Citation: | WANG Xuan, MEI Chaojia, LI Chung-Ⅱ. 2024. Calcifying cyanobacteria in dendrolites of the Cambrian Zhangxia Formation: A case study of the Houziyu section in Ezhuang Town, Zibo City, Shandong Province. Sedimentary Geology and Tethyan Geology, 44(2): 339-350. doi: 10.19826/j.cnki.1009-3850.2022.10003 |
Dendrolites develope at the top of the Cambrian Zhangxia Formation in Houziyu section, Ezhuang Town, Zibo, Shandong. According to the sedimentary facies characteristics reflected by the macroscopic lithology changes in the outcrop, the sequence of the Zhangxia Formation in the study area can be divided into three fourth-order sub-sequences. As more and more evidence indicating the microbial influence on the dendrolite formation process continues to accumulate, the widely accepted view of the "CCM mechanism triggering the calcification of cyanobacterial sheaths" is challenged. This paper integrates field exploration sampling and thin-section analysis to identify and subsequently describe the fabrics of the dendrolites under the microscope. Their genetic mechanisms are further analyzed by comparing them with modern examples. The main components of the dendrolites are dark micrite matrix, sparry calcite, and detrital grains. Microscopically, calcified cyanobacteria fossils, including Epiphyton, Hedstroemia, Renalcis, and Bacinella, as well as Lithocodium-like fabrics, are observed within the dendrolites. Through the study of various types of calcified cyanobacteria and their calcified microbial membrane residues in the dendrolites of the study area, a detailed supplement has been made to the diversity of calcified microorganisms found in dendrolites. It is clear that the dendrolites are the product of the calcification of microbial films or mats dominated by cyanobacteria such as Epiphyton. Extracellular polymeric substances (EPS) play a crucial role in the development and mineral precipitation of dendrolites, providing a typical example for the "microbial influence" genesis of dendrolites.
[1] | Aitken J D, 1967. Classification and Environmental Significance of Cryptalgal Limestones and Dolomites, with Illustrations from the Cambrian and Ordovician of Southwestern Alberta[J]. Journal of Sedimentary Research(SEPM), , Vol37(4): 1163-1178. |
[2] | Berner R A, 1984. Sedimentary pyrite formation: An update[J]. Geochimica et Cosmochimica Acta, Vol.48(4): 605-615. |
[3] | Bradley J A, Daille L K, Trivedi C B, et al. , 2017. Carbonate-rich dendrolitic cones: insights into a modern analog for incipient microbialite formation, Little Hot Creek, Long Valley Caldera, California[J]. npj Biofilms & Microbiomes, Vol3(1): 32 |
[4] | Braga J C, Martin J M, Riding R, 1995. Controls on microbial dome fabric development along a carbonate-siliclastic shelf-basinal transect, Miocene, SE Spain[J]. PALAIOS, 10(4): 347-361. doi: 10.2307/3515160 |
[5] | Burne R V, Moore L S, 1987. Microbialites: organosedimentary deposits of benthic microbial communities[J]. PALAIOS, 2(3): 241-254. doi: 10.2307/3514674 |
[6] | Cherchi A, Schroeder R, 2006. Remarks on the systematic position of Lithocodium, E-lliott, a problematic microorganism from the Mesozoic carbonate platforms of the Tethyan realm[J]. FACIES, 52(3): 435-440. doi: 10.1007/s10347-006-0045-5 |
[7] | Decho A W, 2010. Overview of biopolymer-induced mineralization: What goes on in biofilms?[J]. Ecological Engineering, 36 (2): 137-144. doi: 10.1016/j.ecoleng.2009.01.003 |
[8] | Decho A W and Gutierrez T, 2017. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems[J]. Frontiers in Microbiology, 8: 922. doi: 10.3389/fmicb.2017.00922 |
[9] | Dove P M, 2010. The Rise of Skeletal Biominerals[J]. Elements, 6(1): 37-42. doi: 10.2113/gselements.6.1.37 |
[10] | Dupraz C, Reid R P, Braissant O, et al. , 2009. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 96(3): 141-162. doi: 10.1016/j.earscirev.2008.10.005 |
[11] | Dupraz C, Reid R P, Visscher P T, 2011. Microbialites, modern[J]. Encyclopedia of Earth Sciences Series, P617-635. |
[12] | Flannery DT, Allwood A C , Hodyss R, et al. , 2019. Microbially influenced formation of Neoarchean ooids [J]. Geobiology, 17(2): 151-160. doi: 10.1111/gbi.12321 |
[13] | Flemming H C, Wingender J, Szewzyk U, et al. , 2016. Biofilms: An emergent form of bacterial life[J]. Nature Reviews Microbiology, 14 (9): 563-575. doi: 10.1038/nrmicro.2016.94 |
[14] | Gallagher K L, Kading T J, Braissant O, et al. , 2012. Inside the alkalinity engine: The role of electron donors in the organomineralization potential of sulfate-reducing bacteria[J]. Geobiology, 10 (6): 518-530. doi: 10.1111/j.1472-4669.2012.00342.x |
[15] | Helm R F and Potts M, 2012. Extracellular matrix (ECM). In Ecology of Cyanobacteria II: Their Diversity in Space and Time[J]. Netherlands: Springer, P461-480. |
[16] | Howell J, Woo J, Chough S K, 2011. Dendroid morphology and growth patterns: 3-D computed tomographic reconstruction[J]. Palaeogeography Palaeoclimatology Palaeoecology, 299: 335-347. doi: 10.1016/j.palaeo.2010.11.013 |
[17] | Large R R, Mukherjee I, Gregory D, et al. , 2019. Atmosphere oxygen cycling through the Proterozoic and Phanerozoic[J]. Mineralium Deposita, 54(4): 485-506. doi: 10.1007/s00126-019-00873-9 |
[18] | Laval B, Cady S L, Pollack J C, et al. , 2000. Modern freshwater microbialite analogues for ancient dendritic reef structures[J]. Nature, 407(6804): 626. doi: 10.1038/35036579 |
[19] | Luchinina V A, 2009. Renalcis and Epiphyton as different stages in the life cycle of calcareous agage[J]. Paleontological Journal, 43(4): 463-468. doi: 10.1134/S0031030109040169 |
[20] | Liu L J, Wu Y S, Jiang H et al. , 2016. Calcified rivulariaceans from the Ordovician of the Tarim Basin, Northwest China, Phanerozoic lagoonal examples, and possible controlling factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 371-381. |
[21] | Mei M X, Riaz M, Zhang Z W, et al., 2021. Diversified calcimicrobes in dendrolites of the Zhangxia Formation, Miaolingian Series (Middle Cambrian) of the North China craton[J].Journal of Palaeogeography, 2021, Vol.10(1): 1-25. |
[22] | Peters S E, Gaines R R, 2012. Formation of the “great unconformity” as a trigger for the Cambrian explosion[J]. Nature, 484(7394): 363-366. doi: 10.1038/nature10969 |
[23] | Rameil N, Immenhauser A, Warrlich G M D, et al. , 2010. Morphological patterns of Aptian Lithocodium-Bacinella geobodies: relation to environment and scale[J]. Sedimentology, 57(3): 833-911. |
[24] | Rickard D, Mussmann M, Steadman J A, 2017. Sedimentary sulfides[J]. Elements, 13 (2): 117-122. ] doi: 10.2113/gselements.13.2.117 |
[25] | Riding R, 2000. Microbial carbonates: The geological record of calcified bacterial–algal mats and biofilms[J]. Sedimentology, 47(s1): 179-214. |
[26] | Riding R, 2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms and Proterozoic-Cambrian changes in atmospheric composition[J]. Geobiology, 4(4): 299-316. doi: 10.1111/j.1472-4669.2006.00087.x |
[27] | Riding R, 2011. Microbialites, stromatolites, and thrombolites[J]. Encyclopedia of Earth Sciences Series, P635-654. |
[28] | Riding R, 1991a. Classification of Microbial Carbonates[J]. Calcareous Algae and Stromatolites, P21-51. |
[29] | Riding R, 1991b. Calcified cyanobacteria[J]. Calcareous Algae and Stromatolites, P55-87. |
[30] | Schieber J, 2002. Sedimentary pyrite: a window into the microbial past[J]. Geology, 30(6): 531-534. doi: 10.1130/0091-7613(2002)030<0531:SPAWIT>2.0.CO;2 |
[31] | Schmitt K, Heimhofer U, Frijia G, et al. , 2019. Platform-wide shift to microbial carbonate production during the late Aptian[J]. Geology, 47(8): 786-790. doi: 10.1130/G46325.1 |
[32] | Shapiro R S, 2000. A Comment on the Systematic Confusion of Thrombolites[J]. PALAIOS, 15(2): 166-169. doi: 10.1669/0883-1351(2000)015<0166:ACOTSC>2.0.CO;2 |
[33] | Stephens N P, Sumner D Y, 2002. Renalcids as Fossilized Biofilm Clusters[J]. PALAIOS, 17: 225-236. doi: 10.1669/0883-1351(2002)017<0225:RAFBC>2.0.CO;2 |
[34] | Suosaari E P, Awramik S M, Reid R P, et al. , 2018. Living Dendrolitic Microbial Mats in Hamelin Pool, Shark Bay, Western Australia[J]. Geosciences, 8(6): 212 . doi: 10.3390/geosciences8060212 |
[35] | Tourney J and Ngwenya B T, 2014. The role of bacterial extracellular polymeric substances in geomicrobiology[J]. Chemical Geology, 386: 115-132. doi: 10.1016/j.chemgeo.2014.08.011 |
[36] | Whitton B A, Mateo P, 2012. Rivulariaceae, In Ecology of Cyanobacteria II: Their Diversity in Space and Time[J]. Netherlands: Springer, P561-591. |
[37] | Woo J, Chough S K, Han Z, 2008. Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shangdong Province, China[J]. PALAIOS, Vol.23: 55-64. |
[38] | Yan Z, Liu J, Ezaki Y, et al. , 2017. Stacking patterns and growth models of multiscopic structures within Cambrian Series 3 thrombolites at the Jiulongshan section, Shandong Province, northern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 474: 45-57. |
[39] | 陈金勇, 韩作振, 范洪海, 等, 2014a. 鲁西寒武系凝块石特征及其形成机制的探讨[J]. 地质学报, 88(6): 967-979. Chen J Y, Han Z Z, Fan H H, et al., 2014a. Characteristics and formation mechanism of Cambrian agglomerates in western Shandong Province [J]. Acta Geologica Sinica, Vol.88 (6): 967-979. |
[40] | 陈金勇, 韩作振, 范洪海, 等, 2014b. 鲁西寒武系第三统张夏组凝块石特征及其形成环境研究[J]. 沉积学报, 32(3): 494-502. Chen J Y, Han Z Z, Fan H H, et al., 2014b. Study on the characteristics and formation environment of tufts in Zhangxia Formation of Cambrian Tertiary in western Shandong[J].Acta Sedimentologica Sinica, Vol.32 (3): 494-502. |
[41] | 冯增昭, 彭永民, 金振奎, 等, 2004. 中国寒武纪和奥陶纪岩相古地理[M]. 北京: 石油工业出版社: 112 − 121. Feng Z Z, Peng Y M, Jin Z K, et al., 2004. Lithofacies palaeogeography of Cambrian and Ordovician in China[M]. Beijing: Petroleum Industry Press: 112 − 121. |
[42] | 贡云云, 2016. 寒武系凝块石生物丘的沉积组构: 以鲁西地区张夏组为例[J]. 现代地质, 30(2): 436-444. Gong Y Y, 2016. Sedimentary fabric of Cambrian tuft Biodome: a case study of Zhangxia Formation in western Shandong Province[J]. Geoscience, Vol.30 (2): 436-444. |
[43] | 彭善池, Babcock L E, 2005. 全球寒武系年代地层再划分的新建议[J]. 地层学杂志, 29(1): 92-93 doi: 10.3969/j.issn.0253-4959.2005.01.016 Peng S C, Babcock L E, 2005. Newly proposed global chronostratigraphic subdivision of the Cambrian System[J]. Journal of Stratigraphy, 29(1): 92-93. doi: 10.3969/j.issn.0253-4959.2005.01.016 |
[44] | 彭善池, 2006. 全球寒武系四统划分框架正式确立[J]. 地层学杂志, 30(2): 147-148 doi: 10.3969/j.issn.0253-4959.2006.02.010 Peng S C, 2006. The framework of Cambrian quaternary Division has been established[J]. Journal of Stratigraphy, 30(2): 147-148. doi: 10.3969/j.issn.0253-4959.2006.02.010 |
[45] | 韩作振, 陈吉涛, 张晓蕾, 等, 2009. 鲁西寒武系第三统张夏组附枝菌与附枝菌微生物岩特征研究[J]. 地质学报, 83(8): 1097-1103 doi: 10.3321/j.issn:0001-5717.2009.08.006 Han Z Z, Chen J T, Zhang X L, et al, 2009. Study on the characteristics of mycorrhizal and its microflora in the Zhangxia Formation of Cambrian in western Shandong[J]. Acta Geologica Sinica, 83 (8): 1097-1103. doi: 10.3321/j.issn:0001-5717.2009.08.006 |
[46] | 梅冥相, 1993. 碳酸盐岩米级旋回层序的成因类型及形成机制[J]. 沉积与特提斯地质, 13(6): 34-430. Mei M X, 1993. Genetic types and formation mechanism of meter scale cyclic sequences of carbonate rocks[J]. Sedimentary Geology and Tethyan Geology, 13(6): 34-43. |
[47] | 梅冥相, 徐德斌, 2000. 米级顺层序的成因类型及其相序级构特征[J]. 沉积学报, 18(1): 43-49 doi: 10.3969/j.issn.1000-0550.2000.01.008 Mei M X, Xu D B, 2000. Genetic types and facies sequence structure characteristics of meter scale parasequences[J]. Acta Sedimentologica Sinica, 18 (1): 43-49. doi: 10.3969/j.issn.1000-0550.2000.01.008 |
[48] | 梅冥相, 2007. 微生物碳酸盐岩分类体系的修订: 对灰岩成因结构分类体系的补充[J]. 地学前缘, 14(5): 222-232 doi: 10.3321/j.issn:1005-2321.2007.05.022 Mei M X, 2007. Revised classification of microbial carbonates: complementing the classification of limestones[J]. Earth Science Frontiers, 14(5): 222-232. doi: 10.3321/j.issn:1005-2321.2007.05.022 |
[49] | 梅冥相, 张瑞, 李屹尧, 等, 2017. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌[J]. 岩石学报, 33(4): 1073-1093 Mei M X, Zhang R, Li Q Y, et al. , 2017. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North China Platform[J]. Acta Petrologica Sinica, 33(4): 1073-1093. |
[50] | 梅冥相, RIAZ M, 孟庆芬, 等, 2019. 鲕粒滩相灰岩特别的核形石灰岩帽: 以山西繁峙茶坊子剖面寒武系张夏组为例[J]. 地质论评, 65(4): 839-856 Mei M X, Riaz M, Meng Q F, et al, 2019. Special core-shaped limestone cap of oolitic beach facies Limestone: a case study of Cambrian Zhangxia Formation in Chafangzi Section, Fanshi, Shanxi Province[J]. Geological Review, 65(4): 839-856. |
[51] | 史晓颖, 陈建强, 梅仕龙, 1997. 华北地台东部寒武系层序地层年代格架[J]. 地学前缘, C2(102): 161-173. Shi X Y, Chen J Q, Mei S L, 1997. Cambrian sequence stratigraphic framework in the eastern North China platform[J]. Geoscience Frontier, C2(102): 161-17. |
[52] | 王龙, Latif K, Riaz M, 等, 2018. 微生物碳酸盐岩的成因、分类以及问题与展望—来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 33(10): 1005-1023 doi: 10.11867/j.issn.1001-8166.2018.10.1005. Wang L, Latif K, Riaz M, et al, 2018. Genesis, classification, problems and prospects of microbial carbonate rocks: Enlightenment from the study of Cambrian microbial carbonate rocks in North China platform [J]. Advances in Earth Science, 33(10): 1005-1023. doi: 10.11867/j.issn.1001-8166.2018.10.1005. |
[53] | 王兆鹏, 2011. 莱芜九龙山寒武系张夏组树形石特征及地质意义[D]. 青岛: 山东科技大学. Wang Z P, 2011. Characteristic and geological significance of dendrolite from Zhangxia Formation, Cambrian, Jiulongshan Section of Laiwu [D]. Qingdao: Shandong University of science and technology. |
[54] | 张震武, 肖恩照, 覃英伦, 等, 2019. 莱芜雪野剖面寒武系苗岭统凝块石沉积特征研究[J]. 东北石油大学学报, 43(3): 67-77 doi: 10.3969/j.issn.2095-4107.2019.03.007 Zhang Z W, Xiao E Z, Qin Y L, et al, 2019. Sedimentary characteristics of Cambrian Miaoling conglomerates in Xueye Section of Laiwu[J]. Journal of Northeast Petroleum University, 43 (3): 67-77. doi: 10.3969/j.issn.2095-4107.2019.03.007 |
[55] | 张震武, 2020. 鲁西地区寒武系苗岭统树形石研究[D]. 北京: 中国地质大学(北京). Zhang Z W, 2020. Study on Cambrian Miaoling dendrolites in western Shandong[D]. Beijing: China University of Geosciences(Beijing). |
Cambrian Miao Ling paleogeographic map of the North China Platform (modified from Feng et al., 2004)
Strata of the Zhangxia Formation in Houziyu section, Ezhuang Town, Zibo, Shandong Province
Macroscopic characteristics of Houziyu section in Ezhuang Town, Zibo, Shandong Province
Morphologic types of Epiphyton and Epiphyton thalli in dendrolites of Cambrian in western Shandong Province (modified fromWoo et al., 2008; Han, 2009 )
Different types of Epiphyton under the microscope in dendrolites from Zhangxia Formation in Houziyu section, Shandong Province
Calcified Cyanobacteria Fossils under the microscope in dendrolites from Zhangxia Formation in Houziyu section, Shandong Province