2023 Vol. 43, No. 4
Article Contents

GENG Feng, SU Bingrui, HAO Jianlong, FAN Weifeng, DUAN Xiong. 2023. The Cambrian sedimentary sequences and paleogeographic evolution in the Bachu-Maigaiti area, southwestern Tarim Basin.. Sedimentary Geology and Tethyan Geology, 43(4): 856-870. doi: 10.19826/j.cnki.1009-3850.2022.04013
Citation: GENG Feng, SU Bingrui, HAO Jianlong, FAN Weifeng, DUAN Xiong. 2023. The Cambrian sedimentary sequences and paleogeographic evolution in the Bachu-Maigaiti area, southwestern Tarim Basin.. Sedimentary Geology and Tethyan Geology, 43(4): 856-870. doi: 10.19826/j.cnki.1009-3850.2022.04013

The Cambrian sedimentary sequences and paleogeographic evolution in the Bachu-Maigaiti area, southwestern Tarim Basin.

More Information
  • The Bachu-Maigaiti area in the Tarim Basin is an important oil-gas-bearing area. Based on the latest drilling and seismic data, this paper divides the Cambrian into 13 third-order sequences in the Bachu-Maigaiti area of ​​the Tarim Basin. Detailed descriptions of the sedimentary sequences and lithofacies and paleogeography of each period were provided. It was proposed that the Bachu-Maigaiti area experienced an evolution process from a carbonate gentle slope to a rimmed carbonate platform. Through the study of up-drilling, logging data, and seismic characteristics of the Bachu uplift, the sedimentary environment of the Maigaiti slope, which lacks physical data such as drilling, was reasonably speculated, and finally the lithofacies paleogeographic map was compiled in units of groups. The results show that the Bachu-Maigaiti area in the Tarim Basin experienced two large-scale transgressions during the Cambrian sedimentary evolution (SQ1-SQ13), forming a good source-reservoir-cap assemblage in the Cambrian subsalt. In this context, the Maigaiti slope is the most favorable area for the formation of large oil and gas reservoirs in the Cambrian exploration area in the southwest of the Tarim Basin, and has good exploration prospects.

  • 加载中
  • [1] 曹自成, 朱秀香, 吴鲜, 等, 2021. 塔里木盆地巴楚隆起盐下白云岩中油气来源[J]. 石油实验地质, 43(4): 648-654 doi: 10.11781/sysydz202104648

    CrossRef Google Scholar

    Cao Z C, Zhu X X, Wu X, et al. , 2021. Source of hydrocarbons discovered from Cambrian sub-salt dolomite in Bachu uplift area, Tarim Basin[J]. Petroleum Geology & Experiment, 43(4): 648-654. doi: 10.11781/sysydz202104648

    CrossRef Google Scholar

    [2] 陈刚, 汤良杰, 余腾孝, 等, 2015. 塔里木盆地巴楚-麦盖提地区前寒武系不整合对基底古隆起及其演化的启示[J]. 现代地质, 29(3): 576-583

    Google Scholar

    Chen G, Tang L J, Yu T X, et al. , 2015. Implications of Precambrian Unconformity to Basement Paleo-uplift and Its Tectonic Evolution of Bachu-Markit Area, Tarim Basin[J]. Geoscience, 29(3): 576-583.

    Google Scholar

    [3] 陈永权,严威,韩长伟,等, 2015. 塔里木盆地寒武纪—早奥陶世构造古地理与岩相古地理格局再厘定——基于地震证据的新认识 [J]. 天然气地球科学, 26(10): 1831-1843.

    Google Scholar

    Chen Y Q, Yan W, Han C W, et al., 2015. Redefinition on Structural Paleogeography and Lithofacies Paleogeography Framework from Cambrian to Early Ordovician in the Tarim Basin: A New Approach Based on Seismic Stratigraphy Evidence[J]. Natural Gas Geoscience, 26(10): 1831-1843.

    Google Scholar

    [4] 陈永权, 严威, 韩长伟, 等, 2019. 塔里木盆地寒武纪/前寒武纪构造-沉积转换及其勘探意义[J]. 天然气地球科学, 30(1): 39-50

    Google Scholar

    Chen Y Q, Yan W, Han C W, et al. , 2019. Structural and sedimentary basin transformation at the Cambrian/Neoproterozoic interval in Tarim Basin: Implication to subsalt dolostone exploration[J]. Natural Gas Geoscience, 30(1): 39-50.

    Google Scholar

    [5] 崔海峰, 田雷, 张年春, 等, 2016. 塔西南坳陷寒武系玉尔吐斯组烃源岩分布特征[J]. 天然气地球科学, 43(3): 327-339

    Google Scholar

    Cui H F, Tian L, Zhang N C, et al. , 2016. Distribution characteristics of the source rocks from Cambrian Yuertusi Formation in the Southwest Depression of Tarim Basin[J]. Natural Gas Geoscience, 43(3): 327-339.

    Google Scholar

    [6] 丁文龙,漆立新,云露,等. 2012. 塔里木盆地巴楚-麦盖提地区古构造演化及其对奥陶系储层发育的控制作用 [J]. 岩石学报, 28 (8): 2542-2556.

    Google Scholar

    Ding W L, Qi L X, Yun L, et al., 2012. The tectonic evolution and its controlling effects on the development of Ordovician reservoir in Bachu-Markit Tarim basin. Acta Petrologica Sinica, 28(8): 2542-2556.

    Google Scholar

    [7] 杜金虎, 潘文庆, 2016. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向[J]. 现代地质, 31(1): 102-118

    Google Scholar

    Du H J, Pan W Q, 2016. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim Basin, NW China[J]. Geoscience, 31(1): 102-118.

    Google Scholar

    [8] 冯增昭, 鲍志东, 吴茂炳, 等, 2006. 塔里木地区寒武纪岩相古地理[J]. 古地理学报, 8(4): 427 − 439

    Google Scholar

    Feng Z Z, Bao Z D, Wu B M, et al., 2006. Lithofacies palaeogeography of the Cambrian in Tarim area. Journal of Palaeogeography[J]. 8(4): 427 − 439.

    Google Scholar

    [9] 高华华, 何登发, 童晓光, 等, 2017. 塔里木盆地寒武纪构造-沉积环境与原型盆地演化[J]. 现代地质, 31(1): 102-118

    Google Scholar

    Gao H H, He D F, Tong X G, et al. , 2017. Tectonic-depositional Environment and Proto-type Basin Evolution of the Cambrian in the Tarim Basin[J]. Geoscience, 31(1): 102-118.

    Google Scholar

    [10] 何登发, 贾承造, 德生, 等, 2005. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 26(1): 64-77

    Google Scholar

    He D F, Jia C Z, De S, et al. , 2005. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 26(1): 64-77.

    Google Scholar

    [11] 何金有, 邬光辉, 徐备, 等, 2010. 塔里木盆地震旦系-寒武系不整合面特征及油气勘探意义[J]. 地质科学, 45(3): 698-706

    Google Scholar

    He J Y, Wu G H, Xu B, et al. , 2010. Characteristics and petroleum exploration significance of unconformity between Sinian and Cambrian in Tarim Basin[J]. Chinese Journal of Geology, 45(3): 698-706.

    Google Scholar

    [12] 黄擎宇, 胡素云, 潘文庆, 等, 2016. 台内微生物丘沉积特征及其对储层发育的控制——以塔里木盆地柯坪—巴楚地区下寒武统肖尔布拉克组为例 [J]. 天然气工业, 36(6): 21-29.

    Google Scholar

    Huang Q Y, Hu S Y, Pan W Q, et al., 2016. Sedimentary characteristics of intra-platform microbial mounds and their controlling effects on the development of reservoirs: A case study of the Lower Cambrian Xiaoerbulake Fm in the Keping-Bachu area, Tarim Basin[J]. Natural Gas Industry, 36(6): 21-29.

    Google Scholar

    [13] 胡明毅,孙春燕,高达, 2019.塔里木盆地下寒武统肖尔布拉克组构造-岩相古地理特征 [J]. 石油与天然气地质, 40 (1): 12-23.

    Google Scholar

    Hu M Y, Sun H Y, Gao D et al., 2019. Characteristics of tectonic-lithofacies paleogeography in the Lower Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 40(1): 12-23.

    Google Scholar

    [14] 金之钧, 王清晨. 2004. 中国典型叠合盆地与油气成藏研究新进展-以塔里木盆地为例[J]. 中国科学(D辑: 地球科学), (S1): 1 − 12

    Google Scholar

    Jin Z J, Wang Q C. 2004. New Progress in the Study of Typical Stacked Basins and Hydrocarbon Formation in China—Take the Tarim Basin as an Example[J]. Science in China Series D: Earth Sciences, (S1): 1 − 12.

    Google Scholar

    [15] 李久梅 , 2018. 塔里木盆地玉北及邻区构造演化及寒武-奥陶系构造古地貌重建[D]. 北京: 中国石油大学.

    Google Scholar

    Li J M, 2018. Tectonic evolution and Cambrian-Ordovician tectonic palaeomorphological reconstruction of Yubei and neighbouring areas in Tarim Basin[D]. Bei Jing: China University of Petroleum.

    Google Scholar

    [16] 李勇, 陈才, 冯晓军, 等, 2016. 塔里木盆地西南部南华纪裂谷体系的发现与意义[J]. 岩石学报, 32(3): 825-832

    Google Scholar

    Li Y, Chen C, Feng X J, et al. , 2016. New discovery of Nanhuaian rift system in southwestern Tarim basin and its geological significance[J]. Acta Petrologica Sinica, 32(3): 825-832.

    Google Scholar

    [17] 林畅松, 李思田, 刘景彦, 等, 2011. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化[J]. 岩石学报, 27(1): 210-218

    Google Scholar

    Lin C S, Li S T, Liu J Y, et al. , 2011. Tectonic framework and paleogeographic evolution of the Tarim basin during the Paleozoic major evolutionary stages[J]. Acta Petrologica Sinica, 27(1): 210-218.

    Google Scholar

    [18] 牟传龙, 梁薇, 周恳恳, 等, 2012. 中上扬子地区早寒武世(纽芬兰世-第二世)岩相古地理[J]. 沉积与特提斯地质, 32(3): 41-53 doi: 10.3969/j.issn.1009-3850.2012.03.004

    CrossRef Google Scholar

    Mou C L, Liang W, Zhou K K, et al. , 2012. Sedimentary facies and palaeogeography of the middle-upper Yangtze area during the Early Cambrian(Terreneuvian-Series 2)[J]. Sedimentary Geology and Tethyan Geology, 32(3): 41-53. doi: 10.3969/j.issn.1009-3850.2012.03.004

    CrossRef Google Scholar

    [19] 牟传龙, 王启宇, 王秀平, 等, 2016. 岩相古地理研究可作为页岩气地质调查之指南[J]. 地质通报, 35(1): 10 − 19

    Google Scholar

    Mou C L, Wang Q Y, Wang X P, et al., 2016. A study of lithofacies-palaeogeography as a guide to geological survey of shale gas[J]. Geological Bulletin of China, 35(1): 10 − 19.

    Google Scholar

    [20] 牟传龙, 2022. 关于相的命名及其分类的建议[J]. 沉积与特提斯地质, 42(03): 331 − 339

    Google Scholar

    Mou C L, 2022. Suggested naming and classification of the word facies. Sedimentary Geology and Tethyan Geology, 42(3): 331 − 339.

    Google Scholar

    [21] 潘文庆, 陈永权, 熊益学, 等, 2015. 塔里木盆地下寒武统烃源岩沉积相研究及其油气勘探指导意义[J]. 天然气地球科学, 26(7): 1224-1232

    Google Scholar

    Pan W Q, Chen Y Q, Xiong Y X, et al. , 2015. Sedimentary Facies Research and Implications to Advantaged Exploration Regions on Lower Cambrian Source Rocks, Tarim Basin[J]. Natural Gas Geoscience, 26(7): 1224-1232.

    Google Scholar

    [22] 乔占峰, 沈安江, 倪新峰, 等, 2019. 塔里木盆地下寒武统肖尔布拉克组丘滩体系类型及其勘探意义[J]. 石油与天然气地质, 40(2): 392-402

    Google Scholar

    Qiao Z F, Shen A J, Ni X F, et al. , 2019. Types of mound-shoal complex of the Lower Cambrian Xiaoerbulake Formation in Tarim Basin, northwest China, and its implications for exploration[J]. Oil & Gas Geology, 40(2): 392-402.

    Google Scholar

    [23] 石开波, 刘波, 姜伟民, 等, 2018. 塔里木盆地南华纪-震旦纪构造-沉积格局[J]. 石油与天然气地质, 39(5): 862-877 doi: 10.11743/ogg20180502

    CrossRef Google Scholar

    Shi K B, Liu B, Jiang W M, et al. , 2018. Nanhua-Sinian tectono-sedimentary framework of Tarim Basin, NW China[J]. Oil & Gas Geology, 39(5): 862-877. doi: 10.11743/ogg20180502

    CrossRef Google Scholar

    [24] 宋金民,罗平,杨式升,等, 2014. 塔里木盆地下寒武统微生物碳酸盐岩储集层特征 [J]. 石油勘探与开发, 41(4): 404-413+437.

    Google Scholar

    Song J M, Luo P, Yang S W, et al., 2014. Reservoirs of Lower Cambrian microbial carbonates, Tarim Basin, NW China[J], Petroleum Exploration and Development, 41(4): 404-413+437.

    Google Scholar

    [25] 田雷, 崔海峰, 刘军, 等, 2018. 塔里木盆地早、中寒武世古地理与沉积演化[J]. 石油与天然气地质, 39(5): 1011-1021 doi: 10.11743/ogg20180515

    CrossRef Google Scholar

    Tian L, Cui H J, Liu J, et al. , 2018. Early-Middle Cambrian paleogeography and depositional evolution of Tarim Basin[J]. Oil & Gas Geology, 39(5): 1011-1021. doi: 10.11743/ogg20180515

    CrossRef Google Scholar

    [26] 王道伟, 王铁冠, 李美俊, 等, 2016. 塔中隆起中深5井与中深1井和烷基分布特征与油源启示[J]. 地球化学, 45(5): 451-461 doi: 10.3969/j.issn.0379-1726.2016.05.002

    CrossRef Google Scholar

    Wang D W, Wang T G, Li M J, et al. , 2016. The distribution of chrysene and methylchrysenes in oils from wells ZS5 and ZS1 in the Tazhong Uplift and its implications in oil-to-source correlation[J]. Geochimica, 45(5): 451-461. doi: 10.3969/j.issn.0379-1726.2016.05.002

    CrossRef Google Scholar

    [27] 王招明, 谢会文, 陈永权, 等, 2014. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 19(2): 1-13 doi: 10.3969/j.issn.1672-7703.2014.02.001

    CrossRef Google Scholar

    Wang Z M, Xie H W, Chen Y Q, et al. , 2014. Discovery and Exploration of Cambrian Subsalt Dolomite Original Hydrocarbon Reservoir at Zhongshen-1 Well in Tarim Basin[J]. China Petroleum Exploration, 19(2): 1-13. doi: 10.3969/j.issn.1672-7703.2014.02.001

    CrossRef Google Scholar

    [28] 熊冉, 张天付, 乔占峰, 等, 2019. 塔里木盆地奥陶系蓬莱坝组碳酸盐岩缓坡沉积特征及油气勘探意义[J]. 沉积于特提斯地质, 39(1): 42-49

    Google Scholar

    Xiong R, Zhang T F, Qiao Z F, et al. , 2019. The carbonate ramp deposits from the Ordovician Penglaiba Formation in the Tarim Basin, Xinjiang: sedimentary characteristics and their implications for petroleum exploration[J]. Sedimentary Geology and Tethyan Geology, 39(1): 42-49.

    Google Scholar

    [29] 许效松, 汪正江, 万方, 等, 2005. 塔里木盆地早古生代构造古地理演化与烃源岩[J]. 地学前缘, 12(3): 49-57 doi: 10.3321/j.issn:1005-2321.2005.03.007

    CrossRef Google Scholar

    Xu X S, Wang Z H, Wan F, et al. , 2005. Tectonic paleogeographic evolution and source rocks of the Early Paleozoic in the Tarim Basin[J]. Earth Science Frontiers, 12(3): 49-57. doi: 10.3321/j.issn:1005-2321.2005.03.007

    CrossRef Google Scholar

    [30] 许志琴, 李思田, 张建新, 等, 2011. 塔里木地块与古亚洲/特提斯构造体系的对接[J]. 岩石学报, 27(1): 1 − 22

    Google Scholar

    Xu Z Q, Li S T, Zhang J X, et al., 2011. Paleo-Asian and Tethyan tectonic systems with docking the Tarim block[J]. Acta Petrologica Sinica, 27(1): 1 − 22.

    Google Scholar

    [31] 杨俊丰, 2018. 巴楚隆起下寒武统肖尔布拉克组白云岩储层特征及分布[D]. 成都: 西南石油大学.

    Google Scholar

    Yang J F, 2018. Characteristics and distribution of dolomite reservoirs in the Lower Cambrian Shorbulak Formation, Bachu Rise[D]. Cheng Du: Southwest University of Petroleum.

    Google Scholar

    [32] 杨鑫, 徐旭辉, 陈强路, 等, 2014. 塔里木盆地前寒武纪古构造格局及其对下寒武统烃源岩发育的控制作用[J]. 天然气地球科学, 25(8): 1164 − 1171

    Google Scholar

    Yang X, Xu X H, Chen L Q, et al., 2014. Palaeotectonics Pattern in Pre-Cambrian and Its Control on the Deposition of the Lower Cambrian Source Rocks in Tarim Basin, NW China[J]. Natural Gas Geoscience, 25(8): 1164 − 1171.

    Google Scholar

    [33] 杨伟利, 王毅, 杨晓影, 等, 2017. 塔里木盆地寒武纪岩相古地理与油气 [J]. 长江大学学报(自科版), 14(11): 1-6+8.

    Google Scholar

    Yang W L, Wang Y, Yang X Y et al., 2017. The Lithofacies Paleogeographic Characteristics of Cambrian and Oil and Gas in Tarim Basin[J]. Journal of Yangtze University (Natural Science Edition),14(11): 1-6+8.

    Google Scholar

    [34] 易士威, 李明鹏, 郭绪杰, 等, 2019.塔里木盆地寒武系盐下勘探领域的重大突破方向 [J]. 石油学报, 40 (11): 1281-1295.

    Google Scholar

    Yi S W, Li M P, Guo X J, et al., 2019. Breakthrough direction of Cambrian per-salt exploration fields in Tarim Basin[J]. Acta Petrolei Sinica, 40(11): 1281-1295.

    Google Scholar

    [35] 易士威, 李明鹏, 郭绪杰, 等, 2020. 塔里木盆地南华纪古裂谷对寒武系沉积的控制及勘探意义[J]. 石油学报, 41(11): 1293-1308 doi: 10.7623/syxb202011001

    CrossRef Google Scholar

    Yi S W, Li M P, Guo X J, et al. , 2020. Ontrol of the Nanhua paleo-rift on Cambrian sedimentation and its exploration significance in Tarim Basin[J]. Acta Petrolei Sinica, 41(11): 1293-1308. doi: 10.7623/syxb202011001

    CrossRef Google Scholar

    [36] 岳勇, 罗少辉, 2019. 塔里木盆地玉北地区构造特征及对奥陶系成藏输导体系的控制[J]. 地质科技情报, 38(5): 20-30

    Google Scholar

    Yue Y, Luo S H, 2019. Structural Characteristics and Their Control over Ordovician Hydrocarbon Migration Pathway System in Yubei Area, Tarim Basin[J]. Geological Science and Technology Information, 38(5): 20-30.

    Google Scholar

    [37] Zhang C L, Ye X T, Zou H B, et al. , 2016. Neoproterozoic sedimentary basin evolution in southwestern Tarim, NW China: New evidence from field observations, detrital zircon U-Pb ages and Hf isotope compositions[J]. Precambrian Research, 280: 31-45. doi: 10.1016/j.precamres.2016.04.011

    CrossRef Google Scholar

    [38] Zhang C L, Zou H B, Li H K, 2013. Tectonic framework and evolution of the Tarim Block, NW China[J]. Gondwana Res. 23: 1306 − 1315.

    Google Scholar

    [39] Zhang F Q, Dilek Yildirim, Cheng G X, et al. , 2019. Late Neoproterozoic-early Paleozoic seismic structure-stratigraphy of the SW Tarim Block (China), its passive margin evolution and the Tarim-Rodinia breakup[J]. Precambrian Research, 334: 105456. doi: 10.1016/j.precamres.2019.105456

    CrossRef Google Scholar

    [40] 张天付, 黄理力, 倪新峰, 等, 2020. 塔里木盆地柯坪地区下寒武统吾松格尔组岩性组合及其成因和勘探意义——亚洲第一深井轮探1井突破的启示[J]. 石油与天然气地质, 41(5): 928-940 doi: 10.11743/ogg20200504

    CrossRef Google Scholar

    Zhang T F, Huang L L, Ni X F, et al. , 2020. Lithological combination, genesis and exploration significance of the Lower Cambrian Wusonggeer Formation of Kalpin area in Tarim Basin: Insight through the deepest Asian onshore well-Well Luntan 1[J]. Oil & Gas Geology, 41(5): 928-940. doi: 10.11743/ogg20200504

    CrossRef Google Scholar

    [41] Zhang T, Li Y F, Fan T L, et al. , 2020. Marine carbon and sulfur cycling across the Ediacaran-Cambrian boundary in Tarim Block and its implications for paleoenvironmental changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 560: 1–15.

    Google Scholar

    [42] 张宇航, 汤良杰, 邱海峻, 等, 2013. 塔里木盆地巴楚隆起西段边界断层联接及变形特征[J]. 地球科学, 38(3): 573-580

    Google Scholar

    Zhang Y H, Tang L J, Qiu H J, et al. , 2013. Linkages of the Boundary Faults and Deformation Features in the West of Bachu Uplift, Tarim Basin[J]. Editorial Committee of Earth Science-Journal of China University of Geosciences, 38(3): 573-580.

    Google Scholar

    [43] Zhao G C, Cawood P A, 2012. Precambrian geology of China[J]. Precambrian Research, 222-223: 13-45. doi: 10.1016/j.precamres.2012.09.017

    CrossRef Google Scholar

    [44] Zhao G C, Wang Y J, Huang B C, et al. , 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 186: 262-286. doi: 10.1016/j.earscirev.2018.10.003

    CrossRef Google Scholar

    [45] 张哨楠, 2020. 塔里木盆地玉北地区奥陶系储层成因研究[J]. 沉积与特提斯地质, 40(3): 72-86

    Google Scholar

    Zhang S N, 2020. Formation of the Ordovician Reservoir in Yubei Area, Tarim Basin[J]. Sedimentary Geology and Tethyan Geology, 40(3): 72-86.

    Google Scholar

    [46] 赵宗举, 罗家洪, 张运波, 等, 2011. 塔里木盆地寒武纪层序岩相古地理[J]. 石油学报, 32(6): 937-948 doi: 10.7623/syxb201106003

    CrossRef Google Scholar

    Zhao Z J, Luo J H, Zhang H B, et al. , 2011. Lithofacies paleogeography of Cambrian sequences in the Tarim Basin[J]. Acta Petrolei Sinica, 32(6): 937-948. doi: 10.7623/syxb201106003

    CrossRef Google Scholar

    [47] 赵宗举, 吴兴宁, 潘文庆, 等, 2009. 塔里木盆地奥陶纪层序岩相古地理[J]. 沉积学报, 27(5): 939-955

    Google Scholar

    Zhao Z J, Wu X N, Pan W Q, et al. , 2009. Sequence Lithofacies Paleogeography of Ordovician in Tarim Basin[J]. Acta Sedimentologica Sinica, 27(5): 939-955.

    Google Scholar

    [48] Zhu G Y, Li T T, Zhang Z Y, et al. , 2020. Distribution and geodynamic setting of the Late Neoproterozoic-Early Cambrian hydrocarbon source rocks in the South China and Tarim Blocks[J]. Journal of Asian Earth Sciences, 201: 104504. doi: 10.1016/j.jseaes.2020.104504

    CrossRef Google Scholar

    [49] 朱光有, 陈斐然, 陈志勇, 等, 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 27(1): 8-21 doi: 10.11764/j.issn.1672-1926.2016.01.0008

    CrossRef Google Scholar

    Zhu G Y, Chen F R, Chen Z Y, et al. , 2016. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin[J]. Natural Gas Geoscience, 27(1): 8-21. doi: 10.11764/j.issn.1672-1926.2016.01.0008

    CrossRef Google Scholar

    [50] 朱筱敏, 杨俊生, 张喜林. 2004. 岩相古地理研究与油气勘探[J]. 古地理学报, 6(1): 101 − 109.

    Google Scholar

    Zhu X M, Yang J S, Zhang X L, 2004. Application of lithofacies palaeogeography in petroleum exploration[J]. Journal of Palaeogeography, 6(1): 101 − 109.

    Google Scholar

    [51] 朱永进,倪新锋,刘玲利, 等, 2019.裂后沉降期碳酸盐岩缓坡沉积响应及成储特征——以塔里木盆地下寒武统肖尔布拉克组为例 [J]. 沉积学报, 37 (5): 1044-1057.

    Google Scholar

    Zhu Y J, Ni X F, Liu L L et al., 2019. Depositional Differentiation and Reservoir Potential and Distribution of Ramp Systems during Post⁃rift Period: An example from the Lower Cambrian Xiaoerbulake Formation in the Tarim Basin, NW China[J]. Acta Sedimentologica, 37(5): 1044-1057.

    Google Scholar

    [52] 朱永进, 沈安江, 刘玲利, 等, 2020. 塔里木盆地晚震旦世-中寒武世构造沉积充填过程及油气勘探地位[J]. 沉积学报, 38(2): 398-410

    Google Scholar

    Zhu Y J, Shen A J, Liu L L, et al. , 2020. Tectonic-sedimentary Filling History through the Later Sinian to the Mid-Cambrian in Tarim Basin and Its Explorational Potential[J]. Acta Sedimentologica Sinica, 38(2): 398-410.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(1036) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint