2024 Vol. 44, No. 4
Article Contents

LI Faqiao, TANG Juxing, WANG Liqiang, SONG Yang, LI She, LIN Bin, LI Haifeng, YANG Huanhuan, SUN Hao, DANZENG Zongzhui, GUO Duoduo, LI Yanbo, LI Jianli. 2024. In-situ sulfur isotope characteristics of pyrite and chalcopyrite from the Naruo porphyry Cu (Au) deposit in Xizang: Implications for geological significance. Sedimentary Geology and Tethyan Geology, 44(4): 697-709. doi: 10.19826/j.cnki.1009-3850.2024.06002
Citation: LI Faqiao, TANG Juxing, WANG Liqiang, SONG Yang, LI She, LIN Bin, LI Haifeng, YANG Huanhuan, SUN Hao, DANZENG Zongzhui, GUO Duoduo, LI Yanbo, LI Jianli. 2024. In-situ sulfur isotope characteristics of pyrite and chalcopyrite from the Naruo porphyry Cu (Au) deposit in Xizang: Implications for geological significance. Sedimentary Geology and Tethyan Geology, 44(4): 697-709. doi: 10.19826/j.cnki.1009-3850.2024.06002

In-situ sulfur isotope characteristics of pyrite and chalcopyrite from the Naruo porphyry Cu (Au) deposit in Xizang: Implications for geological significance

More Information
  • The Naruo deposit is the third largest porphyry Cu (Au) deposit within the Duolong ore district in Xizang. Previous studies have extensively investigated the petrogenesis, metallogenetic geological chronology, and metallogenic geological background. However, the ore-forming mechanism, including the source of sulfur, remains unclear. This study focuses on the widespread occurrence of pyrite and chalcopyrite in the Naruo ore deposit. Through methods such as optical microscopy identification and LA-MC-ICP-MS isotopic analysis, mineralogical characteristics and isotopic geochemistry were investigated. The aim is to elucidate the in-situ sulfur isotope characteristics, reveal the ore genesis of the deposit, and provide guidance for mineral exploration. Based on microscopic observations, three types of pyrite are categorized, from earlier to later: Py-Ⅰ→Py-Ⅲ→Py-Ⅱ→Py-Ⅲ. Except for Py-Ⅰ, all others are closely associated with the occurrence of chalcopyrite. Pyrite exhibits δ34S values ranging from -4.05‰ to 3.49‰ (with a mean of -0.2 ‰, n=53), while chalcopyrite demonstrates smaller δ34S values, ranging from -7.24‰ to 0.32‰ (with a mean of -2.44‰, n=24). These test results closely approximate values found in other deposits within the ore cluster. The total sulfur value of the ore-forming fluid (δ34SΣ) is -3.06‰, indicating that the source of sulfur is primarily associated with magmatic sulfur. The sulfur isotope mineral pairs of pyrite-chalcopyrite indicate ore-forming temperatures ranging from 255℃ to 590℃, with a central ore-forming temperature of 320℃, revealing a mesothermal ore-forming environment in the ore deposit center. The spatial distribution patterns of sulfur isotopes indicate a gradual decrease in δ34S values from the mineralization center to the periphery, which is notably different from some alkaline porphyry-type deposits. This study suggests that such variation is attributed mainly to ore formation in a mesothermal environment and the degassing of remote SO2, thus serving as crucial exploration indicators for the Naruo deposit. This study has enriched our understanding of the sources of sulfur and ore-forming temperatures, among other ore-forming mechanisms, in the Naruo ore deposit. It lays the foundation for further research in ore-forming theories and mineral exploration.

  • 加载中
  • [1] Alonso-Azcarate J,Roads M,Fernadez-Diaz L,et al.,2001. Causes of variation in crystal morphology in metamorphogenic pyrite deposits of the Cameros Basin (N Spain) [J]. Geological Journal,36:159 − 170. doi: 10.1002/gj.889

    CrossRef Google Scholar

    [2] 白荣龙,2016. 西藏多龙矿集区岩浆岩地球化学特征及成因研究[D]. 成都:成都理工大学:1 − 75.

    Google Scholar

    Bai R L,2016. Geochemical characteristics and genesis of magmatic rocks for Duolong ore concentrated area in Xizang [D]. Chengdu:Chengdu University of technology:1 − 75 (in Chinese with English abstract).

    Google Scholar

    [3] Chaussidon M,Albarede F,Sheppard S M F,1989. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions[J]. Earth and Planetary Science Letters,92(2):144 − 156. doi: 10.1016/0012-821X(89)90042-3

    CrossRef Google Scholar

    [4] Chen Y,Fan Y,Zhou T F,et al.,2020. Pyrite textures and compositions in Jiangshan gold deposit, Bengbu Uplift, southeastern North China Craton: Implications for ore genesis[J]. Ore Geology Rviews,122:103512.

    Google Scholar

    [5] Chinnasamy S S,Mishra B,2013. Greenstone metamorphism,hydrothermal alteration,and gold mineralization in the genetic context of the granodiorite-hosted gold deposit at Jonnagiri,Eastern Dharwar Craton,India[J]. Economic Geology,108(5):1015 − 1036 . doi: 10.2113/econgeo.108.5.1015

    CrossRef Google Scholar

    [6] Craig J R,Vokes F M,Solberg T N,1998. Pyrite:physical and chemical textures[J]. Mineralium Deposita,34:82 − 101. doi: 10.1007/s001260050187.

    CrossRef Google Scholar

    [7] Crowe D E,Vaughan R G,1996. Characterization and use of isotopically homogeneous standards for in situ laser microprobe analysis of 34S/32S ratios[J]. American Mineralogist,81(1-2):187 − 193. doi: 10.2138/am-1996-1-223

    CrossRef Google Scholar

    [8] 丁帅,2014. 西藏改则县拿若铜(金)矿地质特征研究[D]. 成都理工大学:1 − 61.

    Google Scholar

    Ding S,2014. The study of geological characteristics of Naruo Cu (Au)deposit in Gaize,Xizang [D]. Chengdu:Chengdu University of Technology:1 − 61 (in Chinese with English abstract).

    Google Scholar

    [9] 方向,唐菊兴,李彦波,等,2014. 西藏多龙矿集区拿若铜(金)矿床成矿元素空间分布规律及地球化学勘查模型[J]. 中国地质,41(3):936 − 950. doi: 10.3969/j.issn.1000-3657.2014.03.019

    CrossRef Google Scholar

    Fang X,Tang J X,Li Y B,et al.,2014. Metallogenic element spatial distribution of the Naruo copper (gold) deposit in the Duolong ore concentration area of Xizang and its geochemical exploration model[J]. Geology in China,41(3):936 − 950 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2014.03.019

    CrossRef Google Scholar

    [10] Franchini M,McFarlane C,Maydagán L,et al.,. 2015. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit,Catamarca,Argentina:textural features and metal zoning at the porphyry to epithermal transition[J]. Ore Geology Reviews, 66:366 − 387.

    Google Scholar

    [11] 傅恒,韩建辉,孙煜新,等,2024. 特提斯造山带[J]. 沉积与特提斯地质,44(1):100 − 133.

    Google Scholar

    Fu H,Han J H,Sun Y X,et al.,2024. Tethys orogenic belt[J]. Sedimentary Geology and Tethyan Geology,44(1):100 − 133 (in Chinese with English abstract).

    Google Scholar

    [12] 高轲,多吉,唐菊兴,等,2016a. 西藏多龙矿集区拿若铜(金)矿床蚀变特征[J]. 矿物岩石地球化学通报,35(6):1226 − 1237.

    Google Scholar

    Gao K,Duo J,Tang J X,et al.,2016a. Alteration of Naruo porphyry Cu (Au) deposit in the Duolong ore-concentration area,Xizang[J]. Bulletin of Mineralogy,Petrology and Geochemistry,35(6):1226 − 1237 (in Chinese with English abstract).

    Google Scholar

    [13] 高轲,多吉,唐菊兴,等,2017a. 西藏拿若铜(金)矿床隐爆角砾岩锆石U-Pb年代学及地球化学特征[J]. 中国地质,44(3):618 − 619.

    Google Scholar

    Gao K,Duo J,Tang J X,et al.,2017a. Geochronology and geochemistry of cryptoexplosive breccia from the Naruo Cu (Au) deposit,Xizang[J]. Geology in China,44(3):618 − 619 (in Chinese with English abstract).

    Google Scholar

    [14] 高轲,宋扬,刘治博,等,2024. 西藏拿若铜(金)矿床隐爆角砾岩对成矿时代的约束[J]. 中国地质,51(2):385 − 398. doi: 10.12029/gc20201104002

    CrossRef Google Scholar

    Gao K,Song Y,Liu Z B,et al.,2024. Constraints on metallogenic age from cryptoexplosive breccia in Naruo Cu(Au) deposit,Xizang[J]. Geology in China,51(2):385 − 398(in Chinese with English abstract). doi: 10.12029/gc20201104002

    CrossRef Google Scholar

    [15] 高轲,宋扬,刘治博,等,2023. 西藏拿若铜 (金) 矿床硫,铅同位素组成及成矿物质来源[J]. 沉积与特提斯地质, 43(1):145 − 155.

    Google Scholar

    Gao K,Song Y,Liu Z B,et al.,2023. Sulfur and lead isotope composition and tracing for sources of ore-forming materials in the Naruo Cu(Au) deposit,in Xizang[J]. Sedimentary Geology and Tethyan Geology, 43(1):145 − 155 (in Chinese with English abstract).

    Google Scholar

    [16] 高轲,唐菊兴,宋扬,等,2016b. 西藏拿若铜(金)矿床隐爆角砾岩流体包裹体研究[J]. 地质与勘探, 52(5):815 − 825.

    Google Scholar

    Gao K,Tang J X,Song Y,et al.,2016b. Fluid inclusion study of the cryptoexplosive breccias in the Naruo Cu(Au) deposit of Xizang[J]. Geology and Exploration, 52(5):815 − 825 (in Chinese with English abstract).

    Google Scholar

    [17] 高轲,唐菊兴,宋扬,等,2017b. 西藏拿若隐爆角砾岩中岩浆岩成因: 来自锆石Hf同位素证据[J]. 地质与勘探, 53(2):207 − 216.

    Google Scholar

    Gao K,Tang J X,Song Y,et al.,2017b. Genesis of magmatic rocks of cryptoexplosive breccia in the Naruo deposit of Xizang:Evidence from zircon Hf isotope[J]. Geology and Exploration, 53(2):207 − 216 (in Chinese with English abstract).

    Google Scholar

    [18] 郭硕,2013. 西藏改则县多龙矿集区矿床模型与应用[D]. 北京:中国地质大学(北京):1 − 114.

    Google Scholar

    Guo S,2013. Mineral deposit model of the Duolong deposit cluster in Gaize county,Xizang and its application [D]. Beijing:China University of Geosciences (Beijing):1 − 114 (in Chinese with English abstract).

    Google Scholar

    [19] Gustafson L B,Hunt J P,1975. The porphyry copper deposit at El Salvador,Chile[J]. Economic Geology,70(5):857 − 912. doi: 10.2113/gsecongeo.70.5.857

    CrossRef Google Scholar

    [20] Gustafson L B,Quiroga G J,1995. Patterns of mineralization and alteration below the porphyry copper orebody at El Salvador,Chile[J]. Economic Geology,90(1):2 − 16. doi: 10.2113/gsecongeo.90.1.2

    CrossRef Google Scholar

    [21] Hou Z Q,Ma H W,Zaw K,et al.,2003. The Himalayan Yulong porphyry copper belt:Product of large-scale strike-slip faulting in eastern Xizang[J]. Economic Geology & the Bulletin of the Society of Economic Geologists,98(1):125 − 145.

    Google Scholar

    [22] Kajiwara Y,Krouse H R,1971. Sulfur isotope partitioning in metallic sulfide systems[J]. Canadian Journal of Earth Sciences,8(11):1397 − 1408. doi: 10.1139/e71-129

    CrossRef Google Scholar

    [23] 雷传扬,吴建亮,尹显科,等,2018. 班公湖–怒江缝合带西段沙木罗组地层中闪长玢岩脉的发现及其地质意义[J]. 矿物岩石地球化学通报, 37(2):250 − 259.

    Google Scholar

    Lei C Y,Wu J L,Yin X K,et al.,2018. New discovery of the diorite porphyry dyke in the Shamuluo Formation in western segment of the Bangongco-Nujiang suture zone and its geological significance[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 37(2):250 − 259 (in Chinese with English abstract).

    Google Scholar

    [24] 冷秋锋,李文昌,戴成龙,等,2023. 西藏那茶淌铅锌矿床S-Pb同位素组成及其示踪成矿物质来源[J]. 沉积与特提斯地质,43(1):168 − 179. doi: 10.3969/j.issn.1009-3850.2023.01.013

    CrossRef Google Scholar

    Leng Q F,Li W C,Dai C L,et al.,2023. Sulfur and lead isotope composition tracing for the ore-forming material source of Nachatang Pb-Zn deposit in Xizang[J]. Sedimentary Geology and Tethyan Geology,43(1):168 − 179 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2023.01.013

    CrossRef Google Scholar

    [25] 李光明,段志明,刘波,等,2011. 西藏班公湖−怒江结合带北缘多龙地区侏罗纪增生杂岩的特征及意义[J]. 地质通报,30(8):1256 − 1260. doi: 10.3969/j.issn.1671-2552.2011.08.012

    CrossRef Google Scholar

    Li G M,Duan Z M,Liu B,et al.,2011. The discovery of Jurassic accretionary complexes in Duolong area,northern Bangong Co-Nujiang suture zone,Xizang,and its geologic significance[J]. Geological Bulletin of China,30(8):1256 − 1260 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2011.08.012

    CrossRef Google Scholar

    [26] 李金祥,2008. 班公湖带多不杂超大型富金斑岩铜矿床的成岩成矿年代学、岩石学及高氧化岩浆−流体−成矿作用[D]. 北京:中国科学院地质与地球物理研究所:1 − 224.

    Google Scholar

    Li J X,2008. Geochronology,petrology and metallogeneses of high oxidized magma-hydrothermal fluid of Duobuza gold-rich porphyry copper deposit in Bangonghu belt,Northern Xizang [D]. Beijing:Institute of Geology and Geophysics,Graduate University of Chinese Academy of Sciences:1 − 224 (in Chinese with English abstract).

    Google Scholar

    [27] Li R C,Xia X P,Chen H Y,et al.,2020. A potential new Chalcopyrite reference material for Secondary Ion Mass Spectrometry sulfur isotope ratio analysis[J]. Geostandards and Geoanalytical Research,44(3):485 − 500. doi: 10.1111/ggr.12330

    CrossRef Google Scholar

    [28] Lin B,Tang J X,Chen Y C,et al.,2019. Geology and geochronology of Naruo large porphyry-breccia Cu deposit in the Duolong district,Xizang[J]. Gondwana Research,66:168 − 182. doi: 10.1016/j.gr.2018.07.009

    CrossRef Google Scholar

    [29] Lin B,Tang J X,Tang P,et al.,2024,Multipulsed magmatism and duration of the hydrothermal system of the giant Jiama porphyry Cu system,Xizang,China[J]. Economic Geology,119(1):201 − 217.

    Google Scholar

    [30] 吕丽娜,2012. 西藏班公湖−怒江成矿带西段富铁与铜(金)矿床模型[D]. 北京:中国地质科学院:1 − 219.

    Google Scholar

    Lü L N,2012. Metallogenic model of rich iron and copper (gold) deposits in western part of Bangong Co-Nujiang metallogenie belt,Xizang [D]. Beijing:China Academy of Geosciences:1 − 219 (in Chinese with English abstract).

    Google Scholar

    [31] 马安林,胡修棉,2021. 沉积记录约束班公湖−怒江缝合带东巧蛇绿岩的仰冲过程[J]. 沉积与特提斯地质, 41(2):163 − 175.

    Google Scholar

    Ma A L,Hu X M,2021. Constraining the obduction process of the Dongqiao ophiolite in the Bangongco-Nujiang suture zone by the sedimentary record[J]. Sedimentary Geology and Tethyan Geology, 41(2):163 − 175 (in Chinese with English abstract).

    Google Scholar

    [32] Madyagan L,Franchini M,Lentz D R,et al.,2013. Sulfide composition and isotopic signature of the altar Cu–Au deposit,Argentina:Constraints on the evolution of the porphyry-epithermal system[J]. Can Mineral,51:813 − 840. doi: 10.3749/canmin.51.6.813

    CrossRef Google Scholar

    [33] Ohmoto H,1997. Applications of sulfur and carbon isotopes in ore deposit research[J]. Geochemistry of Hydrothermal Ore Deposits:517 − 611.

    Google Scholar

    [34] 潘桂棠,王立全,尹福光,等,2022. 青藏高原形成演化研究回顾、进展与展望[J]. 沉积与特提斯地质, 42(2):151 − 175.

    Google Scholar

    Pan G T,Wang L Q,Yin F G,et al.,2022. Researches on geological-tectonic evolution of Xizang Plateau:A review,recent advances,and directions in the future[J]. Sedimentary Geology and Tethyan Geology, 42(2):151 − 175 (in Chinese with English abstract).

    Google Scholar

    [35] Pinckney D M,Rafter T A,1972. Fractionation of sulfur isotopes during ore deposition in the Upper Mississippi Valley zinc-lead district[J]. Economic Geology,67(3):315 − 328. doi: 10.2113/gsecongeo.67.3.315

    CrossRef Google Scholar

    [36] 任纪舜,肖黎薇,2004. 1∶25万地质填图进一步揭开了青藏高原大地构造的神秘面纱[J]. 地质通报,23(1):1 − 11. doi: 10.3969/j.issn.1671-2552.2004.01.006

    CrossRef Google Scholar

    Ren J S,Xiao L W,2004. Lifting the mysterious veil of the tectonics of the Qinghai-Xizang Plateau by 1∶250000 geological mapping[J]. Geological Bulletin of China,23(1):1 − 11 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2004.01.006

    CrossRef Google Scholar

    [37] Rye R O,Bethke P M,Wasserman M D,1992. The stable isotope geochemistry of acid sulfate alteration[J]. Economic Geology,87(2):225 − 262. doi: 10.2113/gsecongeo.87.2.225

    CrossRef Google Scholar

    [38] Stefanova E,Georgiev S,Peytcheva I,et al.,2023. Sulfide trace element signatures and S-and Pb-isotope geochemistry of porphyry copper and epithermal gold-base metal mineralization in the Elatsite–Chelopech Ore Field (Bulgaria)[J]. Minerals,13(5):630. doi: 10.3390/min13050630

    CrossRef Google Scholar

    [39] 孙嘉,2015. 西藏多龙矿集区岩浆成因与成矿作用研究[D]. 北京:中国地质大学(北京):1 − 198.

    Google Scholar

    Sun J,2015. Magmatism and metallogenesis at Duolong ore district,Xizang [D]. Beijing:China University of Geosciences (Beijing):1 − 198 (in Chinese with English abstract).

    Google Scholar

    [40] 孙嘉,段先哲,李玉彬,2021. 西藏多龙矿集区铜金流体演化过程探 讨——来自硫同位素的证据[J]. 矿床地质,40(5):1085 − 1099.

    Google Scholar

    Sun J,Duan X Z,Li Y B,2021. Investigation of fluid evolution in Duolong copper-gold ore district,Xizang:Evidence from sulfur isotope[J]. Mineral Deposits,40(5):1085 − 1099 (in Chinese with English abstract).

    Google Scholar

    [41] Sun M,Tang J X,Klemd R,et al.,2024,The formation of a giant post-collision porphyry copper system: A case study of the Jiama deposit, Xizang[J]. Geological Society of America Bulletin,136(3-4),1675 − 1688.

    Google Scholar

    [42] 唐菊兴,宋扬,王勤,等,2016. 西藏铁格隆南铜(金银)矿床地质特征及勘查模型——西藏首例千万吨级斑岩−浅成低温热液型矿床[J]. 地球学报,37(6):663 − 690. doi: 10.3975/cagsb.2016.06.03

    CrossRef Google Scholar

    Tang J X,Song Y,Wang Q,et al.,2016. Geological characteristics and exploration model of the Tiegelongnan Cu (Au-Ag) deposit:The first ten million tons metal resources of a porphyry-epithermal deposit in Xizang[J]. Acta Geoscientica Sinica,37(6):663 − 690 (in Chinese with English abstract). doi: 10.3975/cagsb.2016.06.03

    CrossRef Google Scholar

    [43] 唐菊兴,孙兴国,丁帅,等,2014. 西藏多龙矿集区发现浅成低温热液型铜(金银)矿床[J]. 地球学报,35(1):6 − 10.

    Google Scholar

    Tang J X,Sun X G,Ding S,et al.,2014. Discovery of the epithermal deposit of Cu (Au-Ag) in the Duolong ore concentrating area,Xizang[J]. Acta Geoscientica Sinica,35(1):6 − 10 (in Chinese with English abstract).

    Google Scholar

    [44] 唐菊兴,王勤,杨欢欢,等,2017. 西藏斑岩−矽卡岩−浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力[J]. 地球学报,38(5):571 − 613.

    Google Scholar

    Tang J X,Wang Q,Yang H H,et al.,2017. Mineralization,exploration and resource potential of porphyry-skarn-epithermal copper polymetallic deposits in Xizang[J]. Acta Geoscientica Sinica,38(5):571 − 613 (in Chinese with English abstract).

    Google Scholar

    [45] 王勤,唐菊兴,陈毓川,等,2019. 西藏多龙超大型铜(金)矿集区成矿模式与找矿方向[J]. 岩石学报, 35(3):879 − 896.

    Google Scholar

    Wang Q,Tang J X,Chen Y C,et al.,2019. The metallogenic model and prospecting direction for the Duolong super large copper (gold) district,Xizang[J]. Acta Petrologica Sinica, 35(3):879 − 896 (in Chinese with English abstract).

    Google Scholar

    [46] 王松,赵元艺,汪傲,等,2017. 西藏拿顿铜(金)矿床岩矿相学、流体包裹体和地球化学特征与成矿作用研究[J]. 地质学报, 91(7):1565 − 1588.

    Google Scholar

    Wang S,Zhao Y Y,Wang A,et al.,2017. The study of facieology-mineragraphy,fluid inclusions,and geochemical characteristics and mineralization in Nadun Cu (Au) deposit,Xizang[J]. Acta Geologica Sinica, 91(7):1565 − 1588 (in Chinese with English abstract).

    Google Scholar

    [47] 王艺云,2018. 西藏铁格隆南超大型铜(金、银)矿床成因——矿物学、蚀变与成矿[D]. 成都:成都理工大学:1 − 154.

    Google Scholar

    Wang Y Y,2018. Genesis of Tiegelongnan super-large copper (gold and silver) deposit in Xizang,China-mineralogy,alteration and mineralization[D]. Chengdu:Chengdu University of Technology:1 − 154 (in Chinese with English abstract).

    Google Scholar

    [48] 王艺云,唐菊兴,宋扬,等,2017. 西藏铁格隆南超大型Cu(Au、Ag)矿床S、Pb同位素地球化学研究[J]. 地球学报, 38(5):627 − 637.

    Google Scholar

    Wang Y Y,Tang J X,Song Y,et al.,2017. Geochemical characteristics of sulfur and lead isotopes from the superlarge Tiegelongnan copper (gold-silver) deposit,Xizang[J]. Acta Geoscientica Sinica, 38(5):627 − 637 (in Chinese with English abstract).

    Google Scholar

    [49] Wilson A J,Cooke D R,Harper B J,et al.,2007. Sulfur isotopic zonation in the Cadia district,southeastern Australia:exploration significance and implications for the genesis of alkalic porphyry gold–copper deposits[J]. Mineralium Deposita,42(5):465 − 487. doi: 10.1007/s00126-006-0071-9

    CrossRef Google Scholar

    [50] 肖剑波,2012. 班怒西段多不杂铜矿床成因浅析[D]. 成都:成都理工大学:1 − 59.

    Google Scholar

    Xiao J B,2012. Genesis of the Duobuza copper deposit in the western Bangong Co-Nujiang metallogenic belt,Xizang[D]. Chengdu:Chengdu University of Technology:1 − 59 (in Chinese with English abstract).

    Google Scholar

    [51] 谢富伟,郎兴海,唐菊兴,等,2022. 西藏冈底斯成矿带成矿规律[J]. 矿床地质,41(5):952 − 974.

    Google Scholar

    Xie F W,Lang X H,Tang J X,et al.,2022. Metallogenic regularity of Gangdese metallogenic belt,Xizang[J]. Mineral Deposits,41(5):952 − 974 (in Chinese with English abstract).

    Google Scholar

    [52] Xue Y,Campbell I,Ireland T R,et al.,2013. No mass-independent sulfur isotope fractionation in auriferous fluids supports a magmatic origin for Archean gold deposits[J]. Geology,41:791 − 794.

    Google Scholar

    [53] 杨超,唐菊兴,宋俊龙,等,2015. 西藏拿若斑岩型铜(金)矿床绿泥石特征及其地质意义[J]. 地质学报,89(5):856 − 872. doi: 10.3969/j.issn.0001-5717.2015.05.003

    CrossRef Google Scholar

    Yang C,Tang J X,Song J L,et al.,2015. Chlorite characteristic of the Naruo porphyry Cu (Au) deposit in Xizang and its geological significance[J]. Acta Geologica Sinica,89(5):856 − 872 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2015.05.003

    CrossRef Google Scholar

    [54] Yin A,Harrison T M,2000. Geologic evolution of the Himalayan-Xizang orogen[J]. Annual Review of Earth and Planetary Sciences,28(1):211 − 280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [55] 张静,杨艳,胡海珠,等,2009. 河南银洞沟造山型银矿床碳硫铅同位素地球化学[J]. 岩石学报,25(11):2833 − 2842.

    Google Scholar

    Zhang J,Yang Y,Hu H Z,et al.,2009. C-S-Pb isotope geochemistry type silver deposit in Henan province[J]. Acta Petrologica Sinica,25(11):2833 − 2842 (in Chinese with English abstract).

    Google Scholar

    [56] 赵伟策,祝新友,王书来,等,2023. 云南会泽铅锌矿灯影组矿石硫、铅同位素组成及找矿意义[J]. 沉积与特提斯地质,43(1):156 − 167. doi: 10.3969/j.issn.1009-3850.2023.01.012

    CrossRef Google Scholar

    Zhao W C,Zhu X Y,Wang S L,et al.,2023. Sulfur and lead isotopic compositions of ores from the Dengying Formation and their prospecting implications in the Huize Pb–Zn deposit,Yunnan Province[J]. Sedimentary Geology and Tethyan Geology,43(1):156 − 167 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2023.01.012

    CrossRef Google Scholar

    [57] 郑永飞,陈江峰,2000. 稳定同位素地球化学[M]. 北京:科学出版社:1 − 316.

    Google Scholar

    Zheng Y F,Chen J F,2000. Stable isotope geochemistry[M]. Beijing:Science Press:1 − 316 (in Chinese with English abstract).

    Google Scholar

    [58] 郑永飞,傅斌,张学华,1996. 岩浆去气作用的碳硫同位素效应[J]. 地质科学,31(1):43 − 53.

    Google Scholar

    Zheng Y F,Fu B,Zhang X H,1996. Effects of magma degassing on the carbon and sulfur isotope compositions of igneous rocks[J]. Scientia Geologica Sinica,31(1):43 − 53 (in Chinese with English abstract).

    Google Scholar

    [59] Zhou X,Fei G C,Zhou Y,et al.,2015. Chronology and crust-mantle mixing of ore-forming porphyry of the Bangongco:Evidence from zircon U-Pb age and Hf isotope of the Naruo porphyry copper-gold deposit[J]. Acta Geologica Sinica–English Edition,89(1):217 − 228. doi: 10.1111/1755-6724.12406

    CrossRef Google Scholar

    [60] 周玉,多吉,温春齐,等,2013. 西藏波龙铜矿床 S,Pb 同位素地球化学特征[J]. 矿物岩石, 33(2):43 − 49.

    Google Scholar

    Zhou Y,Duo J,Wen C Q,et al.,2013. Geochemical characteristics of sulfur and lead isotopes from the Bolong copper deposit,Xizang[J]. J Mineral Petrol, 33(2):43 − 49 (in Chinese with English abstract).

    Google Scholar

    [61] Zhu X P,Ji D,Li G M,et al.,2019. High oxidation magmatic evolution in the Naruo porphyry Cu deposit,Xizang,China[J]. Gondwana Research,76:26 − 43. doi: 10.1016/j.gr.2019.05.006

    CrossRef Google Scholar

    [62] 祝向平,陈华安,刘鸿飞,等,2015. 西藏多不杂斑岩铜矿斑岩锆石U-Pb年龄、岩石地球化学特征及其成矿意义[J]. 地质学报,89(3):534 − 548.

    Google Scholar

    Zhu X P,Chen H A,Liu H F,et al.,2015. Zircon U-Pb ages,geochemistry of the porphyries from the Duobuza porphyry Cu-Au deposit,Xizang and their metallogenic significance[J]. Acta Geologica Sinica,89(3):534 − 548 (in Chinese with English abstract).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(646) PDF downloads(49) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint