2023 Vol. 43, No. 4
Article Contents

ZHAO Wenpu, LI Yifan, ZHAO Shuang, FAN Tailiang, YUAN Yuxuan, ZHANG Tan. 2023. High-resolution sequence stratigraphic characteristics and organic matter enrichment mechanism of fine-grained sedimentary rocks in the Tiesiao-Datangpo Formations in northeastern Guizhou. Sedimentary Geology and Tethyan Geology, 43(4): 871-891. doi: 10.19826/j.cnki.1009-3850.2023.11005
Citation: ZHAO Wenpu, LI Yifan, ZHAO Shuang, FAN Tailiang, YUAN Yuxuan, ZHANG Tan. 2023. High-resolution sequence stratigraphic characteristics and organic matter enrichment mechanism of fine-grained sedimentary rocks in the Tiesiao-Datangpo Formations in northeastern Guizhou. Sedimentary Geology and Tethyan Geology, 43(4): 871-891. doi: 10.19826/j.cnki.1009-3850.2023.11005

High-resolution sequence stratigraphic characteristics and organic matter enrichment mechanism of fine-grained sedimentary rocks in the Tiesiao-Datangpo Formations in northeastern Guizhou

More Information
  • The Datangpo Formation of the Nanhua System is a set of high-quality source rocks and potential unconventional oil and gas reservoirs, which has important geological historical research and oil and gas exploration significance. However, research on its sedimentary process and high-precision sequence stratigraphy remains relatively limited. The current study, using the core description and thin section observation from Well ZK513 in northeast Guizhou as the primary research methods, employed updated classification criteria for fine-grained sediments to meticulously classify and identify 14 distinct lithofacies, including quartz sandstone, pebbly argillaceous sandstone, grey mudstone, grey pebbly sandy mudstone, grey argillaceous sandstone, black carbonaceous-siliceous sandy mudstone, black pebbly carbonaceous-siliceous argillaceous sandstone, grey quartz sandstone, black manganese mudstone, black argillaceous siltstone, black grey argillaceous siltstone, grey-black argillaceous siltstone, grey silty mudstone and grey-white mudstone. Based on the characteristics of lithofacies combination, three sedimentary facies—intra-shelf basin, deep-water shelf and shallow-water shelf—were identified. These three facies were subsequently subdivided into seven sedimentary subfacies: foreshore, ice sea shallow continental shelf, manganese-rich basin in continental shelf, deep-water basin in continental shelf, margin of basin in continental shelf, deep-water continental shelf and shallow-water continental shelf. Based on the analysis of lithofacies and sedimentary facies, it is considered that LF9 black manganese mudstone and LF10 black argillaceous siltstone in the continental intra-shelf basin facies are favorable facies and intervals for hydrocarbon source rocks. Through the study of lithofacies and sedimentary facies, five third-order sequences SQ1-SQ5 and four third-order sequence boundaries SB1-SB4 were identified. According to the lithofacies superposition pattern and quantitative statistics of sedimentary structure, four typical parasequence types were summarized in the third-order sequence. Based on the superposition form of parasequence, several parasequence sets in the third-order sequence were identified, and then five transgressive (TST)-highstand system tract (HST) cycles and five internal maximum flooding surfaces MFS1-MFS5 were identified, and then the single well sequence stratigraphic framework was established. Based on the data of lithofacies, sedimentary facies and sequence of Well ZK513 and other wells in the study area, the filling evolution model of the sedimentary period of Datangpo 1 member in northeast Guizhou was established by well comparison. The distribution of the basin in the continental shelf of the favorable facies area in the study area and the distribution pattern of the organic-rich interval LF9-LF10 in the facies area were predicted.

  • 加载中
  • [1] Cheng M, Li C, Chen X, et al. , 2018. Delayed neoproterozoic oceanic oxygenation: evidence from Mo isotopes of the Cryogenian Datangpo Formation[J]. Precambrian Research, 319: 187-197. doi: 10.1016/j.precamres.2017.12.007

    CrossRef Google Scholar

    [2] Cheng M, Zhang Z, Algeo T J, et al. , 2021. Hydrological controls on marine chemistry in the Cryogenian Nanhua basin (South China)[J]. Earth-Science Reviews, 218: 103678. doi: 10.1016/j.earscirev.2021.103678

    CrossRef Google Scholar

    [3] Li C, Love G D, Lyons T W, et al. , 2012. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China[J]. Earth and Planetary Science Letters, 331-332: 246-256. doi: 10.1016/j.jpgl.2012.03.018

    CrossRef Google Scholar

    [4] Li T, Zhu G, Zhao K, et al. , 2022. Geochemical characteristics of organic-rich intervals within the Cryogenian non-glacial Datangpo Formation in southeastern Yangtze Block-implications for paleoenvironment and its control on organic matter accumulation[J]. Precambrian Research, 378: 106777. doi: 10.1016/j.precamres.2022.106777

    CrossRef Google Scholar

    [5] Shen W, Zhu X, Li J, et al. , 2022. Mechanism of organic matter accumulation in black shale of the Datangpo Formation: insights from paleo-environmental variation during the Cryogenian non-glaciation[J]. Precambrian Research, 383: 106889. doi: 10.1016/j.precamres.2022.106889

    CrossRef Google Scholar

    [6] Tan Z, Jia W, Li J, et al. , 2021. Geochemistry and molybdenum isotopes of the basal Datangpo Formation: implications for ocean-redox conditions and organic matter accumulation during the Cryogenian interglaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 563: 110169.

    Google Scholar

    [7] Wei G, Wei W, Wang D, et al. , 2020. Enhanced chemical weathering triggered an expansion of euxinic seawater in the aftermath of the Sturtian glaciation[J]. Earth and Planetary Science Letters, 539: 116244. doi: 10.1016/j.jpgl.2020.116244

    CrossRef Google Scholar

    [8] Yu W, Algeo T J, Du Y, et al. , 2017. Newly discovered sturtian cap carbonate in the Nanhua basin, South China[J]. Precambrian Research, 293: 112-130. doi: 10.1016/j.precamres.2017.03.011

    CrossRef Google Scholar

    [9] 陈小妍, 2020. 中-新元古代期间海洋化学条件的变化[D]: 中国科学技术大学.

    Google Scholar

    Chen X Y, 2020. The ocean chemistry changes during Meso-to Neoproterozoic[D]: University of Science and Technology of China.

    Google Scholar

    [10] 黄文魁, 2016. 贵州松桃大塘坡锰矿中固体沥青的地球化学特征及其成因研究[D]: 长江大学.

    Google Scholar

    Huang W K, 2016. The geochemical characteristics and genesis study of solid bitumen from Datangpo manganese ore in Songtao, Guizhou[D]: Yangtze University.

    Google Scholar

    [11] 李明龙, 田景春, 方喜林, 等, 2019. 鄂西走马地区大塘坡组顶部泥岩碎屑锆石la-icp-ms u-pb年龄及其地质意义[J]. 沉积与特提斯地质, 39(01): 22-31 doi: 10.3969/j.issn.1009-3850.2019.01.003

    CrossRef Google Scholar

    Li M L, Tian J C, Fang X L, et al. , 2019. Mudstones from the topmost part of the Datangpo Formation in the Zouma area, western Hubei: LA-ICP-MS zircon U-Pb dating and its geological implications[J]. Sedimentary Geology and Tethyan Geology, 39(01): 22-31. doi: 10.3969/j.issn.1009-3850.2019.01.003

    CrossRef Google Scholar

    [12] 李一凡, 2016. 黔西北地区上奥陶统至下志留统细粒沉积岩形成环境与孔隙表征[D]: 中国地质大学(北京).

    Google Scholar

    Li Y F, 2016. Depositional environment and pore characteristics of the Odorvician-Silurian fine-grained sedimentary rocks, northwestern Guizhou, South China[D]: China University of Geosciences( Beijing ).

    Google Scholar

    [13] 罗亮, 孙志明, 马志鑫, 等, 2015. 黔东渝东南地区南华纪沉积序列与沉积环境演变[J]. 地质科技情报, 34(02): 27-35

    Google Scholar

    Luo L, Sun Z M, Ma Z X, et al. , 2015. Sedimentary sequence and evolution of depositional environment of Nanhua System, east of Guizhou and southeast of Chongqing[J]. Geological Science and Technology Information, 34(02): 27-35.

    Google Scholar

    [14] 周琦, 杜远生, 袁良军, 等, 2016. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用[J]. 地球科学(2): 177 − 188

    Google Scholar

    Zhou Q, Du Y S, Yuan L J, et al., 2016. The structure of the Wuling rift basin and its control on the manganese deposit during the Nanhua period in Guizhou-Hunan-Chongqing border area, South China[J]. Earth Science(2): 177 − 188.

    Google Scholar

    [15] 郭昱宏, 2015. 重庆酉阳秀山大塘坡组层序地层及与成锰关系研究[D]: 成都理工大学.

    Google Scholar

    Guo Y H, 2015. Research and relationship with a manganese in Chongqing Xiushan Youyang Datangpo Formation sequence stratigraphy[D]: Chengdu University of Technology.

    Google Scholar

    [16] 李一凡, 魏小洁, 樊太亮, 2021. 海相泥页岩沉积过程研究进展[J]. 沉积学报, 39(1): 73-87

    Google Scholar

    Li Y F, Wei X J, Fan T L, 2021. A review on sedimentary processes of marine mudstones and shales[J]. Acta Sedimentologica Sinica, 39(1): 73-87.

    Google Scholar

    [17] 刘振, 马志鑫, 刘伟, 等, 2021. 重庆秀山小茶园地区南华纪大塘坡组沉积环境与锰矿产出规律[J]. 沉积学报, 39(3): 513-524

    Google Scholar

    Liu Z, Ma Z X, Wei L, et al. , 2021. Sedimentary environment and manganese ore deposits in the Nanhua period Datangpo Formation in Xiaochayuan area, Xiushan, Chongqing[J]. Acta Sedimentologica Sinica, 39(3): 513-524.

    Google Scholar

    [18] 马志鑫, 罗亮, 刘喜停, 等, 2016. 重庆秀山小茶园锰矿南华系大塘坡组古环境[J]. 古地理学报, 18(3): 473-486

    Google Scholar

    Ma Z X, Luo L, Liu X T, et al. , 2016. Palaeoenvironment of the Datangpo Formation of Nanhua System in Xiaochayuan manganese deposit in Xiushan area of Chongqing[J]. Journal of Palaeogeography(Chinese Edition), 18(3): 473-486.

    Google Scholar

    [19] 饶莉, 2017. 松桃地区大塘坡组地球化学特征与古海洋化学状态研究[D]: 中国矿业大学.

    Google Scholar

    Rao L, 2017. Study on the sedimentary geochemical of Datangpo Formation and chemical state of ocean in Songtao area[D]: China University of Mining & Technology.

    Google Scholar

    [20] 郑杰, 2019. 黔东北地区大塘坡式锰矿床沉积相分析[D]: 成都理工大学.

    Google Scholar

    Zheng J, 2019. Sedimentary facies analysis of Datangpo type manganese deposit in northeast Guizhou[D]: Chengdu University of Technology.

    Google Scholar

    [21] 周琦, 杜远生, 袁良军, 等, 2016. 贵州铜仁松桃锰矿国家整装勘查区地质找矿主要进展及潜力预测[J]. 贵州地质, 33(4): 237-244

    Google Scholar

    Zhou Q, Du Y S, Yuan L J, et al. , 2016. Prediction of geologic exploration in Songtao manganese national fully equipped exploration district in Tongren, Guizhou[J]. Guizhou Geology, 33(4): 237-244.

    Google Scholar

    [22] 曹默雷, 陈建平, 2022. 由层序地层学角度分析大塘坡式锰矿沉积过程——以湘西北民乐锰矿为例[J]. 沉积学报, 40(04): 1083-1094

    Google Scholar

    Cao M L, Chen J P, 2022. The analysis of the sedimentary process for Datangpo-type manganese ores from the point of sequence stratigraphy: a case of the minle manganese deposits in northwestern Hunan[J]. Acta Sedimentologica Sinica, 40(04): 1083-1094.

    Google Scholar

    [23] 陈建书, 戴传固, 彭成龙, 等, 2016. 湘黔桂相邻区新元古代820~635Ma时期裂谷盆地充填序列与地层格架[J]. 中国地质, 43(03): 899-920

    Google Scholar

    Chen J S, Dai C G, Peng C L, et al. , 2016. The filling sequence and stratigraphic framework of rift basin during the Neoproterozoic 820-635 Ma in Hunan, Guizhou and Guangxi[J]. Geology in China, 43(03): 899-920.

    Google Scholar

    [24] 杜远生, 周琦, 余文超, 等, 2015. Rodinia超大陆裂解、sturtian冰期事件和扬子地块东南缘大规模锰成矿作用[J]. 地质科技情报: 1 − 7

    Google Scholar

    Du Y S, Zhou Q, Yu W C, et al., 2015. Linking the cryogenian manganese metallogenic process in the southeast margin of Yangtze Block to break-up of Rodinia supercontinent and Sturtian glaciation[J]. Geological Science and Technology Information: 1 − 7.

    Google Scholar

    [25] 何明华, 2021. 南华系大塘坡组菱锰矿矿床地质特征及成因新见解[J]. 科技创新与应用, 11(21): 65-67

    Google Scholar

    He M H, 2021. New insights on geological characteristics and genesis of the Nanhua Datangpo Formation rhodochrosite deposit[J]. Technology Innovation and Application, 11(21): 65-67.

    Google Scholar

    [26] 李婷婷, 朱光有, 赵坤, 等, 2021. 华南地区南华系大塘坡组黑色岩系地质地球化学特征与有机质富集机制[J]. 石油学报, 42(09): 1142-1162

    Google Scholar

    Li T T, Zhu G Y, Zhao K, et al. , 2021. Geological, geochemical characteristics and organic matter enrichment of the black rock series in Datangpo Formation in Nanhua System, South China[J]. Acta Petrolei Sinica, 42(09): 1142-1162.

    Google Scholar

    [27] 瞿永泽, 徐林刚, 毛景文, 等, 2018. 贵州铜仁地区南华系大塘坡组黑色页岩型菱锰矿碳、氧同位素特征及锰矿成矿作用[J]. 矿床地质, 37(01): 50-66 doi: 10.16111/j.0258-7106.2018.01.004

    CrossRef Google Scholar

    Qu Y Z, Xu L G, Mao J W, et al. , 2018. Carbon and oxygen isotope characteristics and mineralization of black shalehosted manganese carbonate of Datangpo Formation in Tongren, Guizhou province[J]. Deposit Geology, 37(01): 50-66. doi: 10.16111/j.0258-7106.2018.01.004

    CrossRef Google Scholar

    [28] 宋腾, 林拓, 李飞, 等, 2022. 中上扬子地区南华系大塘坡组沉积期岩相古地理及对油气成藏的指示[J]. 中国地质: 1 − 23

    Google Scholar

    Song T, Lin T, Li F, et al., 2022. Lithofacies paleogeography in the depositional period of the Datangpo Formation of Nanhua System in the Middle and Upper Yangtze region, SW China and its indication of hydrocarbon accumulation[J]. Geology in China: 1 − 23.

    Google Scholar

    [29] 唐婷婷, 牟军, 王安华, 等, 2019. 贵州铜仁地区南华系铁丝坳组—南沱组沉积环境及古气候演变[J]. 贵州科学, 37(06): 67-73 doi: 10.3969/j.issn.1003-6563.2019.06.015

    CrossRef Google Scholar

    Tang T T, Mou J, Wang A H, et al. , 2019. Sedimentary environment and paleoclimate research of Tiesi′ao Formation-Nantuo Formation in Tongren, Guizhou[J]. Guizhou Science, 37(06): 67-73. doi: 10.3969/j.issn.1003-6563.2019.06.015

    CrossRef Google Scholar

    [30] 王萍, 周琦, 余文超, 等, 2019. 湘黔渝邻接区南华纪“大塘坡式”锰矿的高δ34S成因与成矿意义//第九届全国成矿理论与找矿方法学术讨论会论文摘要集[C].

    Google Scholar

    Wang P, Zhou Q, Yu W C, et al., 2019. The high δ34S genesis and metallogenic significance of the Nanhua 'Datangpo' manganese deposit in the adjacent area of Hunan, Guizhou and Chongqing// Abstracts of the 9 th National Symposium on Metallogenic Theory and Prospecting Methods[C].

    Google Scholar

    [31] 余文超, 杜远生, 周琦, 等, 2020. 华南成冰纪“大塘坡式”锰矿沉积成矿作用与重大地质事件的耦合关系[J]. 古地理学报, 22(05): 855-871

    Google Scholar

    Yu W C, Du Y S, Zhou Q, et al. , 2020. Coupling between metallogenesis of the cryogenian Datangpo-type manganese deposit in South China and major geological events[J]. Journal of Palaeogeography(Chinese Edition), 22(05): 855-871.

    Google Scholar

    [32] 张予杰, 安显银, 刘石磊, 等, 2020. 黔东北地区大塘坡组早期含锰沉积充填、岩相古地理与锰矿的关系[J]. 中国地质, 47(03): 607-626

    Google Scholar

    Zhang Y J, An X Y, Liu S L, et al. , 2020. The lithofaces, Mn-bearing sedimentary filling and palaeogeographic pattern of early Datangpo stage and implied for manganese in the Northeastern Guizhou Province[J]. Geology in China, 47(03): 607-626.

    Google Scholar

    [33] 赵文智, 胡素云, 汪泽成, 等, 2018. 中国元古界—寒武系油气地质条件与勘探地位[J]. 石油勘探与开发, 45(01): 1-13 doi: 10.1016/S1876-3804(18)30001-6

    CrossRef Google Scholar

    Zhao W Z, Hu S Y, Wang Z C, et al. , 2018. Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China[J]. Petroleum Exploration and Development, 45(01): 1-13. doi: 10.1016/S1876-3804(18)30001-6

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Tables(1)

Article Metrics

Article views(1183) PDF downloads(75) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint