin of mineralization[J]. Economic Geology,115(7):1559 − 1588.

    Google Scholar

    [88] Zhang B,Cao J,Hu K,et al.,2022. Microbially-mediated Mn redox cycling and Mn carbonate precipitation in the Marinoan glacial aftermath,South China[J]. Global and Planetary Change,217:103950.

    Google Scholar

    [89] Zhang B,Cao J,Liao Z,et al.,2021b. Dynamic biogeochemical cycling and mineralization of manganese of hydrothermal origin after the Marinoan glaciation[J]. Chemical Geology,584:120502. doi: 10.5382/econgeo.4729

    CrossRef Google Scholar

    [90] 张律,颜玲,2015. 张家山锰矿地质特征及找矿标志[J]. 四川地质学报,35(2):201 − 204. doi: 10.1016/j.gloplacha.2022.103950

    CrossRef Google Scholar

    Zhang L,Yan L,2015. Geological features and prospecting criteria for the Zhangjiashan Mn deposit[J]. Acta Geologica Sichuan,35(2):201 − 204 (in Chinese with English abstract). doi: 10.1016/j.gloplacha.2022.103950

    CrossRef Google Scholar

    [91] Zhang X L,Chang C,Cui L H,et al.,2021a. Ecosystem reconstruction during the Cambrian explosion [J]. Paleontological Research,25(4),305 − 314. doi: 10.1016/j.chemgeo.2021.120502

    CrossRef Google Scholar

    [92] 张律, 颜玲, 2015. 张家山锰矿地质特征及找矿标志[J]. 四川地质学报, 35(2): 201 − 204. doi: 10.3969/j.issn.1006-0995.2015.02.010

    CrossRef Google Scholar

    Zhang Y N,Wang Z W,Yang X,et al.,2022. Petrological and Ni-Mo isotopic evidence for the genesis of the Ni-and Mo-sulfide extremely enriched early Cambrian black shale from Southwest China[J]. Chemical Geology,598:120812. doi: 10.3969/j.issn.1006-0995.2015.02.010

    CrossRef Google Scholar

    [93] 钱赵伟,李金旺,李树雷,2022. 陕南天台山磷锰矿地质特征及成因分析[J]. 中国锰业,40(1):27 − 31+36.

    Google Scholar

    Zhao Q W,Li J W,Li S L,2022. Geological characteristics and genesis analysis of phosphorus-manganese ore in Tiantai Mountain,southern Shanxi[J]. Manganese Industry,40(1):27 − 31+36 (in Chinese with English abstract).

    Google Scholar

    [94] 郑辉,2016. 四川观音梁子锰矿床地质特征及找矿意义[J]. 地质找矿论丛,31(3):317 − 324. doi: 10.1016/j.chemgeo.2022.120812

    CrossRef Google Scholar

    Zheng H,2016. Geological characteristics of Guanyinliangzi manganese deposit in Sichuan and significance of its prospecting[J]. Contributions to Geology and Mineral Resources Research,31(3):317 − 324 (in Chinese with English abstract). doi: 10.1016/j.chemgeo.2022.120812

    CrossRef Google Scholar

    [95] 钱赵伟, 李金旺, 李树雷, 2022. 陕南天台山磷锰矿地质特征及成因分析[J]. 中国锰业, 40(1): 27 − 31+36.

    Google Scholar

    Zheng M H,et al.,1993. Principles of ore geology [M]. Chengdu:Chengdu University of Science and Technology Press(in Chinese).

    Google Scholar

    [96] 杨先光,李仕荣,杨永鹏,等,2016. 四川省锰矿成矿规律及资源评价[M]. 北京:科学出版社. doi: 10.6053/j.issn.1001-1412.2016.03.001

    CrossRef Google Scholar

    Zheng H, 2016. Geological characteristics of Guanyinliangzi manganese deposit in Sichuan and significance of its prospecting[J]. Contributions to Geology and Mineral Resources Research, 31(3): 317 − 324. doi: 10.6053/j.issn.1001-1412.2016.03.001

    CrossRef Google Scholar

    [97] 曾良鍷,吴荣森,罗代锡,等,1992. 四川省寒武纪岩相古地理及沉积层控矿产[M]. 成都:四川科学技术出版社.

    Google Scholar

    [98] 郑明华,等,1993. 矿床地质原理[M]. 成都:成都科技大学出版社.

    Google Scholar

    Zheng M H, et al., 1993. Principles of ore geology [M]. Chengdu: Chengdu University of Science and Technology Press(in Chinese).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(288) PDF downloads(57) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint