2023 Vol. 43, No. 3
Article Contents

HOU Dehua, PAN Zhilong, YANG Xinpeng, ZHANG Liguo, HE Jiaoyue, ZHANG Huan, CHENG Zhou, WANG Shuo, WANG Jingui. 2023. Chronology, geochemistry and tectonic significance of middle stage of Late Cretaceous adakite in Zhazuo aera, Tibet. Sedimentary Geology and Tethyan Geology, 43(3): 592-603. doi: 10.19826/j.cnki.1009-3850.2021.01006
Citation: HOU Dehua, PAN Zhilong, YANG Xinpeng, ZHANG Liguo, HE Jiaoyue, ZHANG Huan, CHENG Zhou, WANG Shuo, WANG Jingui. 2023. Chronology, geochemistry and tectonic significance of middle stage of Late Cretaceous adakite in Zhazuo aera, Tibet. Sedimentary Geology and Tethyan Geology, 43(3): 592-603. doi: 10.19826/j.cnki.1009-3850.2021.01006

Chronology, geochemistry and tectonic significance of middle stage of Late Cretaceous adakite in Zhazuo aera, Tibet

  • In order to explain late Cretaceous adaktic rocks in South Gangdese and the geodynamic mechanism, we present zircon U-Pb chronology, Lu-Hf isotope and geochemistry analysis for the monzogranite from the Zhazuo area, Zhanang, Tibet. The zircon U-Pb dating yieldes 80.43±0.62 Ma for the Zhazuo monzogranite. The rocks are high-K Calc-alkaline metaluminous, with SiO2 (66.19%~66.84%), Al2O3 (15.17%~15.48%), MgO (1.67%~1.91%), Mg# (47.4~51.5), K2O (3.86%~4.09%), A/CNK (0.91~1.01). The rocks show typical adakitic features, with strongly riched in LREE, high Sr (492×10−6~670.2×10−6), low Y (8.27×10−6~14.99×10−6) and Yb (1.07×10−6~1.79×10−6), high Sr/Y (35.0~81.0) and La/Yb (17.4~21.4) and slightly negative Eu anomalies. They are enriched in LILE and depleted in HFSE, HREE. Zircon εHf(t) values range from 10.5 to 14.1, with tDM1 ranging from 184.8 Ma to 326.1 Ma and tDM2 ranging from 247.2 Ma to 476.0 Ma, slightly older than the emplaced age, indicating that the magma is derived from subducted oceanic crust probably with some subducted sediments.The Mg# value of the mantle component imprint in the rock and the content of compatible elements Ni and Cr are high, indicating that the melts have interacted with the mantle during ascent. Research analysis shows that the high heat flow flows through the slab window, which induce partial melting of oceanic crust and some subducted sediments, and forms the adakitic monzogranite in the Zhazuo area under the geodynamic setting of ridge subduction. It further indicates that Neo-Tethys is still in the ridge subduction stage at about 80 Ma.

  • 加载中
  • [1] Boynton W V, 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[J]. Developments in Geochemistry, 63−114.

    Google Scholar

    [2] Chen L, Qin K Z, Li G M, et al. , 2015. Zircon U–Pb ages, geochemistry, and Sr–Nd–Pb–Hf isotopes of the Nuri intrusive rocks in the Gangdese area, southern Tibet: Constraints on timing, petrogenesis, and tectonic transformation[J]. Lithos, 212-215: 379-396. doi: 10.1016/j.lithos.2014.11.014

    CrossRef Google Scholar

    [3] 代作文, 李光明, 丁俊, 等, 2018. 西藏努日晚白垩世埃达克岩: 洋脊俯冲的产物[J]. 地球科学, 43(8): 2727-2741

    Google Scholar

    Dai Z W, Li G M, Ding J, et al. , 2018. Late Cretaceous adakite in Nuri area, Tibet: products of ridge subduction[J]. Earth Science, 43(8): 2727-2741

    Google Scholar

    [4] Defant M J, Drummond M S, 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [5] 董随亮, 黄勇, 李光明, 等, 2015. 藏南努日铜-钨-钼矿床晚白垩世石英闪长岩U-Pb定年及其地球化学特征[J]. 岩矿测试, 34(6): 712-718

    Google Scholar

    Dong S L, Huang Y, Li G M, et al. , 2015. LA-ICP-MS zircon U-Pb dating and geochemistry of late Cretaceous quartz diorite in the Nuri Cu-Mo-W deposit, south Tibet[J]. Rock and Mineral Analysis, 34(6): 712-718

    Google Scholar

    [6] 管琪, 朱弟成, 赵志丹, 等, 2010. 西藏南部冈底斯带东段晚白垩世埃达克岩: 新特提斯洋脊俯冲的产物?[J]. 岩石学报, 26(7): 2165-2179

    Google Scholar

    Guan Q, Zhu D C, Zhao Z D, et al. , 2010. Late Cretaceous adakites in the eastern segment of the Gangdese Belt, southern Tibet: Products of Neo-Tethyan ridge subduction?[J]. Acta Petrologica Sinica, 26(7): 2165-2179

    Google Scholar

    [7] Guo Z, Wilson M, Liu J, 2007. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust [J]. Lithos, 96(1-2): 205-224. doi: 10.1016/j.lithos.2006.09.011

    CrossRef Google Scholar

    [8] Hawkesworth C, Turner S, Peate D, et al. , 1997. Elemental U and Th variations in island arc rocks: implications for U-series isotopes[J]. Chemical Geology, 139(1-4): 207-221. doi: 10.1016/S0009-2541(97)00036-3

    CrossRef Google Scholar

    [9] Hermann J, Spandler C, 2006. Sediment melts at sub-arc depth[J]. Geochimica Et Cosmochimica Acta, 70(18-supp-S): A248-A248.

    Google Scholar

    [10] 侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 23(10): 2595-2604 doi: 10.3969/j.issn.1000-0569.2007.10.025

    CrossRef Google Scholar

    Hou K J, Li Y H, Zou T R, et al. , 2007. Laser ablation-MC-ICP-MS technique for Hf isotopic for Hf isotope microanalysis of zircon and its geological application[J]. Acta Petrologica Sinica, 23(10): 2595-2604 doi: 10.3969/j.issn.1000-0569.2007.10.025

    CrossRef Google Scholar

    [11] 纪伟强, 吴福元, 锺孙霖, 等, 2009. 西藏南部冈底斯岩基花岗岩时代与岩石成因[J]. 中国科学D辑, 39(7): 849-871

    Google Scholar

    Ji W Q, Wu F Y, Zhong S L, et al. , 2009. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet[J]. Sci China Ser D-Earth Sci, 39(7): 849-871

    Google Scholar

    [12] Jiang Y H, Jiang S Y, Ling H F, et al. , 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr–Nd–Pb–Hf isotopic constraints[J]. Earth and Planetary Science Letters, 241(3-4): 617-633. doi: 10.1016/j.jpgl.2005.11.023

    CrossRef Google Scholar

    [13] 刘金恒, 2018. 西藏松多地区晚白垩世两期岩浆岩岩石成因及构造背景[D]. 长春: 吉林大学.

    Google Scholar

    Liu J H, 2018. Petrogenesis and tectonic setting of the late Cretaceous magmatic rocks in Songdo area, Tibet[D]. Chang Chun: Jilin University.

    Google Scholar

    [14] Liu Y S, Gao S, Hu Z C, et al. , 2010. Continental and Oceanic Crust Recycling-induced Melt–Peridotite Interactions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 51: : 537-571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [15] Ma L, Wang Q, Li Z X, et al. , 2013. Early Late Cretaceous (ca. 93Ma) norites and hornblendites in the Milin area, eastern Gangdese: Lithosphere–asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100–80Ma) magmatic "flare-up" in southern Lhasa (Tibet)[J]. Lithos, 172-173: 17-30. doi: 10.1016/j.lithos.2013.03.007

    CrossRef Google Scholar

    [16] Macpherson C G, Dreher S T, Thirlwall M F, 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines[J]. Earth and Planetary Science Letters, 243(3-4): 581-593. doi: 10.1016/j.jpgl.2005.12.034

    CrossRef Google Scholar

    [17] Martin H, 1999. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos, 46.

    Google Scholar

    [18] Mcdonough W F, Sun S S, 1995. The composition of the Earth[J]. Chemical Geology, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4

    CrossRef Google Scholar

    [19] 孟繁一, 赵志丹, 朱弟成, 等, 2010. 西藏冈底斯东部门巴地区晚白垩世埃达克质岩的岩石成因[J]. 岩石学报, 26(7): 2180-2192

    Google Scholar

    Meng F Y, Zhao Z D, Zhu D C, et al. , 2010. Petrogenesis of Late Cretaceous adakite-like rocks in Mamba from the eastern Gangdese, Tibet[J]. Acta Petrologica Sinica, 26(7): 2180-2192

    Google Scholar

    [20] Middlemost E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

    CrossRef Google Scholar

    [21] 莫宣学, 2011. 岩浆作用与青藏高原演化[J]. 高校地质学报, 17(3): 351-367

    Google Scholar

    Mo X X, 2011. Magmatism and Evolution of the Tibetan Plateau[J]. Geological Journal of China Universities, 17(3): 351-367

    Google Scholar

    [22] Muir R J, Weaver S D, Bradshaw J D, et al. , 1995. The Cretaceous Separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere[J]. Journal of the Geological Society, 152(4): 689-701. doi: 10.1144/gsjgs.152.4.0689

    CrossRef Google Scholar

    [23] 潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 22(3): 521-533

    Google Scholar

    Pan G T, Mo X X, Hou Z Q, et al. , 2006. Spatial-temporal framework of the gangdese orogenic belt and its evolution[J]. Acta Petrologica Sinica, 22(3): 521-533

    Google Scholar

    [24] Peccerillo A, Taylor S R, 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 58(1): 63-81.

    Google Scholar

    [25] R. H Smithies, 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite[J]. Earth and Planetary Science Letters, 182(1): 115-125. doi: 10.1016/S0012-821X(00)00236-3

    CrossRef Google Scholar

    [26] Robert P. RAPP, 肖龙, Nobu Shimizu, 2002. 中国东部富钾埃达克岩成因的实验约束[J]. 岩石学报, 18(3): 293-302

    Google Scholar

    Rapp R P, Xiao L, Shimizu N, 2002. Experimental constraints on the origin of potassium-rich adakites in eastern China[J]. Acta Petrologica Sinica, 18(3): 293-302

    Google Scholar

    [27] Taylor M E, Forester R M, 1979. Distributional model for marine isopod crustaceans and its bearing on early Paleozoic paleozoogeography and continental drift[J]. Geological Society of America Bulletin, 90(4): 731.

    Google Scholar

    [28] WANG Q, 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization[J]. Journal of Petrology, 47(1): 119-144. doi: 10.1093/petrology/egi070

    CrossRef Google Scholar

    [29] 王强, 许继峰, 赵振华, 等, 2007. 中国埃达克岩或埃达克质岩及相关金属成矿作用[J]. 矿物岩石地球化学通报, 26(4): 336-349

    Google Scholar

    Wang Q, Xu J F, Zhao Z H, et al. , 2007. Adakites or adakitic rocks and associated metal metallogenesis in China[J]. Bulletin of mineralogy, petrology and geochemistry, 26(4): 336-349

    Google Scholar

    [30] Wen D R, Chung S L, Song B, et al. , 2008. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications [J]. Lithos, 105(1-2): 1-11. doi: 10.1016/j.lithos.2008.02.005

    CrossRef Google Scholar

    [31] Wen D R, Liu D, Chung S L, et al. , 2008. Zircon SHRIMP U–Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet [J]. Chemical Geology, 252(3-4): 191-201. doi: 10.1016/j.chemgeo.2008.03.003

    CrossRef Google Scholar

    [32] 吴昌炟, 2019. 西藏冈底斯带埃达克岩岩石成因与斑岩铜成矿潜力研究[D]. 北京: 中国地质大学(北京).

    Google Scholar

    Wu C D, 2019. Petrogenesis of adakites and its potential for porphyry copper mineralization in Gangdese belt, Tibet[D]. Beijing: China University of Geosciences(Beijing).

    Google Scholar

    [33] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185-220

    Google Scholar

    Wu F Y, Li X H, Zh Y F, et al. , 2007. Lu-Hf isotopic systematics and their application in petrology[J]. Acta Petrologica Sinica, 23(2): 185-220

    Google Scholar

    [34] Wu F Y, Yang Y H, Xie L W, et al. , 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology[J]. Chemical Geology, 234(1-2): 105-126. doi: 10.1016/j.chemgeo.2006.05.003

    CrossRef Google Scholar

    [35] 肖龙, Robert P RAPP, 许继峰, 2004. 深部过程对埃达克质岩石成分的制约[J]. 岩石学报, 20(2): 219−228

    Google Scholar

    Xiao L, Robert R P, Xu J F, 2004. The role of deep process controls on variation of compositions adakitic rocks. Acta Petrologica Sinica, 20(2): 219−228

    Google Scholar

    [36] 续海金, 马昌前, 2003. 实验岩石学对埃达克岩成因的限定——兼论中国东部富钾高Sr/Y比值花岗岩类[J]. 地学前缘, 10(4): 417-427

    Google Scholar

    Xu H J, Ma C Q, 2003. Constraints of experimental petrology on the origin of adakites, and petrogenesis of Mesozoic K-rich and high Sr/Y ratio granitoids in eastern China[J]. Earth Science Frontiers, 10(4): 417-427

    Google Scholar

    [37] Xu J F, Shinjo R, Defant M J, et al. , 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?[J]. Geology, 30(12): 1111-1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2

    CrossRef Google Scholar

    [38] Xu W C, Zhang H F, Luo B J, et al. , 2015. Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas: An example from the Late Cretaceous magmatism in Gangdese belt, south Tibet[J]. Lithos, 232: 197-210. doi: 10.1016/j.lithos.2015.07.001

    CrossRef Google Scholar

    [39] 许志琴, 杨经绥, 李海兵, 等, 2011. 印度-亚洲碰撞大地构造[J]. 地质学报, 85(1): 1-33 doi: 10.1111/j.1755-6724.2011.00375.x

    CrossRef Google Scholar

    Xu Z Q, Yang J S, Li H B, et al. , 2011. On the tectonics of the India-Asia collision[J]. Acta Geological Sinica, 85(1): 1-33 doi: 10.1111/j.1755-6724.2011.00375.x

    CrossRef Google Scholar

    [40] 姚兴华, 张志平, 汪宏涛, 等, 2019. 西藏桑日县马门晚白垩世O型埃达克岩年代学、地球化学及构造意义[J]. 矿产勘查, (6): 1327-1338

    Google Scholar

    Yao X H, Zhang Z P, Wang H T, et al. , 2019. Chronology, geochemistry and tectonic significance of late Cretaceous O-type adakite in Mamen, Sangri county, Tibet[J]. Mineral Exploration, (6): 1327-1338

    Google Scholar

    [41] 章凤奇, 陈汉林, 曹瑞成, 等, 2010. 海拉尔盆地基底晚古生代adakite的发现及其地质意义[J]. 岩石学报, 26(2): 633-641

    Google Scholar

    Zhang F Q, Chen H L, Cao R C, et al. , 2010. Discovery of late Paleozoic adakite from the basement of the Hailaer Basin in NE China and its geological implication[J]. Acta Geological Sinica, 26(2): 633-641

    Google Scholar

    [42] 张宏飞, 徐旺春, 郭建秋, 等, 2007. 冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成: 新特提斯洋早侏罗世俯冲作用的证据[J]. 岩石学报, 23(6): 1347-1353 doi: 10.3969/j.issn.1000-0569.2007.06.011

    CrossRef Google Scholar

    Zhang H F, Xu W C, Guo J Q, et al. , 2007. Ziron U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet: Evidence for early Jurassic subduction of Neo-Tethyan oceanic slab[J]. Acta Geological Sinica, 23(6): 1347-1353 doi: 10.3969/j.issn.1000-0569.2007.06.011

    CrossRef Google Scholar

    [43] Zhang K J, Xia B D, Wang G M, et al. , 2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 116(9): 1202. doi: 10.1130/B25388.1

    CrossRef Google Scholar

    [44] Zhang Q, Jin W J, Li C D, et al. , 2010. Revisiting the new classification of granitic rocks based on whole-rock Sr and Yb contents: Index[J]. Acta Petrologica Sinica, 26(4): 985-1015.

    Google Scholar

    [45] 张旗, 王焰, 刘红涛, 等, 2003. 中国埃达克岩的时空分布及其形成背景附: 《国内关于埃达克岩的争论》[J]. 地学前缘, 10(4): 16

    Google Scholar

    Zhang Q, Wang Y, Liu H T, et al. , 2003. On the space-time distribution and geodynamic environments of adakites in China Annex: Controversies over differing opinions for adakites in China[J]. Earth Science Frontiers, 10(4): 16

    Google Scholar

    [46] Zhang Z, Zhao G, Santosh M, et al. , 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction?[J]. Gondwana Research, 17(4): 615-631. doi: 10.1016/j.gr.2009.10.007

    CrossRef Google Scholar

    [47] Zheng Y C, Hou Z Q, Gong Y L, et al. , 2014. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth[J]. Lithos, 190-191: 240-263. doi: 10.1016/j.lithos.2013.12.013

    CrossRef Google Scholar

    [48] 朱弟成, 莫宣学, 王立全, 等, 2009. 西藏冈底斯东部察隅高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束[J]. 中国科学: 地球科学, 39(7): 833

    Google Scholar

    Zhu D C, Mo X X, Wang L Q, et al. , 2009. Petrogenesis of highly fractionated I-type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes[J]. Sci China Ser D-Earth Sci, 39(7): 833

    Google Scholar

    [49] Zhu D C, Wang Q, Cawood P A, et al. , 2017. Raising the Gangdese Mountains in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 122(1).

    Google Scholar

    [50] Zhu D C, Zhao Z D, Niu Y L, et al. , 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau [J]. Gondwana Research, 23(4): 1429-1454. doi: 10.1016/j.gr.2012.02.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(802) PDF downloads(107) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint