2024 Vol. 44, No. 2
Article Contents

LIU Jinlong, WANG Guozhi, LI Na, ZHAO Fufeng, LEI Qing, LIU Gang, JING Yang, WANG Ziang. 2024. Characteristics and geological significance of inclusions in searlesite from the Fengcheng Formation in the Junggar Basin, China.. Sedimentary Geology and Tethyan Geology, 44(2): 326-338. doi: 10.19826/j.cnki.1009-3850.2023.06002
Citation: LIU Jinlong, WANG Guozhi, LI Na, ZHAO Fufeng, LEI Qing, LIU Gang, JING Yang, WANG Ziang. 2024. Characteristics and geological significance of inclusions in searlesite from the Fengcheng Formation in the Junggar Basin, China.. Sedimentary Geology and Tethyan Geology, 44(2): 326-338. doi: 10.19826/j.cnki.1009-3850.2023.06002

Characteristics and geological significance of inclusions in searlesite from the Fengcheng Formation in the Junggar Basin, China.

More Information
  • The sodium-rich dolomite and oil shale in the Fengcheng Formation of the Junggar Basin are important oil and gas reservoirs and major source rocks. Correctly understanding the genesis of siliceous boron sodium rocks is of great significance for identifying the origin of sodium-rich dolomite and predicting high-quality dolomite reservoirs. In order to investigate the genesis of the dolomite and siliceous rocks in the Fengcheng Formation, this study selected 60 core samples from the formation and prepared thin sections. By observing the petrographic characteristics of siliceous boron sodium rocks and their fluid inclusions, as well as measuring the homogenization temperature and salinity of the inclusions, the genesis of siliceous boron sodium rocks and their significance for the host rocks are explored. The results show that: (1) blocky and vein-like siliceous boron sodium rocks were found in the mudstone, dolomite, and siliceous rocks of the Fengcheng Formation, with fluid inclusions including oil inclusions and aqueous inclusions of gas-liquid two-phase (O-type), pure liquid (PO-type), gas-liquid two-phase fluid (W-type), and pure liquid fluid (PW-type); (2) the homogenization temperature peak of blocky siliceous boron sodium rocks exhibits a decrease from 108.8~129.4℃ in the deep section to 72.8~89.8℃ in the shallow section, while that of vein-like siliceous boron sodium rocks ranges from 50.4~86.4℃ in the deep section to 54.2~66.4℃ in the shallow section; (3) the salinity of W-type fluid inclusions in blocky siliceous boron sodium rocks varies from 8.41% to 18.22% without a distinct concentration range, while that of vein-like siliceous boron sodium rocks ranges from 6.88% to 15.37%, indicating that the fluids during the sedimentation of the rocks are high salinity fluids. Based on the petrographic and fluid inclusion studies of the siliceous boron sodium rocks in the Fengcheng Formation of the Junggar Basin, along with previous geochemical research on siliceous rocks in the study area, it is concluded that the host rocks of siliceous boron sodium rocks are deposited by the mixing of medium-low temperature hydrothermal fluids with alkaline salt lake water under an alkaline salt lake background.

  • 加载中
  • [1] Ataman G, Gündoǧdu N, 1982. Analcimic zones in the tertiary of anatolia and their geological positions[J]. Sedimentary Geology, 31(1982) : 89-99.

    Google Scholar

    [2] Aleksandra Š, Ksenija S, Branimir J, et al. , 2008. Biomarker distributions as indicators for the depositional environment of lacustrine sediments in the Valjevo-Mionica basin (Serbia)[J]. Chemie der Erde - Geochemistry - Interdisciplinary Journal for Chemical Problems of the Geosciences and Geoecology , 68(4) : 395-411.

    Google Scholar

    [3] Bradley W H, Eugster H P, 1969. Geochemistry and paleolimnology of the trona deposits and associated authigenic minerals of the Green River Formation of Wyoming[J]. Professional Paper, 29(3): 369-393.

    Google Scholar

    [4] Bian W H, Jens Hornung, Liu Z H, et al. , 2010. Matthias Hinderer. Sedimentary and palaeoenvironmental evolution of the Junggar Basin, Xinjiang, Northwest China[J]. Palaeobiodiversity and Palaeoenvironments, 90(3): 175-186. doi: 10.1007/s12549-010-0038-9

    CrossRef Google Scholar

    [5] 曹剑, 雷德文, 李玉文, 等, 2015. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组[J]. 石油学报, 36(7): 781-790 doi: 10.7623/syxb201507002

    CrossRef Google Scholar

    Cao J, Lei D W, Li Y W, et al. , 2015. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar Basin[J]. Acta Petrolei Sinica, 36(7): 781-790. doi: 10.7623/syxb201507002

    CrossRef Google Scholar

    [6] 常海亮, 郑荣才, 郭春利, 等, 2016. 准噶尔盆地西北缘风城组喷流岩稀土元素地球化学特征[J]. 地质论评, 62(03): 550-568 doi: 10.16509/j.georeview.2016.03.003

    CrossRef Google Scholar

    Chang H L, Zhen R C, Guo C L, et al. , 2016. REE Geochemical Characteristics of Exhalant Rocks in Fengcheng Formation, Northwestern Margin of Junggar Basin[J]. Geological Review, 62(3): 550-568. doi: 10.16509/j.georeview.2016.03.003

    CrossRef Google Scholar

    [7] Chen Z H, Zha M, Liu K Y, et al. , 2016. Origin and accumulation mechanisms of petroleum in the Carboniferous volcanic rocks of the Kebai Fault zone, Western Junggar Basin, China[J]. Journal of Asian Earth Sciences, 127: 170-196. doi: 10.1016/j.jseaes.2016.06.002

    CrossRef Google Scholar

    [8] Chen Z H, Wang X L, Zha M, et al. , 2016. Characteristics and formation mechanisms of large volcanic rock oil reservoirs: A case study of the Carboniferous rocks in the Kebai fault zone of Junggar Basin, China[J]. AAPG Bulletin, 100(10) : 1585-1617. doi: 10.1306/04151614066

    CrossRef Google Scholar

    [9] 陈磊, 丁靖, 潘伟卿, 等, 2012. 准噶尔盆地玛湖凹陷西斜坡二叠系风城组云质岩优质储层特征及控制因素[J]. 中国石油勘探, 17(3): 8-11 doi: 10.3969/j.issn.1672-7703.2012.03.002

    CrossRef Google Scholar

    Chen L, Ding J, Pan W Q, et al. , 2012. Characteristics and Controlling Factors of High-quality Dolomite Reservoir in Permian Fengcheng Formation in West Slope of Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 17(3): 8-11. doi: 10.3969/j.issn.1672-7703.2012.03.002

    CrossRef Google Scholar

    [10] Chi G X, Haid T, Quirt D, et al. , 2017. Petrography, fluid inclusion analysis, and geochronology of the end uranium deposit, Kiggavik, Nunavut, Canada[J]. Mineralium Deposita, 52(2): 211-232. doi: 10.1007/s00126-016-0657-9

    CrossRef Google Scholar

    [11] David S, Steven B, Claire W, et al. , 2009. Natural systems evidence for the alteration of clay under alkaline conditions: An example from Searles Lake, California[J]. Applied Clay Science, 47(1-2) : 72-81.

    Google Scholar

    [12] Davis D W, Lowenstein T K, Spencer R J, 1990. Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O, and NaCl-CaCl2-H2O[J]. Geochimica et Cosmochimica Acta, 54(3): 591-601. doi: 10.1016/0016-7037(90)90355-O

    CrossRef Google Scholar

    [13] Eugster H P, Smith G I, 1965. Mineral Equilibria in the Searles Lake Evaporites, California[J]. Journal of Petrology, 6(3) : 473-522. doi: 10.1093/petrology/6.3.473

    CrossRef Google Scholar

    [14] Earman S, Fred M P, Brian J O L, et al. , 2005. The role of “excess” CO2 in the formation of trona deposits[J]. Applied Geochemistry, 20(12) : 2217-2232. doi: 10.1016/j.apgeochem.2005.08.007

    CrossRef Google Scholar

    [15] 傅饶, 郑荣才, 常海亮, 等, 2015. 湖相“白烟型”喷流岩——新型的致密油储层类型——以准噶尔盆地西缘乌尔禾地区风城组为例[J]. 岩性油气藏, (3): 32−42

    Google Scholar

    Fu R, Zheng R C, Chang H L, et al. , 2015. Lacustrine "white smoke type" exhalative rock——A new type of tight oil reservoir: A case study from Lower Permian Fengcheng Formation in Urho area, western margin of Junggar Basin[J]. Lithologic Reservoirs(3): 32−42.

    Google Scholar

    [16] Garcia-Veigas J, Gündoğan İ, Helvac C, et al. , 2013. A genetic model for Na-carbonate mineral precipitation in the Miocene Beypazar trona deposit, Ankara province, Turkey[J]. Sedimentary Geology, 294(15): 315-327.

    Google Scholar

    [17] 郭建钢, 赵小莉, 刘巍, 等, 2009. 乌尔禾地区风城组白云岩储集层成因及分布[J]. 新疆石油地质, 30(6): 699-701

    Google Scholar

    Guo J G, Zhao X L, Liu W, et al. , 2009. Origin and Distribution of Dolomite Reservoir of Permian Fengcheng Formation in Wuerhe Area, Junggar Basin[J]. Xinjiang Petroleum Geology, 30(6): 699-701.

    Google Scholar

    [18] 高媛, 王国芝, 李娜, 2019. 准噶尔盆地西北缘二叠系风城组硅质岩地球化学特征及成因[J]. 古地理学报, 21(04): 647-660 doi: 10.7605/gdlxb.2019.04.043

    CrossRef Google Scholar

    Gao Y, Wang G Z, Li N, 2019. Geochemical features and origin of siliceous rocks of the Permian Fengcheng Formation in the northwestern margin of Junggar Basin[J]. Journal of Palaeogeography(Chinese Edition), 21(4): 647-660. doi: 10.7605/gdlxb.2019.04.043

    CrossRef Google Scholar

    [19] Hay R L, 1966. Zeolite and zeolitic reactions in sedimentary rocks[J]. Geological Society of America Special Paper, 85: 1-122

    Google Scholar

    [20] Hall D L, Sterner S M, Bodnar R J, 1988. Freezing point depression of NaCl-KCl-H[J]. Economic Geology, 83(1): 197-202. doi: 10.2113/gsecongeo.83.1.197

    CrossRef Google Scholar

    [21] 冯有良, 张义杰, 王瑞菊, 等, 2011. 准噶尔盆地西北缘风城组白云岩成因及油气富集因素[J]. 石油勘探与开发, 38(6): 19-22

    Google Scholar

    Feng Y L, Zhang Y J, Wang R J, et al. , 2011. Dolomites genesis and hydrocarbon enrichment of the Fengcheng Formation in the northwestern margin of Junggar Basin[J]. Petroleum Exploration and Development, 38(6): 19-22.

    Google Scholar

    [22] 蒋宜勤, 文华国, 祁利祺, 等, 2012. 准噶尔盆地乌尔禾地区二叠系风城组盐类矿物和成因分析[J]. 矿物岩石, 32(2): 105-114 doi: 10.3969/j.issn.1001-6872.2012.02.014

    CrossRef Google Scholar

    Jiang Y Q, Wen G H, Qi L Q, et al. , 2012. Salt Minerals and Their Genesis Of The Permian Fengcheng Formation In Urho Area, Junggar Basin[J]. Mineralogy and Petrology, 32(2): 105-114. doi: 10.3969/j.issn.1001-6872.2012.02.014

    CrossRef Google Scholar

    [23] 贾斌, 文华国, 李颖博, 等, 2015. 准噶尔盆地乌尔禾地区二叠系风城组盐类矿物流体包裹体特征[J]. 沉积与特提斯地质, 35(1): 33-42 doi: 10.3969/j.issn.1009-3850.2015.01.005

    CrossRef Google Scholar

    Jia B, Wen H G, Li Y B, et al. , 2015. Fluid inclusions in the salt minerals from the Permian Fengcheng Formation in the Urho region, Junggar Basin, Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 35(1): 33-42. doi: 10.3969/j.issn.1009-3850.2015.01.005

    CrossRef Google Scholar

    [24] 贾斌, 2015. 准噶尔盆地乌尔禾地区二叠系风城组盐类矿物特征及成因[D]. 成都理工大学.

    Google Scholar

    Jia B, 2015. Characteristics and Genesis of Salt Minerals in the Permian Fengcheng Formation, Wuerhe Area, Junggar Basin. Chengdu University of Technology [D]. Chengdu University of Technology.

    Google Scholar

    [25] Kathleen C B, Robert H G, 1999. Permian paleoclimate data from fluid inclusions in halite[J]. Chemical Geology, 154: 1-4. doi: 10.1016/S0009-2541(98)00122-3

    CrossRef Google Scholar

    [26] 匡立春, 唐勇, 雷德文, 等, 2012. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发(6): 657−667

    Google Scholar

    Kuang L C, Tang Y, Lei D W, et al. , 2012. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J].Petroleum Exploration and Development(6): 657−667.

    Google Scholar

    [27] 匡立春, 支东明, 王小军, 等, 2022. 准噶尔盆地上二叠统上乌尔禾组大面积岩性-地层油气藏形成条件及勘探方向[J]. 石油学报, 43(3): 325-340

    Google Scholar

    Kuang L C, Zhi D M, Wang X J, et al. , 2022. Hydrocarbon accumulation conditions and exploration directions of large-scale lithologic-stratigraphic oil and gas reservoirs in Upper Wuerhe Formation of Upper Permian in Junggar Basin[J]. Acta Petrolei Sinica, 43(3): 325-340.

    Google Scholar

    [28] Li J R, Tim K L, Christopher B, Brown T K, et al. , 1996. A 100 ka record of water tables and paleoclimates from salt cores, Death Valley, California[J]. Palaeogeography, Palaeoclimatology, Palaeoecology , 123: 179-203.

    Google Scholar

    [29] Qiu Z, Jiang L, Tao H, 2017. Characteristics of strata and depositional environment of the Permian Lucaogou Formation in Jimusar sag[J]. Scientia Geologica Sinica, 52(3): 964-979.

    Google Scholar

    [30] Robinson W E, 1979. The origin deposition and alteration of the organic material in Green River shale[J]. Organic Geochemistry, 1(4): 205-218. doi: 10.1016/0146-6380(79)90023-8

    CrossRef Google Scholar

    [31] 卢焕章, 范红瑞, 倪培, 等, 2004. 流体包裹体[M]. 北京: 科学出版社, 1−170

    Google Scholar

    Lu H Z, Fan H R, Ni P, et al. , 2004. Fluid inclusion[M]. Beijing: Science Press, 1−170.

    Google Scholar

    [32] 鲁新川, 张顺存, 史基安, 2012. 准噶尔盆地西北缘乌尔禾-风城地区二叠系风城组白云岩地球化学特征及成因分析[J]. 兰州大学学报(自然科学版), (6): 8-14 doi: 10.3969/j.issn.0455-2059.2012.06.004

    CrossRef Google Scholar

    Lu X C, Zhang S C, Shi J A, et al. , 2012. Dolomite genesis and geochemical characteristics of permian Fengcheng formation in Wuerhe-Fengcheng area, northwestern Junggar basin[J]. Journal Of Lanzhou University (Natural Sciences), (6): 8-14. doi: 10.3969/j.issn.0455-2059.2012.06.004

    CrossRef Google Scholar

    [33] 刘英辉, 朱筱敏, 朱茂, 等, 2014. 准噶尔盆地乌—夏地区二叠系风城组致密油储层特征[J]. 岩性油气藏, (4): 66-72 doi: 10.3969/j.issn.1673-8926.2014.04.010

    CrossRef Google Scholar

    [Liu Y H, Zhu X M, Zhu M, et al. , 2014. Characteristics of tight oil reservoirs of the Permian Fengcheng Formation in Wu-Xia area, Junggar Basin[J]. Lithologic Reservoirs, (4): 66-72. doi: 10.3969/j.issn.1673-8926.2014.04.010

    CrossRef Google Scholar

    [34] 雷德文, 陈刚强, 刘海磊, 等, 2017. 准噶尔盆地玛湖凹陷大油(气) 区形成条件与勘探方向研究[J]. 地质学报, 91(7): 1604-1619 doi: 10.3969/j.issn.0001-5717.2017.07.012

    CrossRef Google Scholar

    Lei D W, Chen G Q, Liu H L, et al. , 2017. Study on the Forming Conditions and Exploration Fields of the Mahu Giant Oil (Gas) Province, Junggar Basin[J]. Acta Geologica Sinica, 91(7): 1604-1619. doi: 10.3969/j.issn.0001-5717.2017.07.012

    CrossRef Google Scholar

    [35] 潘晓添, 2013. 准噶尔盆地西北缘风城组湖相热液白云岩形成机理[D]. 成都理工大学.

    Google Scholar

    Pan X T, 2013. Formation mechanism of lacustrine hydrothermal dolomite in Fengcheng Formation, northwestern margin of Junggar Basin[D]. Chengdu University of Technology.

    Google Scholar

    [36] Renaut R W, Tiercelin J J, Lake Bogoria, 1994. Kenya Rift Valley—A sedimentological overview[M]. Sedimentology and Geochemistry of Modern and Ancient Saline Lakes, 101−124.

    Google Scholar

    [37] Renaut R W, Owen R B, Jones B et al. , 2013. Impact of lake-level changes on the formation of thermogene travertine in continental rifts: Evidence from Lake Bogoria, Kenya Rift Valley[J]. Sedmentology, 60(2): 428-468. doi: 10.1111/j.1365-3091.2012.01347.x

    CrossRef Google Scholar

    [38] 单祥, 何文军, 郭华军, 等, 2022. 准噶尔盆地玛湖凹陷二叠系风城组页岩油储层储集空间与成岩作用[J]. 海相油气地质, 27(3): 325-336 doi: 10.3969/j.issn.1672-9854.2022.03.010

    CrossRef Google Scholar

    Shan X, He W J, Guo H J, et al. , 2022. Reservoir Space and Diagenesis of Permian Fengcheng Formation Shale Oil Reservoirs in Mahu Depression, Junggar Basin[J]. Marine Origin Petroleum Geology, 27(3): 325-336. doi: 10.3969/j.issn.1672-9854.2022.03.010

    CrossRef Google Scholar

    [39] Sheila M, Roberts R J S, 1995. Paleotemperatures preserved in fluid inclusions in halite[J]. Geochimica et Cosmochimica Acta, 59(19): 3929-3942. . doi: 10.1016/0016-7037(95)00253-V

    CrossRef Google Scholar

    [40] Smith G I, Haines D V, 1964. Character and distribution of nonclastic minerals in the Searles Lake evaporite deposit, California[J]. Biochemical Journal, 331(2): 639-648.

    Google Scholar

    [41] Smith G I, 1979. Subsurface stratigraphy and geochemistry of Late Quaternary evaporites, Searles Lake, California[J]. United States Geological Survey Professional Papaer, 1043: 130.

    Google Scholar

    [42] Smith J W, 1983. The chemistry which created Green River Formation oil shale[J]. American Chemical Society. Symposium on Geochemistry and Chemistry of oil shale meeting (Seattle), 28: 76-84.

    Google Scholar

    [43] Smith G I, 2009. Cenozoic geology and lacustrine history of Searles Valley, Inyo and Sand Bernardino Countries, California [J]. American Geophysical Union, (1727): 1-115.

    Google Scholar

    [44] Savage D, Benbow S, Watson C, et al. , 2010. Natural systems evidence for the alteration of clay under alkaline conditions: An example from Searles Lake, California[J]. Applied Clay Science, 47: 72-81. doi: 10.1016/j.clay.2009.08.024

    CrossRef Google Scholar

    [45] 唐勇, 郑孟林, 王霞田, 等, 2022. 准噶尔盆地玛湖凹陷风城组烃源岩沉积古环境[J]. 天然气地球科学, 33(05): 677-692

    Google Scholar

    Tang Y, Zheng M L, Wang X T, et al. , 2022. Sedimentary paleoenvironment of source rocks of Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Natural Gas Geoscience, 33(05): 677-692.

    Google Scholar

    [46] Tomasz T, 2018. Raman spectroscopy of organic, solid and fluid inclusions in the Oldest Halite of LGOM area (SW Poland)[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 189: 381-392. doi: 10.1016/j.saa.2017.08.024

    CrossRef Google Scholar

    [47] 王俊怀, 刘英辉, 万策, 等, 2014. 准噶尔盆地乌—夏地区二叠系风城组云质岩特征及成因[J]. 古地理学报, 16(2): 157-168 doi: 10.7605/gdlxb.2014.02.015

    CrossRef Google Scholar

    Wang J H, Liu Y H, Wan C, et al. , 2014. Characteristics and origin of dolomitic tuff in the Permian Fengcheng Formation in Wu-Xia area of Junggar Basin[J]. Journal of Palaeogeography, 16(2): 157-168. doi: 10.7605/gdlxb.2014.02.015

    CrossRef Google Scholar

    [48] 汪梦诗, 2017. 玛湖凹陷风城组岩矿类型及其指示意义[J]. 地质论评, 63(S1): 305-306 doi: 10.16509/j.georeview.2017.s1.146

    CrossRef Google Scholar

    Wang M S, 2017. Minerals of the Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin and Their Indicating Significance[J]. Geological Review, 63(S1): 305-306. doi: 10.16509/j.georeview.2017.s1.146

    CrossRef Google Scholar

    [49] 汪梦诗, 张志杰, 周川闽, 等, 2018. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖岩石特征与成因[J]. 古地理学报, 20(1): 147-162 doi: 10.7605/gdlxb.2018.01.010

    CrossRef Google Scholar

    Wang M S, Zhang Z J, Zhou C M, et al. , 2018. Lithological characteristics and origin of alkaline lacustrine of the Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Journal of Palaeogeography(Chinese Edition), 20(1): 147-162. doi: 10.7605/gdlxb.2018.01.010

    CrossRef Google Scholar

    [50] 王剑, 周路, 刘金, 等, 2022. 湖相热液白云岩成因机理——以准噶尔盆地玛湖凹陷二叠系风城组为例[J/OL]. 沉积学报: 1−16. DOI: 10.14027/j.issn.1000−0550.2022.037.

    Google Scholar

    Wang J, Zhou L, Liu J, et al., 2022.Genetic Mechanism of Lacustrine Hydrothermal Dolomites: A Case Study of the Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J/OL]. Acta Sedimentologica Sinica: 1−16.

    Google Scholar

    [51] 王洋, 2018. 准噶尔盆地风城组优质致密云质岩储层形成机理研究[D]. 成都理工大学.

    Google Scholar

    Wang Y, 2018. Research on formation mechanism of tight dolomitic reservoir in Fengcheng Formation, Junggar Basin[D]. Chengdu University of Technology.

    Google Scholar

    [52] William M L, 2002. Mineralogical Analysis of Lake Sediments[J]. Tracking Environmental Change Using Lake Sediments, 2: 143-187.

    Google Scholar

    [53] 薛晶晶, 孙靖, 朱筱敏, 等, 2012. 准噶尔盆地二叠系风城组白云岩储层特征及成因机理分析[J]. 现代地质, 26(4): 755-761 doi: 10.3969/j.issn.1000-8527.2012.04.017

    CrossRef Google Scholar

    Xue J J, Sun J, Zhu X M, et al. , 2012. Characteristics and Formation Mechanism for Dolomite Reservoir of Permian Fengcheng Formation in Junggar Basin[J]. Geoscience, 26(4): 755-761. doi: 10.3969/j.issn.1000-8527.2012.04.017

    CrossRef Google Scholar

    [54] Yang W B, Spencer R J, Krouse H, et al. , 1995. Casas E. Stable isotopes of lake and fluid inclusion brines, Dabusun Lake, Qaidam Basin, western China: Hydrology and paleoclimatology in arid environments[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 117: (3-4).

    Google Scholar

    [55] Yu K H, Cao Y C, Qiu L W, et al. , 2018. The hydrocarbon generation potential and migration in an alkaline evaporite basin: The Early Permian Fengcheng Formation in the Junggar Basin, northwestern China[J]. Marine and Petroleum Geology, 98: 12-32. doi: 10.1016/j.marpetgeo.2018.08.010

    CrossRef Google Scholar

    [56] 赵研, 郭佩, 鲁子野, 等, 2020. 准噶尔盆地下二叠统风城组硅硼钠石发育特征及其富集成因探讨[J]. 沉积学报, 38(5): 966−979

    Google Scholar

    Zhao Y, Guo P, Lu Z Y, et al. , 2020. Genesis of Reedmergnerite in the Lower Permian Fengcheng Formation of the Junggar Basin, NE China [J]. Acta Sedimentologica Sinica. 38(5): 966−979.

    Google Scholar

    [57] Zhang H, Liu C L, Zhao Y J, et al. , 2015. Quantitative temperature records of mid Cretaceous hothouse: Evidence from halite fluid inclusions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 437: 33-41.

    Google Scholar

    [58] Zhang G Y, Wang Z Z, Guo X G, et al. , 2019. Characteristics of lacustrine dolomitic rock reservoir and accumulation of tight oil in the Permian Fengcheng Formation, the western slope of the Mahu Sag, Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 178: 64-80. doi: 10.1016/j.jseaes.2019.01.002

    CrossRef Google Scholar

    [59] 张义杰, 曹剑, 胡文瑄, 2010. 准噶尔盆地油气成藏期次确定与成藏组合划分[J]. 石油勘探与开发, 37(03): 257-262 doi: 10.1016/S1876-3804(10)60031-6

    CrossRef Google Scholar

    Zhang Y J, Cao J, Hu W X, 2010. Timing of petroleum accumulation and the division of reservoir-forming assemblages, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 37(03): 257-262. doi: 10.1016/S1876-3804(10)60031-6

    CrossRef Google Scholar

    [60] 张杰, 何周, 徐怀宝, 等, 2012. 乌尔禾—风城地区二叠系白云质岩类岩石学特征及成因分析[J]. 沉积学报, 30(5): 859-867 doi: 10.14027/j.cnki.cjxb.2012.05.001

    CrossRef Google Scholar

    Zhang J, He Z, Xu H B, et al. , 2012. Petrological Characteristics and Origin of Permian Fengcheng Formation Dolomitic Rocks in Wuerhe-Fengcheng Area, Junggar Basin[J]. Acta Sedimentologica Sinica, 30(5): 859-867. doi: 10.14027/j.cnki.cjxb.2012.05.001

    CrossRef Google Scholar

    [61] 张志杰, 袁选俊, 汪梦诗, 等, 2018. 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化[J]. 石油勘探与开发, 45(6): 972-984 doi: 10.11698/PED.2018.06.05

    CrossRef Google Scholar

    Zhang Z J, Yuan X J, Wang M S, et al. , 2018. Alkaline-lacustrine deposition and Paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 45(6): 972-984. doi: 10.11698/PED.2018.06.05

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(261) PDF downloads(248) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint