2024 Vol. 44, No. 4
Article Contents

HE Yunlong, WANG Liqiang, LUOSANG Taqing, LI Baoliang, GAO Teng. 2024. Metallogenic material source of the Qielong copper-gold mineralization occurrence in the western Bangong-Nujiang metallogenic belt: Constraints from in-situ sulfur isotopes of ore sulfides. Sedimentary Geology and Tethyan Geology, 44(4): 683-696. doi: 10.19826/j.cnki.1009-3850.2024.09004
Citation: HE Yunlong, WANG Liqiang, LUOSANG Taqing, LI Baoliang, GAO Teng. 2024. Metallogenic material source of the Qielong copper-gold mineralization occurrence in the western Bangong-Nujiang metallogenic belt: Constraints from in-situ sulfur isotopes of ore sulfides. Sedimentary Geology and Tethyan Geology, 44(4): 683-696. doi: 10.19826/j.cnki.1009-3850.2024.09004

Metallogenic material source of the Qielong copper-gold mineralization occurrence in the western Bangong-Nujiang metallogenic belt: Constraints from in-situ sulfur isotopes of ore sulfides

More Information
  • The Qielong copper-gold mineralization occurrence is located in the Qulong area of the western Bangong-Nujiang metallogenic belt. The ore bodies mainly occur in and near the contact zone between the Late Cretaceous monzogranite and marble of the Xiala Formation. The ore bodies occur mainly as vein and lens in shape. The alteration of the host rock is characterized mainly by skarn. Research on the stable isotopes of this mineralization area is lacking, which to some extent hinders further research on the sources of ore-forming materials and the genesis of the Qielong Cu-Au mineralization. This article conducted in-situ S isotope analysis on ore sulfides such as the bornites, digenites, and chalcopyrites, and explored the source of ore-forming materials in the Qielong Cu-Au mineralization occurrence. The results show that the δ34SV-CDT values of bornites range from -0.29‰ to 2.15‰, with an average of 1.22‰; the δ34SV-CDT values of digenites range from -0.52‰ to -0.47‰, with an average of -0.50‰; the δ34SV-CDT values of chalcopyrites range from 0.22‰ to 1.67‰, with an average of 1.11‰, indicating the S isotope compositions have the characteristics of magmatic sulfur. Based on comparative studies on S isotopes between Qielong and the coeval Gaerqiong and Galale deposits, this article suggests that the conditions of surrounding rock lithology of the Qielong copper-gold mineralization occurrence are similar to those of the Gaerqiong and Galale deposits. However, there are certain differences in their ore-forming source regions. The ore-forming material of the Qielong Cu-Au mineralization area originates from deep magma, with little strata contributions to the ore-forming process; whereas, the ore-forming materials of the Gaerqiong and Galale deposits have mixed sources of deep magma and strata. In subsequent prospecting and exploration work in this area, attention should be focused on whether there is skarn-type mineralization in areas where intermediate-acidic intrusive rocks developed in the early Late Cretaceous (90 Ma~80 Ma) and at the contact parts between the intrusive rocks and carbonate rocks in the strata. Furthermore, the emplacement situation of the concealed rock mass in the Qielong copper-gold mineralization occurrence should also be investigated with emphasis, in the hope of discovering and exploring porphyry-type ore bodies.

  • 加载中
  • [1] 白云,张志,陈毓川,等,2015. 尕尔穷—嘎拉勒铜金矿集区S、Pb同位素地球化学特征[J]. 金属矿山,(9):100 − 104. doi: 10.3969/j.issn.1001-1250.2015.09.023

    CrossRef Google Scholar

    Bai Y,Zhang Z,Chen Y C,et al.,2015. S,Pb isotope geochemical characteristics of the Gaerqiong-Galale gold-copper ore-concentrated area[J]. Metal Mine,(9):100 − 104 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1250.2015.09.023

    CrossRef Google Scholar

    [2] 车旭,刘一鸣,范建军,等,2021. 西藏洞错晚白垩世花岗闪长斑岩:岩石圈拆沉的产物[J]. 地质通报,40(8):1357 − 1368.

    Google Scholar

    Che X,Liu Y M,Fan J J,et al.,2021. Late Cretaceous Dongco granodiorite porphyry,Xizang:Product of lithospheric delamination[J]. Geological Bulletin of China,40(8):1357 − 1368 (in Chinese with English abstract).

    Google Scholar

    [3] Chen W,Zhang S,Ding J,et al.,2017. Combined paleomagnetic and geochronological study on Cretaceous strata of the Qiangtang terrane,central Xizang[J]. Gondwana Research,41:373 − 389. doi: 10.1016/j.gr.2015.07.004

    CrossRef Google Scholar

    [4] Dai Z W,Huang H X,Li G M,et al.,2020. Formation of Late Cretaceous high-Mg granitoid porphyry in central Lhasa,Xizang:Implications for crustal thickening prior to India-Asia collision[J]. Geological Journal,55(10):6696 − 6717. doi: 10.1002/gj.3834

    CrossRef Google Scholar

    [5] Fu J L,Hu Z C,Li J W,et al.,2017. Accurate determination of sulfur isotopes (δ33S and δ34S) in sulfides and elemental sulfur by femtosecond laser ablation MC-ICP-MS with non-matrix matched calibration[J]. Journal of Analytical Atomic Spectrometry,32(12):2341 − 2351. doi: 10.1039/C7JA00282C

    CrossRef Google Scholar

    [6] 高轲,宋扬,刘治博,等,2023. 西藏拿若铜(金)矿床硫、铅同位素组成及成矿物质来源[J]. 沉积与特提斯地质,43(1):145 − 155. doi: 10.3969/j.issn.1009-3850.2023.01.011

    CrossRef Google Scholar

    Gao K,Song Y,Liu Z B,et al.,2023. Sulfur and lead isotope composition and tracing for sources of ore-forming materials in the Naruo Cu (Au) deposit, in Xizang[J]. Sedimentary Geology and Tethyan Geology,43(1):145 − 155 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2023.01.011

    CrossRef Google Scholar

    [7] Gao T,Tang J X,Wang L Q,et al.,2022. The first intra-oceanic island-arc porphyry Cu (Au) deposit in the western Bangong-Nujiang suture zone:Evidence from the Saidengnan Cu (Au) deposit[J]. Gondwana Research,104:92 − 111. doi: 10.1016/j.gr.2021.06.008

    CrossRef Google Scholar

    [8] 高腾,王立强,王勇,等,2019. 班—怒成矿带西段江玛南铜银矿区石英闪长玢岩锆石U-Pb年龄、Hf同位素及地球化学特征[J]. 地球学报,40(6):884 − 894. doi: 10.3975/cagsb.2019.042201

    CrossRef Google Scholar

    Gao T,Wang L Q,Wang Y,et al.,2019. Zircon U-Pb age,Hf isotope and geochemistry of quartz diorite porphyry of the Jiangmanan copper-silver ore district in the western part of the Bangong Co-Nujiang metallogenic belt[J]. Acta Geoscientica Sinica,40(6):884 − 894 (in Chinese with English abstract). doi: 10.3975/cagsb.2019.042201

    CrossRef Google Scholar

    [9] 黄瀚霄,李光明,陈华安,等,2013. 西藏色布塔铜钼矿床中辉钼矿Re-Os定年及其成矿意义[J]. 地质学报,87(2):240 − 244. doi: 10.3969/j.issn.0001-5717.2013.02.008

    CrossRef Google Scholar

    Huang H X,Li G M,Chen H A,et al.,2013. Molybdenite Re-Os isotope age and metallogenic significance of Sebuta copper molybdenum deposit in Xizang[J]. Acta Geologica Sinica,87(2):240 − 244 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2013.02.008

    CrossRef Google Scholar

    [10] 江思宏,聂凤军,刘翼飞,等,2010. 内蒙古拜仁达坝及维拉斯托银多金属矿床的硫和铅同位素研究[J]. 矿床地质,29(1):101 − 112. doi: 10.3969/j.issn.0258-7106.2010.01.010

    CrossRef Google Scholar

    Jiang S H,Nie F J,Liu Y F,et al.,2010. Sulfur and lead isotopic compositions of Bairendaba and Weilasituo silver-polymetallic deposits,Inner Mongolia[J]. Mineral Deposits,29(1):101 − 112 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2010.01.010

    CrossRef Google Scholar

    [11] Kapp P,DeCelles P G,Gehrels G E,et al.,2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Xizang[J]. Geological Society of America Bulletin,119(7-8):917 − 933. doi: 10.1130/B26033.1

    CrossRef Google Scholar

    [12] 李发桥,唐菊兴,王立强,等,2024. 西藏拿若斑岩型铜(金)矿床黄铁矿、黄铜矿原位硫同位素特征及其地质意义[J]. 沉积与特提斯地质,44(4):697 − 709.

    Google Scholar

    Li F Q,Tang J X,Wang L Q,et al.,2024. In-situ sulfur isotope characteristics of pyrite in the Naruo porphyry Cu (Au) deposit,Xizang:Implications for geological significance[J]. Sedimentary Geology and Tethyan Geology,44(4):697 − 709 (in Chinese with English abstract).

    Google Scholar

    [13] Li G M,Qin K Z,Li J X,et al.,2017. Cretaceous magmatism and metallogeny in the Bangong-Nujiang metallogenic belt,central Xizang:evidence from petrogeochemistry,zircon U-Pb ages,and Hf-O isotopic compositions[J]. Gondwana Research,41:110 − 127. doi: 10.1016/j.gr.2015.09.006

    CrossRef Google Scholar

    [14] Li J X,Li G M,Qin K Z,et al.,2011. High-temperature magmatic fluid exsolved from magma at the Duobuza porphyry copper-gold deposit,Northern Xizang[J]. Geofluids,11(2):134 − 143. doi: 10.1111/j.1468-8123.2011.00325.x

    CrossRef Google Scholar

    [15] Li J X,Qin K Z,Li G M,et al.,2016a. The Nadun Cu-Au mineralization,central Xizang:Root of a high sulfidation epithermal deposit[J]. Ore Geology Reviews,78:371 − 387. doi: 10.1016/j.oregeorev.2016.04.019

    CrossRef Google Scholar

    [16] Li J X,Qin K Z,Li G M,et al.,2016b. Petrogenesis of Cretaceous igneous rocks from the Duolong porphyry Cu-Au deposit,central Xizang:evidence from zircon U-Pb geochronology,petrochemistry and Sr-Nd-Pb-Hf isotope characteristics[J]. Geological Journal,51(2):285 − 307. doi: 10.1002/gj.2631

    CrossRef Google Scholar

    [17] Li X K,Chen J,Wang R C,et al.,2018. Temporal and spatial variations of Late Mesozoic granitoids in the SW Qiangtang,Xizang:Implications for crustal architecture,Meso-Tethyan evolution and regional mineralization[J]. Earth-science reviews,185:374 − 396. doi: 10.1016/j.earscirev.2018.04.005

    CrossRef Google Scholar

    [18] 李志军,唐菊兴,姚晓峰,等,2011. 班公湖−怒江成矿带西段尕尔穷铜金矿床辉钼矿Re-Os年龄及其地质意义[J]. 成都理工大学学报:自然科学版,38(6):678 − 683. doi: 10.3969/j.issn.1671-9727.2011.06.013

    CrossRef Google Scholar

    Li Z J,Tang J X,Yao X F,et al.,2011. Re-Os isotope age and geological significance of molybdenite in the Gaerqiong Cu-Au deposit of Geji,Xizang,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),38(6):678 − 683 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2011.06.013

    CrossRef Google Scholar

    [19] 梁清玲,江思宏,白大明,等,2015. 福建紫金山矿田浅成低温热液型矿床成矿物质来源探讨——H、O、S、Pb同位素地球化学证据[J]. 矿床地质,34(3):533 − 546.

    Google Scholar

    Liang Q L,Jiang S H,Bai D M,et al.,2015. Sources of ore-forming materials of epithermal deposits in Zijinshan orefield in Fujian Province:Evidence from H,O,S and Pb isotopes[J]. Mineral Deposits,34(3):533 − 546 (in Chinese with English abstract).

    Google Scholar

    [20] Lin B,Tang J X,Chen Y C,et al.,2017. Geochronology and genesis of the Tiegelongnan porphyry Cu (Au) deposit in Xizang:evidence from U-Pb,Re-Os dating and Hf,S,and H-O isotopes[J]. Resource Geology,67(1):1 − 21. doi: 10.1111/rge.12113

    CrossRef Google Scholar

    [21] 林彬,陈毓川,唐菊兴,等,2017. 藏北东窝东铜多金属矿床含矿斑岩年代学、Sr-Nd-Pb同位素及成矿预测[J]. 地质学报, 91(9):1942 − 1958.

    Google Scholar

    Lin B,Chen Y C,Tang J X,et al.,2017. Geochronology and Sr-Nd-Pb isotopic geochemistry of ore-bearing porphyry in the Dongwodong copper polymetallic deposit,north Xizang and their implications for exploration direction[J]. Acta Geologica Sinica, 91(9):1942 − 1958 (in Chinese with English abstract).

    Google Scholar

    [22] Liu W,Wang B,Yang X,et al.,2018. Geochronology,geochemistry,and Sr-Nd-Hf isotopes of the Balazha ore-bearing porphyries:Implications for petrogenesis and geodynamic setting of late Cretaceous magmatic rocks in the northern Lhasa block,Xizang[J]. Acta Geologica Sinica (English Edition),92(5):1739 − 1752. doi: 10.1111/1755-6724.13674

    CrossRef Google Scholar

    [23] Liu Y,Wang M,Li C,et al.,2019. Late Cretaceous tectono-magmatic activity in the Nize region,central Xizang:Evidence for lithospheric delamination beneath the Qiangtang-Lhasa collision zone[J]. International Geology Review,61(5):562 − 583. doi: 10.1080/00206814.2018.1437789

    CrossRef Google Scholar

    [24] 毛敬涛,2016. 西藏嘎拉勒铜金矿床地质特征与成矿机制研究[D]. 北京:中国地质大学(北京).

    Google Scholar

    Mao J T,2016. Geological features and mineralization of skarn Cu-Au deposit in Galale,Tebit[D]. Beijing:China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [25] Murphy M A,Yin A,Harrison T M,et al.,1997. Did the Indo-Asian collision alone create the Xizang plateau?[J]. Geology,25(8):719 − 722. doi: 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2

    CrossRef Google Scholar

    [26] Ohmoto H,1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology,67(5):551 − 578. doi: 10.2113/gsecongeo.67.5.551

    CrossRef Google Scholar

    [27] Ohmoto H,1986. Stable isotope geochemistry of ore deposits[J]. Reviews in Mineralogy and Geochemistry,16(1):491 − 559.

    Google Scholar

    [28] 彭勃,李宝龙,刘海永,等,2019. 西藏班公湖−怒江成矿带主碰撞期成矿作用:荣嘎钼矿岩石地球化学及同位素年龄的证据[J]. 岩石学报,35(3):705 − 723. doi: 10.18654/1000-0569/2019.03.06

    CrossRef Google Scholar

    Peng B,Li B L,Liu H Y,et al.,2019. Main collisional mineralization of Bangong-Nujiang metallogenic belt,Xizang:Geochronological,geochemical and isotopic evidence from Rongga molybdenum deposit[J]. Acta Petrologica Sinica,35(3):705 − 723 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.06

    CrossRef Google Scholar

    [29] Pribil M J,Ridley W I,Emsbo P,2015. Sulfate and sulfide sulfur isotopes(δ34S and δ33S)measured by solution and laser ablation MC-ICP-MS:An enhanced approach using external correction[J]. Chemical Geology,412:99 − 106. doi: 10.1016/j.chemgeo.2015.07.014

    CrossRef Google Scholar

    [30] Rye R O,Ohmoto H,1974. Sulfur and carbon isotopes and ore genesis:A review[J]. Economic Geology,69(6):826 − 842. doi: 10.2113/gsecongeo.69.6.826

    CrossRef Google Scholar

    [31] 史仲明,李宝龙,彭勃,等,2023. 西藏拉萨地块盐湖复式岩基中花岗斑岩的成因及其对班−怒洋闭合时限的制约[J]. 地质通报,42(5):788 − 801.

    Google Scholar

    Shi Z M,Li B L,Peng B,et al.,2023. The petrogenesis of the granite porphyry of Yanhu composite batholith in the Lhasa terrane,Xizang and its constraints on the time limit of Bangonghu-Nujiang Ocean closure[J]. Geological Bulletin of China,42(5):788 − 801 (in Chinese with English abstract).

    Google Scholar

    [32] 宋俊龙,唐菊兴,张志,等,2015. 西藏尕尔穷−嘎拉勒铜金矿集区流体包裹体特征及成矿作用研究[J]. 矿床地质,34(5):999 − 1015.

    Google Scholar

    Song J L,Tang J X,Zhang Z,et al.,2015. Characteristics of fluid inclusions and metallogenic process of Gaerqiong-Galale Cu-Au ore concentration area,Xizang[J]. Mineral Deposits,34(5):999 − 1015 (in Chinese with English abstract).

    Google Scholar

    [33] 宋扬,唐菊兴,曲晓明,等,2014. 西藏班公湖—怒江成矿带研究进展及一些新认识[J]. 地球科学进展,29(7):795 − 809.

    Google Scholar

    Song Y,Tang J X,Qu X M,et al.,2014. Progress in the study of mineralization in the Bangongco-Nujiang metallogenic belt and some new recognition[J]. Advances in Earth Science,29(7):795 − 809 (in Chinese with English abstract).

    Google Scholar

    [34] Sui Q L,Wang Q,Zhu D C,et al.,2013. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane,Xizang:Implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos,168:144 − 159.

    Google Scholar

    [35] 孙嘉,毛景文,林彬,等,2019. 西藏多龙矿集区典型矿床(点)矿化特征与成矿作用对比研究[J]. 矿床地质,38(5):1159 − 1184.

    Google Scholar

    Sun J,Mao J W,Lin B,et al.,2019. Comparison of ore geology and ore-forming processes of ore deposits(ore spots) in Duolong area,Xizang[J]. Mineral Deposits,38(5):1159 − 1184 (in Chinese with English abstract).

    Google Scholar

    [36] 唐菊兴,张志,李志军,等,2013. 西藏尕尔穷—嘎拉勒铜金矿集区成矿规律、矿床模型与找矿方向[J]. 地球学报,34(4):385 − 394.

    Google Scholar

    Tang J X,Zhang Z,Li Z J,et al.,2013. The metallogensis,deposit model and prospecting direction of the Ga’erqiong-Galale copper-gold ore field,Xizang[J]. Acta Geoscientica Sinica,34(4):385 − 394 (in Chinese with English abstract).

    Google Scholar

    [37] 唐菊兴,宋扬,王勤,等,2016. 西藏铁格隆南铜(金银)矿床地质特征及勘查模型——西藏首例千万吨级斑岩−浅成低温热液型矿床[J]. 地球学报,37(6):663 − 690. doi: 10.3975/cagsb.2016.06.03

    CrossRef Google Scholar

    Tang J X,Song Y,Wang Q,et al.,2016. Geological characteristics and exploration model of the Tiegelongnan Cu (Au-Ag) deposit:The first ten million tons metal resources of a porphyry-epithermal deposit in Xizang[J]. Acta Geoscientica Sinica,37(6):663 − 690 (in Chinese with English abstract). doi: 10.3975/cagsb.2016.06.03

    CrossRef Google Scholar

    [38] Volkmer J E,Kapp P,Guynn J H,et al.,2007. Cretaceous-Tertiary structural evolution of the north central Lhasa terrane,Xizang[J]. Tectonics,26(6):1 − 18.

    Google Scholar

    [39] 王保弟,许继峰,刘保民,等,2013. 拉萨地块北部~90Ma斑岩型矿床年代学及成矿地质背景[J]. 地质学报,87(1):71 − 80.

    Google Scholar

    Wang B D,Xu J F,Liu B M,et al.,2013. Geochronology and ore-forming geological background of ~90 Ma porphyry copper deposit in the Lhasa Terrane,Xizang Plateau[J]. Acta Geologica Sinica,87(1):71 − 80 (in Chinese with English abstract).

    Google Scholar

    [40] Wang L Q,Wang Y,Fan Y,et al.,2018. A Miocene tungsten mineralization and its implications in the western Bangong-Nujiang metallogenic belt:Constraints from U-Pb,Ar-Ar,and Re-Os geochronology of the Jiaoxi tungsten deposit,Xizang,China[J]. Ore Geology Reviews,97:74 − 87. doi: 10.1016/j.oregeorev.2018.05.006

    CrossRef Google Scholar

    [41] Wang L Q,Wang Y,Danzhen W X,et al.,2019. Early Cretaceous diorites in the Kenbale Cu mineralization occurrence,Xizang,China,and its geological significance[J]. Geosciences Journal,23:219 − 233. doi: 10.1007/s12303-018-0029-9

    CrossRef Google Scholar

    [42] 王立强,王勇,旦真王修,等,2017. 班公湖—怒江成矿带西段主要岩浆热液型矿床成矿特征初探[J]. 地球学报,38(5):615 − 626. doi: 10.3975/cagsb.2017.05.03

    CrossRef Google Scholar

    Wang L Q,Wang Y,Danzhen W X,et al.,2017. A tentative discussion on metallogeny of the main magmatic-hydrothermal ore deposits in the western BangongCo-Nujiang metallogenic belt,Xizang[J]. Acta Geoscientica Sinica,38(5):615 − 626 (in Chinese with English abstract). doi: 10.3975/cagsb.2017.05.03

    CrossRef Google Scholar

    [43] 王欣欣,闫国强,刘洪,等,2021. 中拉萨地块晚白垩世曲桑格勒花岗岩的成因:地球化学、锆石U-Pb年代学及Sr-Nd-Pb-Hf同位素的约束[J]. 地球科学,46(8):2832 − 2849.

    Google Scholar

    Wang X X,Yan G Q,Liu H,et al.,2021. Genesis of late Cretaceous Qusang’ gele granitie in central Lhasa Block,Xizang:Constraints by geochemistry,zircon U-Pb geochronology,and Sr-Nd-Pb-Hf isotopes[J]. Earth Science,46(8):2832 − 2849 (in Chinese with English abstract).

    Google Scholar

    [44] Wang Y,Tang J X,Wang L Q,et al.,2019. Magmatism and metallogenic mechanism of the Ga’erqiong and Galale Cu-Au deposits in the west central Lhasa subterrane,Xizang:Constraints from geochronology,geochemistry,and Sr-Nd-Pb-Hf isotopes[J]. Ore Geology Reviews,105:616 − 635. doi: 10.1016/j.oregeorev.2019.01.015

    CrossRef Google Scholar

    [45] 王勇,2020. 西藏班公湖−怒江成矿带西段角西钨矿床成矿作用及找矿预测[D]. 北京:中国地质大学(北京).

    Google Scholar

    Wang Y,2020. Metallogenesis and prospecting of the Jiaoxi tungsten deposit in the western part of the Bangong-Nujiang metallogenic belt,Xizang[D]. Beijing:China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [46] 韦少港,唐菊兴,宋扬,等,2017. 西藏班公湖−怒江缝合带美日切错组中酸性火山岩锆石U-Pb年龄、Sr-Nd-Hf同位素、岩石成因及其构造意义[J]. 地质学报,91(1):132 − 150.

    Google Scholar

    Wei S G,Tang J X,Song Y,et al.,2017. Petrogenesis,zircon U-Pb geochronology and Sr-Nd-Hf isotopes of the intermediate-felsic volcanic rocks from the Duolong deposit in the Bangonghu-Nujiang suture zone,Xizang,and its tectonic significance[J]. Acta Geologica Sinica,91(1):132 − 150 (in Chinese with English abstract).

    Google Scholar

    [47] 伍登浩,高顺宝,郑有业,等,2018. 西藏班公湖——怒江成矿带南侧矽卡岩型铜多金属矿床S、Pb同位素组成及成矿物质来源[J]. 吉林大学学报:地球科学版,48(1):70 − 86.

    Google Scholar

    Wu D H,Gao S B,Zheng Y Y,et al.,2018. Sulfur and lead isotopic composition and their ore-forming material source of skarn copper polymetallic deposits in southern Xizang Bangonghu-Nujiang metallogenic belt[J]. Journal of Jilin University(Earth Science Edition),48(1):70 − 86 (in Chinese with English abstract).

    Google Scholar

    [48] 姚晓峰,唐菊兴,李志军,等,2012. 西藏尕尔穷铜金矿床S、Pb同位素地球化学特征——成矿物质来源示踪[J]. 地球学报,33(4):528 − 536.

    Google Scholar

    Yao X F,Tang J X,Li Z J,et al.,2012. S,Pb isotope characteristics of the Ga’erqiong gold-copper deposit in Xizang:Tracing the source of ore-forming materials[J]. Acta Geoscientica Sinica,33(4):528 − 536 (in Chinese with English abstract).

    Google Scholar

    [49] Yi J K,Wang Q,Zhu D C,et al.,2018. Westward-younging high-Mg adakitic magmatism in central Xizang:Record of a westward-migrating lithospheric foundering beneath the Lhasa-Qiangtang collision zone during the Late Cretaceous[J]. Lithos,316:92 − 103.

    Google Scholar

    [50] Yin A,Harrison T M,2000. Geologic evolution of the Himalayan-Xizang orogen[J]. Annual review of earth and planetary sciences,28(1):211 − 280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [51] 于云鹏,王明,解超明,等,2020. 西藏拉萨地块北部晚白垩世晚期基性岩墙的成因:来自锆石U-Pb年代学及地球化学的制约[J]. 岩石学报,36(2):443 − 454. doi: 10.18654/1000-0569/2020.02.07

    CrossRef Google Scholar

    Yu Y P,Wang M,Xie C M,et al.,2020. Zircon U-Pb geochronology and geochemisty:Constraints on petrogenesis of the lately Late Cretaceous mafic dykes in northern Lhasa terrane,Xizang[J]. Acta Petrologica Sinica,36(2):443 − 454 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.02.07

    CrossRef Google Scholar

    [52] 张海,陆生林,郭伟康,等,2023. 西藏班公湖−怒江成矿带早白垩世吉龙花岗闪长斑岩成因:锆石年代学、Hf同位素及岩石地球化学约束[J/OL]. 沉积与特提斯地质:1 − 17.

    Google Scholar

    Zhang H,Lu S L,Guo W K,et al.,2023. Petrogenesis of early Cretaceous the Jilong granodiorite porphyry in the Bangong Co-Nujiang metallogenic belt,Xizang,China:Constraints from zircon U-Pb geochronology,Hf isotopes and whole-rock geochemistry[J/OL]. Sedimentary Geology and Tethyan Geology:1 − 17 (in Chinese with English abstract).

    Google Scholar

    [53] Zhang W,Hu Z C,Liu Y S,2020. Iso-Compass:New freeware software for isotopic data reduction of LA-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,35(6):1087 − 1096. doi: 10.1039/D0JA00084A

    CrossRef Google Scholar

    [54] Zhang Z,Li Z J,Li G M,et al.,2020. Geology,fluid inclusions,40Ar/39Ar geochronology and H-O-S-Pb isotopes of the Galale Cu-Au deposit,Northwestern Xizang,China[J]. Journal of Geochemical Exploration,214:106547. doi: 10.1016/j.gexplo.2020.106547

    CrossRef Google Scholar

    [55] 张志,宋俊龙,唐菊兴,等,2017. 西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年[J]. 地球科学,42(6):862 − 880.

    Google Scholar

    Zhang Z,Song J L,Tang J X,et al.,2017. Petrogenesis,diagenesis and mineralization ages of Galale Cu-Au deposit,Xizang:Zircon U-Pb age,Hf isotopic composition and molybdenite Re-Os dating[J]. Earth Science,42(6):862 − 880 (in Chinese with English abstract).

    Google Scholar

    [56] 郑海涛,郑有业,徐净,等,2018. 西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因[J]. 地球科学,43(8):2858 − 2874.

    Google Scholar

    Zheng H T,Zheng Y Y,Xu J,et al.,2018. Zircon U-Pb ages and petrogenesis of ore-bearing porphyry for Qingcaoshan porphyry Cu-Au deposit,Xizang[J]. Earth Science,43(8):2858 − 2874 (in Chinese with English abstract).

    Google Scholar

    [57] 郑永飞,徐宝龙,周根陶,2000. 矿物稳定同位素地球化学研究[J]. 地学前缘,7(2):299 − 320.

    Google Scholar

    Zheng Y F,Xu B L,Zhou G T,2000. Geochemical studies of stable isotopes in minerals[J]. Earth Science Frontiers,7(2):299 − 320 (in Chinese with English abstract).

    Google Scholar

    [58] Zhu D C,Li S M,Cawood P A,et al.,2016. Assembly of the Lhasa and Qiangtang terranes in central Xizang by divergent double subduction[J]. Lithos,245:7 − 17.

    Google Scholar

    [59] Zhu D C,Zhao Z D,Niu Y,et al.,2013. The origin and pre-Cenozoic evolution of the Xizang Plateau[J]. Gondwana Research,23(4):1429 − 1454. doi: 10.1016/j.gr.2012.02.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(257) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint