2024 Vol. 44, No. 2
Article Contents

WANG Xuan, MEI Chaojia, LI Chung-Ⅱ. 2024. Calcifying cyanobacteria in dendrolites of the Cambrian Zhangxia Formation: A case study of the Houziyu section in Ezhuang Town, Zibo City, Shandong Province. Sedimentary Geology and Tethyan Geology, 44(2): 339-350. doi: 10.19826/j.cnki.1009-3850.2022.10003
Citation: WANG Xuan, MEI Chaojia, LI Chung-Ⅱ. 2024. Calcifying cyanobacteria in dendrolites of the Cambrian Zhangxia Formation: A case study of the Houziyu section in Ezhuang Town, Zibo City, Shandong Province. Sedimentary Geology and Tethyan Geology, 44(2): 339-350. doi: 10.19826/j.cnki.1009-3850.2022.10003

Calcifying cyanobacteria in dendrolites of the Cambrian Zhangxia Formation: A case study of the Houziyu section in Ezhuang Town, Zibo City, Shandong Province

  • Dendrolites develope at the top of the Cambrian Zhangxia Formation in Houziyu section, Ezhuang Town, Zibo, Shandong. According to the sedimentary facies characteristics reflected by the macroscopic lithology changes in the outcrop, the sequence of the Zhangxia Formation in the study area can be divided into three fourth-order sub-sequences. As more and more evidence indicating the microbial influence on the dendrolite formation process continues to accumulate, the widely accepted view of the "CCM mechanism triggering the calcification of cyanobacterial sheaths" is challenged. This paper integrates field exploration sampling and thin-section analysis to identify and subsequently describe the fabrics of the dendrolites under the microscope. Their genetic mechanisms are further analyzed by comparing them with modern examples. The main components of the dendrolites are dark micrite matrix, sparry calcite, and detrital grains. Microscopically, calcified cyanobacteria fossils, including Epiphyton, Hedstroemia, Renalcis, and Bacinella, as well as Lithocodium-like fabrics, are observed within the dendrolites. Through the study of various types of calcified cyanobacteria and their calcified microbial membrane residues in the dendrolites of the study area, a detailed supplement has been made to the diversity of calcified microorganisms found in dendrolites. It is clear that the dendrolites are the product of the calcification of microbial films or mats dominated by cyanobacteria such as Epiphyton. Extracellular polymeric substances (EPS) play a crucial role in the development and mineral precipitation of dendrolites, providing a typical example for the "microbial influence" genesis of dendrolites.

  • 加载中
  • [1] Aitken J D, 1967. Classification and Environmental Significance of Cryptalgal Limestones and Dolomites, with Illustrations from the Cambrian and Ordovician of Southwestern Alberta[J]. Journal of Sedimentary Research(SEPM), , Vol37(4): 1163-1178.

    Google Scholar

    [2] Berner R A, 1984. Sedimentary pyrite formation: An update[J]. Geochimica et Cosmochimica Acta, Vol.48(4): 605-615.

    Google Scholar

    [3] Bradley J A, Daille L K, Trivedi C B, et al. , 2017. Carbonate-rich dendrolitic cones: insights into a modern analog for incipient microbialite formation, Little Hot Creek, Long Valley Caldera, California[J]. npj Biofilms & Microbiomes, Vol3(1): 32

    Google Scholar

    [4] Braga J C, Martin J M, Riding R, 1995. Controls on microbial dome fabric development along a carbonate-siliclastic shelf-basinal transect, Miocene, SE Spain[J]. PALAIOS, 10(4): 347-361. doi: 10.2307/3515160

    CrossRef Google Scholar

    [5] Burne R V, Moore L S, 1987. Microbialites: organosedimentary deposits of benthic microbial communities[J]. PALAIOS, 2(3): 241-254. doi: 10.2307/3514674

    CrossRef Google Scholar

    [6] Cherchi A, Schroeder R, 2006. Remarks on the systematic position of Lithocodium, E-lliott, a problematic microorganism from the Mesozoic carbonate platforms of the Tethyan realm[J]. FACIES, 52(3): 435-440. doi: 10.1007/s10347-006-0045-5

    CrossRef Google Scholar

    [7] Decho A W, 2010. Overview of biopolymer-induced mineralization: What goes on in biofilms?[J]. Ecological Engineering, 36 (2): 137-144. doi: 10.1016/j.ecoleng.2009.01.003

    CrossRef Google Scholar

    [8] Decho A W and Gutierrez T, 2017. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems[J]. Frontiers in Microbiology, 8: 922. doi: 10.3389/fmicb.2017.00922

    CrossRef Google Scholar

    [9] Dove P M, 2010. The Rise of Skeletal Biominerals[J]. Elements, 6(1): 37-42. doi: 10.2113/gselements.6.1.37

    CrossRef Google Scholar

    [10] Dupraz C, Reid R P, Braissant O, et al. , 2009. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 96(3): 141-162. doi: 10.1016/j.earscirev.2008.10.005

    CrossRef Google Scholar

    [11] Dupraz C, Reid R P, Visscher P T, 2011. Microbialites, modern[J]. Encyclopedia of Earth Sciences Series, P617-635.

    Google Scholar

    [12] Flannery DT, Allwood A C , Hodyss R, et al. , 2019. Microbially influenced formation of Neoarchean ooids [J]. Geobiology, 17(2): 151-160. doi: 10.1111/gbi.12321

    CrossRef Google Scholar

    [13] Flemming H C, Wingender J, Szewzyk U, et al. , 2016. Biofilms: An emergent form of bacterial life[J]. Nature Reviews Microbiology, 14 (9): 563-575. doi: 10.1038/nrmicro.2016.94

    CrossRef Google Scholar

    [14] Gallagher K L, Kading T J, Braissant O, et al. , 2012. Inside the alkalinity engine: The role of electron donors in the organomineralization potential of sulfate-reducing bacteria[J]. Geobiology, 10 (6): 518-530. doi: 10.1111/j.1472-4669.2012.00342.x

    CrossRef Google Scholar

    [15] Helm R F and Potts M, 2012. Extracellular matrix (ECM). In Ecology of Cyanobacteria II: Their Diversity in Space and Time[J]. Netherlands: Springer, P461-480.

    Google Scholar

    [16] Howell J, Woo J, Chough S K, 2011. Dendroid morphology and growth patterns: 3-D computed tomographic reconstruction[J]. Palaeogeography Palaeoclimatology Palaeoecology, 299: 335-347. doi: 10.1016/j.palaeo.2010.11.013

    CrossRef Google Scholar

    [17] Large R R, Mukherjee I, Gregory D, et al. , 2019. Atmosphere oxygen cycling through the Proterozoic and Phanerozoic[J]. Mineralium Deposita, 54(4): 485-506. doi: 10.1007/s00126-019-00873-9

    CrossRef Google Scholar

    [18] Laval B, Cady S L, Pollack J C, et al. , 2000. Modern freshwater microbialite analogues for ancient dendritic reef structures[J]. Nature, 407(6804): 626. doi: 10.1038/35036579

    CrossRef Google Scholar

    [19] Luchinina V A, 2009. Renalcis and Epiphyton as different stages in the life cycle of calcareous agage[J]. Paleontological Journal, 43(4): 463-468. doi: 10.1134/S0031030109040169

    CrossRef Google Scholar

    [20] Liu L J, Wu Y S, Jiang H et al. , 2016. Calcified rivulariaceans from the Ordovician of the Tarim Basin, Northwest China, Phanerozoic lagoonal examples, and possible controlling factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 371-381.

    Google Scholar

    [21] Mei M X, Riaz M, Zhang Z W, et al., 2021. Diversified calcimicrobes in dendrolites of the Zhangxia Formation, Miaolingian Series (Middle Cambrian) of the North China craton[J].Journal of Palaeogeography, 2021, Vol.10(1): 1-25.

    Google Scholar

    [22] Peters S E, Gaines R R, 2012. Formation of the “great unconformity” as a trigger for the Cambrian explosion[J]. Nature, 484(7394): 363-366. doi: 10.1038/nature10969

    CrossRef Google Scholar

    [23] Rameil N, Immenhauser A, Warrlich G M D, et al. , 2010. Morphological patterns of Aptian Lithocodium-Bacinella geobodies: relation to environment and scale[J]. Sedimentology, 57(3): 833-911.

    Google Scholar

    [24] Rickard D, Mussmann M, Steadman J A, 2017. Sedimentary sulfides[J]. Elements, 13 (2): 117-122. ] doi: 10.2113/gselements.13.2.117

    CrossRef Google Scholar

    [25] Riding R, 2000. Microbial carbonates: The geological record of calcified bacterial–algal mats and biofilms[J]. Sedimentology, 47(s1): 179-214.

    Google Scholar

    [26] Riding R, 2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms and Proterozoic-Cambrian changes in atmospheric composition[J]. Geobiology, 4(4): 299-316. doi: 10.1111/j.1472-4669.2006.00087.x

    CrossRef Google Scholar

    [27] Riding R, 2011. Microbialites, stromatolites, and thrombolites[J]. Encyclopedia of Earth Sciences Series, P635-654.

    Google Scholar

    [28] Riding R, 1991a. Classification of Microbial Carbonates[J]. Calcareous Algae and Stromatolites, P21-51.

    Google Scholar

    [29] Riding R, 1991b. Calcified cyanobacteria[J]. Calcareous Algae and Stromatolites, P55-87.

    Google Scholar

    [30] Schieber J, 2002. Sedimentary pyrite: a window into the microbial past[J]. Geology, 30(6): 531-534. doi: 10.1130/0091-7613(2002)030<0531:SPAWIT>2.0.CO;2

    CrossRef Google Scholar

    [31] Schmitt K, Heimhofer U, Frijia G, et al. , 2019. Platform-wide shift to microbial carbonate production during the late Aptian[J]. Geology, 47(8): 786-790. doi: 10.1130/G46325.1

    CrossRef Google Scholar

    [32] Shapiro R S, 2000. A Comment on the Systematic Confusion of Thrombolites[J]. PALAIOS, 15(2): 166-169. doi: 10.1669/0883-1351(2000)015<0166:ACOTSC>2.0.CO;2

    CrossRef Google Scholar

    [33] Stephens N P, Sumner D Y, 2002. Renalcids as Fossilized Biofilm Clusters[J]. PALAIOS, 17: 225-236. doi: 10.1669/0883-1351(2002)017<0225:RAFBC>2.0.CO;2

    CrossRef Google Scholar

    [34] Suosaari E P, Awramik S M, Reid R P, et al. , 2018. Living Dendrolitic Microbial Mats in Hamelin Pool, Shark Bay, Western Australia[J]. Geosciences, 8(6): 212 . doi: 10.3390/geosciences8060212

    CrossRef Google Scholar

    [35] Tourney J and Ngwenya B T, 2014. The role of bacterial extracellular polymeric substances in geomicrobiology[J]. Chemical Geology, 386: 115-132. doi: 10.1016/j.chemgeo.2014.08.011

    CrossRef Google Scholar

    [36] Whitton B A, Mateo P, 2012. Rivulariaceae, In Ecology of Cyanobacteria II: Their Diversity in Space and Time[J]. Netherlands: Springer, P561-591.

    Google Scholar

    [37] Woo J, Chough S K, Han Z, 2008. Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shangdong Province, China[J]. PALAIOS, Vol.23: 55-64.

    Google Scholar

    [38] Yan Z, Liu J, Ezaki Y, et al. , 2017. Stacking patterns and growth models of multiscopic structures within Cambrian Series 3 thrombolites at the Jiulongshan section, Shandong Province, northern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 474: 45-57.

    Google Scholar

    [39] 陈金勇, 韩作振, 范洪海, 等, 2014a. 鲁西寒武系凝块石特征及其形成机制的探讨[J]. 地质学报, 88(6): 967-979.

    Google Scholar

    Chen J Y, Han Z Z, Fan H H, et al., 2014a. Characteristics and formation mechanism of Cambrian agglomerates in western Shandong Province [J]. Acta Geologica Sinica, Vol.88 (6): 967-979.

    Google Scholar

    [40] 陈金勇, 韩作振, 范洪海, 等, 2014b. 鲁西寒武系第三统张夏组凝块石特征及其形成环境研究[J]. 沉积学报, 32(3): 494-502.

    Google Scholar

    Chen J Y, Han Z Z, Fan H H, et al., 2014b. Study on the characteristics and formation environment of tufts in Zhangxia Formation of Cambrian Tertiary in western Shandong[J].Acta Sedimentologica Sinica, Vol.32 (3): 494-502.

    Google Scholar

    [41] 冯增昭, 彭永民, 金振奎, 等, 2004. 中国寒武纪和奥陶纪岩相古地理[M]. 北京: 石油工业出版社: 112 − 121.

    Google Scholar

    Feng Z Z, Peng Y M, Jin Z K, et al., 2004. Lithofacies palaeogeography of Cambrian and Ordovician in China[M]. Beijing: Petroleum Industry Press: 112 − 121.

    Google Scholar

    [42] 贡云云, 2016. 寒武系凝块石生物丘的沉积组构: 以鲁西地区张夏组为例[J]. 现代地质, 30(2): 436-444.

    Google Scholar

    Gong Y Y, 2016. Sedimentary fabric of Cambrian tuft Biodome: a case study of Zhangxia Formation in western Shandong Province[J]. Geoscience, Vol.30 (2): 436-444.

    Google Scholar

    [43] 彭善池, Babcock L E, 2005. 全球寒武系年代地层再划分的新建议[J]. 地层学杂志, 29(1): 92-93 doi: 10.3969/j.issn.0253-4959.2005.01.016

    CrossRef Google Scholar

    Peng S C, Babcock L E, 2005. Newly proposed global chronostratigraphic subdivision of the Cambrian System[J]. Journal of Stratigraphy, 29(1): 92-93. doi: 10.3969/j.issn.0253-4959.2005.01.016

    CrossRef Google Scholar

    [44] 彭善池, 2006. 全球寒武系四统划分框架正式确立[J]. 地层学杂志, 30(2): 147-148 doi: 10.3969/j.issn.0253-4959.2006.02.010

    CrossRef Google Scholar

    Peng S C, 2006. The framework of Cambrian quaternary Division has been established[J]. Journal of Stratigraphy, 30(2): 147-148. doi: 10.3969/j.issn.0253-4959.2006.02.010

    CrossRef Google Scholar

    [45] 韩作振, 陈吉涛, 张晓蕾, 等, 2009. 鲁西寒武系第三统张夏组附枝菌与附枝菌微生物岩特征研究[J]. 地质学报, 83(8): 1097-1103 doi: 10.3321/j.issn:0001-5717.2009.08.006

    CrossRef Google Scholar

    Han Z Z, Chen J T, Zhang X L, et al, 2009. Study on the characteristics of mycorrhizal and its microflora in the Zhangxia Formation of Cambrian in western Shandong[J]. Acta Geologica Sinica, 83 (8): 1097-1103. doi: 10.3321/j.issn:0001-5717.2009.08.006

    CrossRef Google Scholar

    [46] 梅冥相, 1993. 碳酸盐岩米级旋回层序的成因类型及形成机制[J]. 沉积与特提斯地质, 13(6): 34-430.

    Google Scholar

    Mei M X, 1993. Genetic types and formation mechanism of meter scale cyclic sequences of carbonate rocks[J]. Sedimentary Geology and Tethyan Geology, 13(6): 34-43.

    Google Scholar

    [47] 梅冥相, 徐德斌, 2000. 米级顺层序的成因类型及其相序级构特征[J]. 沉积学报, 18(1): 43-49 doi: 10.3969/j.issn.1000-0550.2000.01.008

    CrossRef Google Scholar

    Mei M X, Xu D B, 2000. Genetic types and facies sequence structure characteristics of meter scale parasequences[J]. Acta Sedimentologica Sinica, 18 (1): 43-49. doi: 10.3969/j.issn.1000-0550.2000.01.008

    CrossRef Google Scholar

    [48] 梅冥相, 2007. 微生物碳酸盐岩分类体系的修订: 对灰岩成因结构分类体系的补充[J]. 地学前缘, 14(5): 222-232 doi: 10.3321/j.issn:1005-2321.2007.05.022

    CrossRef Google Scholar

    Mei M X, 2007. Revised classification of microbial carbonates: complementing the classification of limestones[J]. Earth Science Frontiers, 14(5): 222-232. doi: 10.3321/j.issn:1005-2321.2007.05.022

    CrossRef Google Scholar

    [49] 梅冥相, 张瑞, 李屹尧, 等, 2017. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌[J]. 岩石学报, 33(4): 1073-1093

    Google Scholar

    Mei M X, Zhang R, Li Q Y, et al. , 2017. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North China Platform[J]. Acta Petrologica Sinica, 33(4): 1073-1093.

    Google Scholar

    [50] 梅冥相, RIAZ M, 孟庆芬, 等, 2019. 鲕粒滩相灰岩特别的核形石灰岩帽: 以山西繁峙茶坊子剖面寒武系张夏组为例[J]. 地质论评, 65(4): 839-856

    Google Scholar

    Mei M X, Riaz M, Meng Q F, et al, 2019. Special core-shaped limestone cap of oolitic beach facies Limestone: a case study of Cambrian Zhangxia Formation in Chafangzi Section, Fanshi, Shanxi Province[J]. Geological Review, 65(4): 839-856.

    Google Scholar

    [51] 史晓颖, 陈建强, 梅仕龙, 1997. 华北地台东部寒武系层序地层年代格架[J]. 地学前缘, C2(102): 161-173.

    Google Scholar

    Shi X Y, Chen J Q, Mei S L, 1997. Cambrian sequence stratigraphic framework in the eastern North China platform[J]. Geoscience Frontier, C2(102): 161-17.

    Google Scholar

    [52] 王龙, Latif K, Riaz M, 等, 2018. 微生物碳酸盐岩的成因、分类以及问题与展望—来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 33(10): 1005-1023 doi: 10.11867/j.issn.1001-8166.2018.10.1005.

    CrossRef Google Scholar

    Wang L, Latif K, Riaz M, et al, 2018. Genesis, classification, problems and prospects of microbial carbonate rocks: Enlightenment from the study of Cambrian microbial carbonate rocks in North China platform [J]. Advances in Earth Science, 33(10): 1005-1023. doi: 10.11867/j.issn.1001-8166.2018.10.1005.

    CrossRef Google Scholar

    [53] 王兆鹏, 2011. 莱芜九龙山寒武系张夏组树形石特征及地质意义[D]. 青岛: 山东科技大学.

    Google Scholar

    Wang Z P, 2011. Characteristic and geological significance of dendrolite from Zhangxia Formation, Cambrian, Jiulongshan Section of Laiwu [D]. Qingdao: Shandong University of science and technology.

    Google Scholar

    [54] 张震武, 肖恩照, 覃英伦, 等, 2019. 莱芜雪野剖面寒武系苗岭统凝块石沉积特征研究[J]. 东北石油大学学报, 43(3): 67-77 doi: 10.3969/j.issn.2095-4107.2019.03.007

    CrossRef Google Scholar

    Zhang Z W, Xiao E Z, Qin Y L, et al, 2019. Sedimentary characteristics of Cambrian Miaoling conglomerates in Xueye Section of Laiwu[J]. Journal of Northeast Petroleum University, 43 (3): 67-77. doi: 10.3969/j.issn.2095-4107.2019.03.007

    CrossRef Google Scholar

    [55] 张震武, 2020. 鲁西地区寒武系苗岭统树形石研究[D]. 北京: 中国地质大学(北京).

    Google Scholar

    Zhang Z W, 2020. Study on Cambrian Miaoling dendrolites in western Shandong[D]. Beijing: China University of Geosciences(Beijing).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(467) PDF downloads(249) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint