2023 Vol. 43, No. 3
Article Contents

BAO Wancheng, XIA Guoqing, LU Chang, FAN Qiushuang, WU Jinxuan, SHI Zhu. 2023. Late Eocene to early Oligocene geochemical characteristics and paleoclimatic significance of the second member of Niubao Formation in the Lunpola Basin,Tibet. Sedimentary Geology and Tethyan Geology, 43(3): 580-591. doi: 10.19826/j.cnki.1009-3850.2023.02023
Citation: BAO Wancheng, XIA Guoqing, LU Chang, FAN Qiushuang, WU Jinxuan, SHI Zhu. 2023. Late Eocene to early Oligocene geochemical characteristics and paleoclimatic significance of the second member of Niubao Formation in the Lunpola Basin,Tibet. Sedimentary Geology and Tethyan Geology, 43(3): 580-591. doi: 10.19826/j.cnki.1009-3850.2023.02023

Late Eocene to early Oligocene geochemical characteristics and paleoclimatic significance of the second member of Niubao Formation in the Lunpola Basin,Tibet

More Information
  • The Lunpola Basin, which is located in the hinterlands of the Tibetan Plateau, is the most sensitive territory for uplifting processes and related responses of environmental changes.It not only records the continental collision process and the deformation history of the lithosphere and crust, but it is also considered the most preferred study site to investigate the paleotopography, paleogeomorphology, and paleoclimatic evolution. In order to reveal the late Eocene to early Oligocene paleoclimate in the Lunpola Basin, a total of 67 rock samples from the second member of the Niubao Formation at 382 Daoban section in the southwest margin of the Lunpola Basin were selected. Based on major and trace elements, a variety of chemical weathering ratios and indices, including the combination of elements (C value), Rb/Sr, Sr/Cu, Sr/Ba, chemical index of alteration (CIA), elemental weathering index (α), and Ln(Al2O3/Na2O) were used to assess the intensity of weathering regimes and paleoclimatic evolution in the source area. The results showed that arid paleoclimate was prevalent during deposition of the second member in the Niubao Formation. However, there was an apparent cooling event at the boundary transition of the Eocene-Oligocene (EOT), which was not only confined to the Lunpola basin but also widely documented in the Tibetan Plateau and other regions along the circumferential margin. This Eocene-Oligocene cooling event is considered a well-developed continental response to the first global Cenozoic cooling event in the Lunpola lake basin.

  • 加载中
  • [1] 白培荣, 熊兴国, 曾禹人, 等, 2018. 西藏仲巴县隆格尔地区渐新统日贡拉组孢粉组合的发现及其意义[J]. 沉积与特提斯地质, 38(3): 70-76

    Google Scholar

    Bai P R, Xiong X G, Zeng Y R, et al. , 2018. The discovery and significance of the sporopollen assemblages from the Oliogene Rigongla Formation in the Lunggar region, Zhongba, Xizang[J]. Sedimentary Geology and Tethyan Geology, 38(3): 70-76.

    Google Scholar

    [2] Bhatia M R, 1983. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 91(6): 611-627. doi: 10.1086/628815

    CrossRef Google Scholar

    [3] Bhatia M R, 1984. Composition and classification of Paleozoic flysch mudrocks of eastern Australia: Implications in provenance and tectonic setting interpretation[J]. Sediment Geology, 41(2-4): 249-268. doi: 10.1016/0037-0738(84)90065-4

    CrossRef Google Scholar

    [4] Bhatia M R, Crook K, 1986. Trace-element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 92(2): 181-193. doi: 10.1007/BF00375292

    CrossRef Google Scholar

    [5] Calvert S E, Pedersen T F, 2007. Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application[J]. Developments in Marine Geology, 1(4): 567-644.

    Google Scholar

    [6] Cao J, Wu M, Chen Y, et al. , 2012. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China[J]. Chemie der Erde-Geochemistry, 72(3): 245-252. doi: 10.1016/j.chemer.2011.12.002

    CrossRef Google Scholar

    [7] Chen J, An Z S, Head J, 1999. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130, 000 years and their implications for monsoon paleoclimatology[J]. Quaternary Research, 51(3): 215-219. doi: 10.1006/qres.1999.2038

    CrossRef Google Scholar

    [8] 陈骏, 汪永进, 陈旸, 等, 2001. 中国黄土地层Rb和Sr地球化学特征及其古季风气候意义[J]. 地质学报, (2): 259-266

    Google Scholar

    Chen J, Wang Y J, Chen Y, et al. , 2001. Rb and Sr Geochemical Characterization of the Chinese Loess and Its Implications for Palaeomonsoon Climate[J]. Acta Geologica Sinica, 75(2): 259-266.

    Google Scholar

    [9] Coxall H K, Wilson P A, Heiko P, et al. , 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean[J]. Nature, 433(7021): 53-57. doi: 10.1038/nature03135

    CrossRef Google Scholar

    [10] Cox R, Lowe D R, Cullers R L, 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. doi: 10.1016/0016-7037(95)00185-9

    CrossRef Google Scholar

    [11] Deconto R, Pollard D, Wilson P, et al. , 2008. Thresholds for Cenozoic bipolar glaciation. [J]. Nature, 455: 652-657. doi: 10.1038/nature07337

    CrossRef Google Scholar

    [12] Ding L, Xu Q, Yue Y H, et al. , 2014. The Andean-type Gangdese Mountains: paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 392: 250-264. doi: 10.1016/j.jpgl.2014.01.045

    CrossRef Google Scholar

    [13] 杜佰伟, 谢尚克, 董宇, 等, 2016. 伦坡拉盆地渐新统丁青湖组油页岩特征及其地质意义[J]. 吉林大学学报(地球科学版), 46(3): 671-680

    Google Scholar

    Du B W, Xie S K, Dong Y, et al. , 2016. Characteristics of Oil Shale of Oligocene Dingqinghu Formation and Its Geological Significance, Lunpola Basin[J]. Journal of Jilin University(Earth Science Edition), 46(3): 671-680.

    Google Scholar

    [14] Dupont-Nivet G, Krijgsman W, Langereis C G, et al. , 2007. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 445: 635-638. doi: 10.1038/nature05516

    CrossRef Google Scholar

    [15] Fang X M, Dupont−Nivet, Guillaume, et al., 2020. Revised chronology of central Tibet uplift(Lunpola Basin)[J]. Science Advances, 6(50).

    Google Scholar

    [16] 冯兴雷, 付修根, 谭富文, 等, 2014. 羌塘盆地孔孔茶卡地区石炭系擦蒙组烃源岩沉积环境分析[J]. 现代地质, 28(5): 953-961

    Google Scholar

    Feng X L, Fu X G, Tan F W, et al. , 2014. Sedimentary Environment Characteristics of Upper Carboniferous Cameng Formation in Kongkong Chaka Area of Northern Qiangtang Basin, Tibet[J]. Geoscience, 28(5): 953-961.

    Google Scholar

    [17] Fedo C M, Wayne Nesbitt H, Young G M, 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 23(10): 921- 924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

    CrossRef Google Scholar

    [18] Gaillardet J, Dupré B, Allègre C J, et al. , 1999. Geochemistry of large river suspended sediments: silicate weathering or recycling tracer?[J]. Geochimica et Cosmochimica Acta, 63(23/24): 4037-4051.

    Google Scholar

    [19] Garzanti E, Marta P, Massimo S, et al. , 2013. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds[J]. Geochemistry Geophysics Geosystems, 14(2): 292-316. doi: 10.1002/ggge.20060

    CrossRef Google Scholar

    [20] Goldberg K, Humayun M, 2010. The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 293(1-2): 175-183.

    Google Scholar

    [21] Grunow A M, Dalziel I W, Harrison T M, et al., 1992. Structural geology and geochronology of subduction complexes along the margin of Gondwanaland: New data from the Antarctic Peninsula and southernmost Andes[J]. 104(11): 1497−1514.

    Google Scholar

    [22] 关有志, 1992. 科尔沁沙地的元素、粘土矿物与沉积环境[J]. 中国沙漠, 12(1): 9

    Google Scholar

    Guan Y Z, 1992. The Element, Clay Mineral and Depositional Environment in Horqin Sand Land[J]. Journal of Desert Research, 12(1): 9.

    Google Scholar

    [23] Hansen T A, Kelley P H, Haasl D M, et al. , 2004. Paleoecological patterns in molluscan extinctions and recoveries: comparison of the Cretaceous-Paleogene and Eocene-Oligocene extinctions in North America[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 214(3): 233-242.

    Google Scholar

    [24] Han Z, Sinclair H D, Li Y, et al. , 2019. Internal drainage has sustained low-relief Tibetan landscapes since the early Miocene[J]. Geophysical Research Letters, 46(15): 8741-8752. doi: 10.1029/2019GL083019

    CrossRef Google Scholar

    [25] Hartenberger J L, 1998. Description de la radiation des Rodentia(Mammalia) du Paléocène supérieur au Miocène;incidences phylogénétiques[J]. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 326(6): 439-444.

    Google Scholar

    [26] 侯明才, 江文剑, 倪师军, 等, 2016. 伊犁盆地南缘中下侏罗统碎屑岩地球化学特征及对物源制约[J]. 地质学报, 90(12): 3337-3351

    Google Scholar

    Hou M C, Jiang W J, Ni S J, et al. , 2016. Geochemical Characteristic of the Lower and Middle Jurassic Clastic Rocks in the Southern Margin of the Yili Basin, Xinjiang and its Constraints on Provenance[J]. Acta Geologica Sinica, 90(12): 3337-3351.

    Google Scholar

    [27] 胡修棉, 王建刚, 安慰, 等, 2017. 利用沉积记录精确约束印度-亚洲大陆碰撞时间与过程[J]. 中国科学: 地球科学, 47(3): 261-283

    Google Scholar

    Hu X M, Wang J G, An W, et al. , 2017. Constraining the timing of the India-Asia continental collision by the sedimentary record[J]. Scientia Sinica(Terrae), 47(3): 261-283.

    Google Scholar

    [28] Iqbal S, Wagreich M, Kuerschner W M, et al. , 2019. Hot-house climate during the Triassic/Jurassic transition: The evidence of climate change from the southern hemisphere(Salt Range, Pakistan)[J]. Global and Planetary Change, 172: 15-32. doi: 10.1016/j.gloplacha.2018.09.008

    CrossRef Google Scholar

    [29] Jiang H, Guo G, Cai X, et al. , 2016. Geochemical evidence of windblown origin of the Late Cenozoic lacustrine sediments in Beijing and implications for weathering and climate change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 446: 32-43.

    Google Scholar

    [30] Kamp P C, Leake B E, 1985. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 76(4): 411-449. doi: 10.1017/S0263593300010646

    CrossRef Google Scholar

    [31] Lasaga A C, Soler J M, Ganor J, et al. , 1994. Chemical weathering rate laws and global geochemical cycles[J]. Geochimica et Cosmochimica Acta, 58(10): 2361-2386. doi: 10.1016/0016-7037(94)90016-7

    CrossRef Google Scholar

    [32] Lear C H, Bailey T R, Pearson P N, et al. , 2008. Cooling and ice growth across the Eocene-Oligocene transition[J]. Geology, 36(3): 251-254. doi: 10.1130/G24584A.1

    CrossRef Google Scholar

    [33] 李吉均, 方小敏, 1998. 青藏高原隆起与环境变化研究[J]. 科学通报, 43(15): 1568-1574

    Google Scholar

    Li J J, Fang X M, 1998. Study on uplift of Tibet plateau and environmental change[J]. Chinese Science Bulletin, 43(15): 1568-1574.

    Google Scholar

    [34] 刘东生, 郑绵平, 郭正堂, 1998. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究, 18(3): 194-204 doi: 10.3321/j.issn:1001-7410.1998.03.002

    CrossRef Google Scholar

    Liu D S, Zheng M P, Guo Z T, 1998. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in asia[J]. Quaternary Sciences, 18(3): 194-204. doi: 10.3321/j.issn:1001-7410.1998.03.002

    CrossRef Google Scholar

    [35] Liu Z, Pagani M, Zinniker D, et al. , 2009. Global cooling during the Eocene-Oligocene climate transition[J]. Science, 323(5918): 1187-1190. doi: 10.1126/science.1166368

    CrossRef Google Scholar

    [36] 刘志飞, 拓守廷, 赵泉鸿, 等, 2004. 南大西洋深水渐新世初大冰期事件[J]. 科学通报, 49(17): 1793-1800 doi: 10.1360/csb2004-49-17-1793

    CrossRef Google Scholar

    Liu Z F, Tuo S T, Zhao Q H, 2004. Deep water events in the South Atlantic during the early Oligocene[J]. Chinese Science Bulletin, 49(17): 1793-1800. doi: 10.1360/csb2004-49-17-1793

    CrossRef Google Scholar

    [37] Liu Z H, Algeo T J, Guo X, et al. , 2017. Paleo-environmental cyclicity in the Early Silurian Yangtze Sea(South China): Tectonic or glacio-eustatic control?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 59-76.

    Google Scholar

    [38] Lyons T W, Werne J P, Hollander D J, et al. , 2003. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela[J]. Chemical Geology, 195(1-4): 131-157. doi: 10.1016/S0009-2541(02)00392-3

    CrossRef Google Scholar

    [39] 马孝达, 2003. 西藏中部若干地层问题讨论[J]. 地质通报, 22(9): 695-698

    Google Scholar

    Ma X D, 2003. A discussion of some problems of stratigraphy in central Tibet[J]. Geological Bulletin of China, 22(9): 695-698.

    Google Scholar

    [40] Mao Z, Meng Q, Fang X, et al. , 2019. Recognition of tuffs in the middle-upper Dingqinghu Fm. , Lunpola Basin, central Tibetan Plateau: Constraints on stratigraphic age and implications for paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 525: 44-56.

    Google Scholar

    [41] McLennan S M, 1993. Weathering and global denudation[J]. Journal of Geology, 101(2): 295-303. doi: 10.1086/648222

    CrossRef Google Scholar

    [42] Meng J, McKenna M C, 1998. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau[J]. Nature: International weekly journal of science, 394(6691): 364-367.

    Google Scholar

    [43] Meng Q, Liu Z, Bruch A A, et al. , 2012. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China[J]. Journal of Asian Earth Sciences, 45: 95-105. doi: 10.1016/j.jseaes.2011.09.021

    CrossRef Google Scholar

    [44] 苗运法, 方小敏, 宋之琛, 等, 2008. 青藏高原北部始新世孢粉记录与古环境变化[J]. 中国科学(D辑: 地球科学), 38(2): 187-196

    Google Scholar

    Miao Y F, Fang X M, Song Z C, et al. , 2008. Eocene sporopollen records and paleoenvironmental changes in the northern Qinghai-Tibet Plateau[J]. Science China(Seri. D), 38(2): 187-196.

    Google Scholar

    [45] Miller K G, Wright J D, Fairbanks R G, 1991. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustacy, and margin erosion[J]. Journal of Geophysical Research: Solid Earth, 96(B4): 6829–6848. doi: 10.1029/90JB02015

    CrossRef Google Scholar

    [46] Miller K G, Browning J V, Aubry M P, et al. , 2008. Eocene-Oligocene global climate and sea-level changes: St. Stephens Quarry, Alabama[J]. Geological Society of America Bulletin, 120(1-2): 34-53. doi: 10.1130/B26105.1

    CrossRef Google Scholar

    [47] Montero-Serrano J C, Föllmi K B, Adatte T, et al. , 2015. Continental weathering and redox conditions during the early Toarcian Oceanic Anoxic Event in the northwestern Tethys: Insight from the Posidonia Shale section in the Swiss Jura Mountains[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 429: 83-99.

    Google Scholar

    [48] Nesbitt H W, YoungG M, 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 299(5885): 715-717. doi: 10.1038/299715a0

    CrossRef Google Scholar

    [49] Nesbitt H W, Young G M, 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. doi: 10.1016/0016-7037(84)90408-3

    CrossRef Google Scholar

    [50] Pagani M, Zachos J C, Freeman K H, et al. , 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene[J]. Science, 309(5734): 600-603. doi: 10.1126/science.1110063

    CrossRef Google Scholar

    [51] Pei J, Sun Z, Wang X, et al. , 2009. Evidence for Tibetan plateau uplift in Qaidam Basin before Eocene-Oligocene boundary and its climatic implications[J]. Journal of Earth Science, 20(2): 430-437. doi: 10.1007/s12583-009-0035-y

    CrossRef Google Scholar

    [52] Roser B P, Korsch R J, 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 67(1-2): 119-139. doi: 10.1016/0009-2541(88)90010-1

    CrossRef Google Scholar

    [53] Ridgway K D, Sweet A R, 1995. Climatically induced floristic changes across the Eocene–Oligocene transition in the northern high latitudes, Yukon Territory, Canada[J]. Geological Society of America Bulletin, 107(6): 676-696. doi: 10.1130/0016-7606(1995)107<0676:CIFCAT>2.3.CO;2

    CrossRef Google Scholar

    [54] Schouten S, Eldrett J, Greenwood D R, et al. , 2008. Onset of long-term cooling of Greenland near the Eocene-Oligocene boundary as revealed by branched tetraether lipids[J]. Geology, 36(2): 147-150. doi: 10.1130/G24332A.1

    CrossRef Google Scholar

    [55] 施雅风, 李吉均, 李炳元, 等, 1999. 晚新生代青藏高原的隆升与东亚环境变化[J]. 地理学报, 54(1): 10-21

    Google Scholar

    Shi Y F, Li J J, Li B Y, et al. , 1999. Uplift of the Qinghai—Xizang (Tibetan) plateau and east asia environmental change during late Cenozoic[J]. Acta Geographica Sinica, 54(1): 10-21.

    Google Scholar

    [56] 孙镇城, 杨藩, 张枝焕, 等, 1997. 中国新生代咸化湖泊沉积环境与油气生成[M]. 中国石油大学出版社: 79−84

    Google Scholar

    Sun Z C, Yang F, Zhang Z H, et al., 1997. Sedimentary environment and hydrocarbon generation of Cenozoic saline lakes in China[M]. China University of Petroleum Press: 79−84.

    Google Scholar

    [57] Sun J, Ni X, Bi S, et al. , 2014. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia[J]. Scientific Reports, 4(1): 7463. doi: 10.1038/srep07463

    CrossRef Google Scholar

    [58] 曲永贵, 王永胜, 段建翔, 等, 2011. 中华人民共和国区域地质调查报告(1: 250000): 多巴区幅(H45C001004)[M]. 武汉: 中国地质大学出版社.

    Google Scholar

    Qu Y G, Wang Y S, Duan J X, et al., 2011. (1: 250000) regional geological survey report of the People’s Republic of China (Duoba sheet, No: H45C001004)[M]. Wuhan: China University of Geosciences Press.

    Google Scholar

    [59] 唐赫, 2020. 始新世−渐新世之交青藏高原东南缘的植被和气候演变[D]. 中国科学院大学.

    Google Scholar

    Tang H, 2020. Vegetation and Climate Evolution in the Southeast Margin of the Qinghai−Tibet Plateau at the Turn of Eocene−Oligocene[D]. University of Chinese Academy of Sciences.

    Google Scholar

    [60] Tapponnier P, Zhiqin X, Roger F, et al. , 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978

    CrossRef Google Scholar

    [61] Tripati A, Darby D, 2018. Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial ice and pan-Arctic sea ice[J]. Nature communications, 9(1): 1038. doi: 10.1038/s41467-018-03180-5

    CrossRef Google Scholar

    [62] von Eynatten H, Barceló-Vidal C, Pawlowsky-Glahn V, 2003. Modelling compositional change: the example of chemical weathering of granitoid rocks[J]. Mathematical Geology, 35: 231-251. doi: 10.1023/A:1023835513705

    CrossRef Google Scholar

    [63] Wang C, Dai J, Zhao X, et al. , 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: A review[J]. Tectonophysics, 621: 1-43. doi: 10.1016/j.tecto.2014.01.036

    CrossRef Google Scholar

    [64] Wang C, Zhao X, Liu Z, et al. , 2008. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Science, 105(13): 4987-4992. doi: 10.1073/pnas.0703595105

    CrossRef Google Scholar

    [65] 王永胜, 张树歧, 谢元和, 等, 2012. 中华人民共和国区域地质调查报告(1: 250000): 昂达尔错幅(I45C004004)[M]. 武汉: 中国地质大学出版社.

    Google Scholar

    Wang Y S, Zhang S Q, Xie Y H, et al., 2012. 1: 250000 regional geological survey report of the People’s Republic of China (Angdarco sheet, No: I45C004004)[M]. Wuhan: China University of Geosciences Press.

    Google Scholar

    [66] 王开发, 杨蕉文, 李哲, 等, 1975. 根据孢粉组合推论西藏伦坡拉盆地第三纪地层时代及其古地理[J]. 地质科学, 10(4): 366-374

    Google Scholar

    10(4): 366-374.10(4): 366-374. Wang K F, Yang J W, Li Z, et al. , 1975. On the Tertiary sporo-pollen assemblages from Lunpola Basin of Xizang, China and their palaeogeographic significance[J]. Scientia Geologica Sinica, 10(4): 366-374.

    Google Scholar

    [67] 汪品先, 2009. 全球季风的地质演变[J]. 科学通报, 54(5): 535-556 doi: 10.1360/csb2009-54-5-535

    CrossRef Google Scholar

    Wang P X, 2009. Global monsoon in a geological perspective[J]. Chinese Science Bulletin, 54(5): 535-556. doi: 10.1360/csb2009-54-5-535

    CrossRef Google Scholar

    [68] 韦利杰, 刘小汉, 李广伟, 等, 2015. 藏南江孜地区古近纪甲查拉组孢粉组合及古环境分析[J]. 微体古生物学报, 32(3): 255-268

    Google Scholar

    Wei L J, Liu X H, Li G W, et al. , 2015. Paleogene palynological assemblages and paleoenvironmental analysis from gyachala formation in the gyangzi area, southern Tibet, China[J]. Acta Micropalaeontologica Sinica, 32(3): 255-268.

    Google Scholar

    [69] Wronkiewicz D J, Condie K C, 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance[J]. Geochimica et Cosmochimica Acta, 51(9): 2401-2416. doi: 10.1016/0016-7037(87)90293-6

    CrossRef Google Scholar

    [70] 夏位国, 1986. 西藏班戈县伦坡拉盆地伦坡拉群的轮藻化石[J]. 中国地质科学院成都地质矿产研究所文集, 61-68

    Google Scholar

    Xia W G, 1986. Fossil charophytes from Lunpola Group in Lunpola Basin, Bangor County, Tibet[J]. Bulletin of the Chengdu Institute of Geology and Mineral Resources, 61-68.

    Google Scholar

    [71] 徐小涛, 邵龙义, 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地理学报, 20(3): 515-522

    Google Scholar

    Xu X T, Shao L Y, 2018. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance[J]. Journal of Palaeogeography, 20(3): 515-522.

    Google Scholar

    [72] 徐正余, 1980. 西藏伦坡拉盆地第三系及其含油性[J]. 石油与天然气地质, 1(2): 153-158

    Google Scholar

    Xu Z Y, 1980. The Tertiaryand its petroleum potential in the Lunpola Basin, Tibet[J]. Oil & Gas Geology, 1(2): 153-158.

    Google Scholar

    [73] Yang J, Cawood P A, Du Y, et al. , 2016. Reconstructing Early Permian tropical climates from chemical weathering indices[J]. Bulletin, 128(5-6): 739-751.

    Google Scholar

    [74] Young G M, Wayne Nesbitt H, 1999. Paleoclimatology and provenance of the glaciogenic Gowganda Formation(Paleoproterozoic), Ontario, Canada: A chemostratigraphic approach[J]. Geological Society of America Bulletin, 111(2): 264-274. doi: 10.1130/0016-7606(1999)111<0264:PAPOTG>2.3.CO;2

    CrossRef Google Scholar

    [75] Yuan Q, Barbolini N, Rydin C, et al. , 2020. Aridification signatures from fossil pollen indicate a drying climate in east-central Tibet during the late Eocene[J]. Climate of the Past, 16(6): 2255-2273. doi: 10.5194/cp-16-2255-2020

    CrossRef Google Scholar

    [76] Zanazzi A, Kohn M J, MacFadden B J, et al. , 2007. Large temperature drop across the Eocene-Oligocene transition in central North America[J]. Nature, 445: 639-642. doi: 10.1038/nature05551

    CrossRef Google Scholar

    [77] Zachos J, Pagani M, Sloan L, et al. , 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 292(5517): 686-693. doi: 10.1126/science.1059412

    CrossRef Google Scholar

    [78] Zachos J C, Flower B P, Paul H, 1997. Orbitally paced climate oscillations across the Oligocene /Miocene boundary[J]. Nature, 388(6642): 567-570. doi: 10.1038/41528

    CrossRef Google Scholar

    [79] 张克信, 王国灿, 洪汉烈, 等, 2013. 青藏高原新生代隆升研究现状[J]. 地质通报, 32(1): 1-18

    Google Scholar

    Zhang K X, Wang G C, Hong H L, et al. , 2013. The study of the Cenozoic uplift in the Tibetan Plateau: A review[J]. Geological Bulletin of China, 32(1): 1-18.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(831) PDF downloads(139) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint