2024 Vol. 44, No. 1
Article Contents

WANG Xiaonan, REN Qiang, HOU Mingcai, DONG Junling, CHEN Anqing, MA Chao, ZHONG Hanting, ZHENG Dongyu. 2024. Progress in the applications of the Paleobiology Database in paleogeographic reconstruction. Sedimentary Geology and Tethyan Geology, 44(1): 34-44. doi: 10.19826/j.cnki.1009-3850.2022.09001
Citation: WANG Xiaonan, REN Qiang, HOU Mingcai, DONG Junling, CHEN Anqing, MA Chao, ZHONG Hanting, ZHENG Dongyu. 2024. Progress in the applications of the Paleobiology Database in paleogeographic reconstruction. Sedimentary Geology and Tethyan Geology, 44(1): 34-44. doi: 10.19826/j.cnki.1009-3850.2022.09001

Progress in the applications of the Paleobiology Database in paleogeographic reconstruction

More Information
  • The information technology revolution in the era of big data has brought about the digital evolution of scientific research. As a significant milestone of digital scientific research in earth science, the Paleobiology Database (PBDB) can provide essential data support for paleogeographic research. Through the investigation of the content of the PBDB platform and its applications in paleogeographic reconstruction, the current problems in the paleogeographic reconstruction of PBDB are summarized, and its future development is anticipated. The results show that: (1) Paleontology database contains a large number of traceable data, which is an important information source and exchange platform for paleontology research. The PBDB includes a visualization function, can provide a variety of data retrieval and download methods, and is the preferred paleontology database for paleontology reconstruction work. (2) The classification and collection data of the PBDB have may applications in the field of paleogeographic reconstruction, such as constraining paleoplates locations, revising the division scheme of paleoclimatic zones, quantifying paleolatitudes and paleodepths, and correcting paleocoastlines. (3) The paleontological database is more suitable for the field of paleontological research, and the history of paleontological records may be biased and incomplete, so it plays an auxiliary constraint role in paleogeographic reconstruction, rather than an absolute approach. (4) Future developments and applications of paleogeography reconstruction using PBDB include automatic classification and screening of data, methods to accurately constrain the relative longitude of paleoplate positions, and approaches for improving the accuracy of paleoclimate, paleoelevation, and paleodepth determinations.

  • 加载中
  • [1] Bailey I W, Sinnott E W, 1916. The Climatic Distribution of Certain Types of Angiosperm Leaves[J]. American Journal of Botany, 3(1): 24-39. doi: 10.1002/j.1537-2197.1916.tb05397.x

    CrossRef Google Scholar

    [2] Beerling D J, Royer D L, 2002. Reading a CO2 signal from fossil stomata[J]. The New Phytologist, 153(3): 387-397. doi: 10.1046/j.0028-646X.2001.00335.x

    CrossRef Google Scholar

    [3] Boucot A J, 陈旭, Scotese C R, 等, 2009. 显生宙全球古气候重建[M]. 北京: 科学出版社.

    Google Scholar

    Boucot A J, Chen X, Scotese C R, et al., 2009. Phanerozoic global paleoclimatic reconstruction[M]. Beijing: Science Press.

    Google Scholar

    [4] Boyd A, 1994. Some limitations in using leaf physiognomic data as a precise method for determining paleoclimates with an example from the Late Cretaceous Pautût Flora of West Greenland[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 112, 261-278.

    Google Scholar

    [5] Cao W C, Zahirovic S, Flament N, et al. , 2017. Improving global paleogeography since the late Paleozoic using paleobiology[J]. Biogeosciences, 14(23): 5425-5439. doi: 10.5194/bg-14-5425-2017

    CrossRef Google Scholar

    [6] Chaloner W G, Creber G T, 1990. Do fossil plants give a climatic signal?[J]. Journal of the Geological Society, 147(2): 343-350. doi: 10.1144/gsjgs.147.2.0343

    CrossRef Google Scholar

    [7] Chaney R W, 1947. Tertiary centers and migration routes[J]. Ecological Monographs, 17(2): 139-148. doi: 10.2307/1943260

    CrossRef Google Scholar

    [8] 邓怡颖, 樊隽轩, 王玥, 等, 2020. 古生物学数据库现状与数据驱动下的科学研究[J]. 高校地质学报, 26(4): 361-383.

    Google Scholar

    Deng Y Y, Fan J X, Wang Y, et al., 2020. Current status of paleontological databases and data-driven research in paleontology[J]. Geological Journal of China Universities, 26(4): 361-383.

    Google Scholar

    [9] Eizenhöfer P R, Zhao G C, Sun M, et al. , 2015. Geochronological and Hf isotopic variability of detrital zircons in Paleozoic strata across the accretionary collision zone between the North China Craton and Mongolian arcs and tectonic implications[J]. Geological Society of America Bulletin, 127(9-10): 1422-1436. doi: 10.1130/B31175.1

    CrossRef Google Scholar

    [10] 樊隽轩, 侯旭东, 陈中阳, 等, 2013. 基于 GBDB 数据库的地层学研究与应用[J]. 地层学杂志, 37(4): 400-409.

    Google Scholar

    Fan J X, Hou X D, Chen Z Y, et al., 2013. GeoBiodiversity database and its application in stratigraphic research[J]. Journal of Stratigraphy, 37(4): 400-409.

    Google Scholar

    [11] 樊隽轩, 张华, 侯旭东, 等, 2011. 古生物学和地层学研究的定量化趋势--GBDB数字化科研平台的建设及其意义[J]. 古生物学报, 50(2): 141-153.

    Google Scholar

    Fan J X, Zhang H, Hou X D, et al., 2011. Quantitative research trends in palaeobiology and stratigraphy—construction of the GeoBiodiversity database(GBDB) using escience technology[J]. Acta Palaeontologica Sinica, 50(2): 141-153.

    Google Scholar

    [12] Forest C E, Wolfe J A, Molnar P, et al. , 1999. Paleoaltimetry incorporating atmospheric physics and botanical estimates of paleoclimate[J]. Geological Society of America Bulletin, 111(4): 497. doi: 10.1130/0016-7606(1999)111<0497:PIAPAB>2.3.CO;2

    CrossRef Google Scholar

    [13] Forest C E, 2007. Paleoaltimetry: A Review of Thermodynamic Methods[J]. Reviews in Mineralogy and Geochemistry, 66(1): 173-193. doi: 10.2138/rmg.2007.66.7

    CrossRef Google Scholar

    [14] Greenwood D R, 1992. Taphonomic constraints on foliar physiognomic interpretations of Late Cretaceous and Tertiary palaeoclimates[J]. Review of Palaeobotany and Palynology, 71(1-4): 149-190. doi: 10.1016/0034-6667(92)90161-9

    CrossRef Google Scholar

    [15] Gregory K M, Chase C G, 1992. Tectonic significance of paleobotanically estimated climate and altitude of the late Eocene erosion surface, Colorado[J]. Geology, 20(7): 581-585. doi: 10.1130/0091-7613(1992)020<0581:TSOPEC>2.3.CO;2

    CrossRef Google Scholar

    [16] 郭安林, 张国伟, 姚安平, 2004. 地质数据库建立中的系统分析[J]. 西北大学学报(自然科学版), 34(2): 203-206 doi: 10.3321/j.issn:1000-274X.2004.02.020

    CrossRef Google Scholar

    Guo A L, Zhang G W, Yao A P, 2004. System analysis in building geological database[J]. Journal of Northwest University (Natural Science Edition), 34(2): 203-206. doi: 10.3321/j.issn:1000-274X.2004.02.020

    CrossRef Google Scholar

    [17] Hallam A, Wignall P B, 1999. Mass extinctions and sea-level changes[J]. Earth-Science Reviews, 48(4): 217-250. doi: 10.1016/S0012-8252(99)00055-0

    CrossRef Google Scholar

    [18] 侯旭东, 樊隽轩, 2012. GBDB数据库的发展与数据简况[J]. 地层学杂志, 36(3): 627-629

    Google Scholar

    Hou X D, Fan J X, 2012. Current development of the Geobiodiversity Database (GBDB) and its data statistics[J]. Journal of Stratigraphy, 36(3): 627-629.

    Google Scholar

    [19] 黄永江, 苏涛, 星耀武, 等, 2010. 两种古海拔重建方法及山旺中中新世古海拔的定量重建[J]. 古生物学报, 49(4): 532-538

    Google Scholar

    Huang Y J, Su T, Xing Y W, et al. , 2010. Two methods of palaeoaltitude reconstruction and quantitative palaeoaltitude reconstruction of the middle Miocene Shanwang[J]. Acta Palaeontologica Sinica, 49(4): 532-538.

    Google Scholar

    [20] Kocsis Á T, Scotese C R, 2021. Mapping paleocoastlines and continental flooding during the Phanerozoic[J]. Earth-Science Reviews, 213: 103463. doi: 10.1016/j.earscirev.2020.103463

    CrossRef Google Scholar

    [21] Kouwenberg L L R, Kürschner W M, McElwain J C, 2007. Stomatal Frequency Change Over Altitudinal Gradients: Prospects for Paleoaltimetry[J]. Reviews in Mineralogy and Geochemistry, 66(1): 215-241. doi: 10.2138/rmg.2007.66.9

    CrossRef Google Scholar

    [22] Macarthur R H, Wilson E O, 1963. An Equilibrium Theory of Insular Zoogeography[J]. Evolution, 17(4): 373-387. doi: 10.1111/j.1558-5646.1963.tb03295.x

    CrossRef Google Scholar

    [23] Matthews K J, Maloney K T, Zahirovic S, et al, 2016. Global plate boundary evolution and kinematics since the late Paleozoic[J]. Global and Planetary Change, 146: 226-250. doi: 10.1016/j.gloplacha.2016.10.002

    CrossRef Google Scholar

    [24] McElwain J C, 2004. Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure[J]. Geology, 32(12): 1017-1020. doi: 10.1130/G20915.1

    CrossRef Google Scholar

    [25] 潘文静, 刘士磊, 田德瑞, 等, 2019. 渤海海域新近纪湖盆萎缩期古水深恢复——以渤东低凸起南端为例[J]. 海洋地质前沿, 35(4): 18-25

    Google Scholar

    Pan W J, Liu S L, Tian D R, et al. , 2019. Reconstruction of palaeo-water depth of Neocene shrinking lake: an example from the south of Bodong low uplift, Bohai sea[J]. Marine Geology Frontiers, 35(4): 18-25.

    Google Scholar

    [26] 潘照晖, 朱敏, 2020. 国内外古脊椎动物数据库综述[J]. 高校地质学报, 26(4): 424-443

    Google Scholar

    Pan Z H, Zhu M, 2020. Review of database in vertebrate Paleontology[J]. Geological Journal of China Universities, 26(4): 424-443.

    Google Scholar

    [27] Peters, Shanan E.McClennen, Michael.The Paleobiology Database application programming interface[J].PALEOBIOLOGY,2016,(1):1-7.

    Google Scholar

    [28] Phillips J. 1860. Life on the Earth: Its Origin and Succession [M]. London: Macmillan and Company.

    Google Scholar

    [29] Ren Q, Zhang S, Suhbaatar T, et al. , 2021. Did the Boreal Realm extend into the equatorial region? New paleomagnetic evidence from the Tuva-Mongol and Amuria blocks[J]. Earth and Planetary Science Letters, 576: 117246. doi: 10.1016/j.jpgl.2021.117246

    CrossRef Google Scholar

    [30] Scotese C R, Song H J, Mills B J W, et al. , 2021. Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years[J]. Earth-Science Reviews, 215, 103503.

    Google Scholar

    [31] Sepkoski J J. 1979. A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria [J]. Paleobiology, 5(3): 222-251

    Google Scholar

    [32] Sepkoski J J. 1982. A compendium of fossil marine families [J]. Milwaukee Public Museum Contributions in Biology and Geology, 51: 1-125

    Google Scholar

    [33] Sepkoski J J. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions [J]. Paleobiology, 10(2): 246-267

    Google Scholar

    [34] Sepkoski J J. 1992. A compendium of fossil marine animal families, 2nd edition [J]. Milwaukee Public Museum Contributions in Biology and Geology, 83: 1-156.

    Google Scholar

    [35] Spicer R A, Harris N B W, Widdowson M, et al. , 2003. Constant elevation of southern Tibet over the past 15million years [J]. Nature, 421: 622-624. doi: 10.1038/nature01356

    CrossRef Google Scholar

    [36] 苏新, 丁旋, 姜在兴, 等, 2012. 用微体古生物定量水深法对东营凹陷沙四上亚段沉积早期湖泊水深再造[J]. 学前缘, 19(1): 188-199

    Google Scholar

    Su X, Ding X, Jiang Z X, et al. , 2012. The micropaleontological quantitative bathymetry method was used to reconstruct the lake bathymetry in the early sedimentary stage of the upper fourth member of the Shahejie Formation in Dongying Depression[J]. Earth Science Frontiers, 19(1): 188-199.

    Google Scholar

    [37] 孙克勤, 1997. 全球石炭纪-二叠纪植物群的演化和分布特征[J]. 地学前缘, 4(3-4): 129-138

    Google Scholar

    Sun K Q, 1997. Characteristics of the evolution and distribution of the global Carboniferous and Permian floras[J]. Earth Science Frontiers (China University of Geosciences (Beijing); Peking University), 4(3-4): 129-138.

    Google Scholar

    [38] 孙启高, 2008. 如何利用化石植物定量研究古海拔?[J]. 地质论评, 54(2): 145-154 doi: 10.3321/j.issn:0371-5736.2008.02.001

    CrossRef Google Scholar

    Sun Q G, 2008. How to determine quantitative estimates of palaeoelevation from fossil plants?[J]. Geological Review, 54(2): 145-154. doi: 10.3321/j.issn:0371-5736.2008.02.001

    CrossRef Google Scholar

    [39] van der Zwaan G J, Jorissen F J, de Stigter H C, 1990. The depth dependency of planktonic/benthic foraminiferal ratios; constraints and applications[J]. Marine Geology, 95(1): 1-16. doi: 10.1016/0025-3227(90)90016-D

    CrossRef Google Scholar

    [40] 王成文, 赵国伟, 李宁, 等, 2014. 中亚地区晚古生代腕足动物古生物地理与构造古地理的协同演化[J]. 中国科学: 地球科学, 44(2): 213-226.

    Google Scholar

    Wang C W, Zhao G W, Li N, et al., 2014. Coevolution of brachiopod paleobiogeography and tectonopaleogeography during the late Paleozoic in central Asia[J]. Science China: Earth Sciences, 56: 2094-2106.

    Google Scholar

    [41] Wang C W, Li N, Zong P, et al. , 2014. Coevolution of brachiopod Boreal Realm and Pangea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 412: 160-168.

    Google Scholar

    [42] 王军, 沈光隆, 张泓, 等, 2001. 论我国二叠纪华夏植物群岛屿生物地理平衡理论的应用[J]. 古生物学报, 40(4): 443-449 doi: 10.3969/j.issn.0001-6616.2001.04.004

    CrossRef Google Scholar

    Wang J, Shen G L, Zhang H, et al. , 2001. On the application of the equilibrium theory of island biogeography to the Permian Cathaysian flora of China[J]. Acta Palaeontologica Sinica, 40(4): 443-449. doi: 10.3969/j.issn.0001-6616.2001.04.004

    CrossRef Google Scholar

    [43] 王乃文, 1984. 青藏高原古生物地理与板块构造的探讨[C]//中国地质科学院地质研究所文集(9).

    Google Scholar

    Wang N W, 1984. On the palaeobiogeography and plate tectonics of Qinghai−Tibet plateau[C]//Proceedings of the Institute of Geology, Chinese Academy of Geological Sciences(9).

    Google Scholar

    [44] Wang T, Tong Y, Zhang L, et al. , 2017. Phanerozoic granitoids in the central and eastern parts of Central Asia and their tectonic significance[J]. Journal of Asian Earth Sciences, 145: 368-392. doi: 10.1016/j.jseaes.2017.06.029

    CrossRef Google Scholar

    [45] 王永标, 杨浩, 2003. 东昆仑-阿尼玛卿-巴颜喀拉地区早二叠世的生物古地理特征[J]. 中国科学: 地球科学, 33(8): 775-780

    Google Scholar

    Wang Y B, Yang H, 2003. Biopaleogeographic characteristics of the Early Permian in the East Kunlun-Anyemaqen-Bayan Har area[J]. Science China: Earth Sciences, 33(8): 775-780.

    Google Scholar

    [46] Wei X X, Zhang X H, Shi G R, et al. , 2016. First report of a phytogeographically mixed (transitional) Middle–Late Permian fossil wood assemblage from the Hami area, northwest China, and implications for Permian phytogeographical, paleogeographical and paleoclimatic evolution in central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 125-140.

    Google Scholar

    [47] Wichura H, Jacobs L L, Lin A, et al. , 2015. A 17-My-old whale constrains onset of uplift and climate change in east Africa[J]. Proceedings of the National Academy of Sciences, 112(13): 3910-3915. doi: 10.1073/pnas.1421502112

    CrossRef Google Scholar

    [48] Wolfe J A, 1978. A Paleobotanical Interpretation of Tertiary Climates in the Northern Hemisphere: Data from fossil plants make it possible to reconstruct Tertiary climatic changes, which may be correlated with changes in the inclination of the earth's rotational axis[J]. American Scientist, 66(6): 694-703.

    Google Scholar

    [49] Wolfe J A, 1985. Distribution of major vegetational types during the Tertiary[J]. The Carbon Cycle and Atmospheric CO: Natural Variations Archean to Present, 32: 357-375.

    Google Scholar

    [50] Wolfe J A, 1995. Paleoclimatic estimates from tertiary leaf assemblages[J]. Annual Review of Earth and Planetary Sciences, 23: 119-142. doi: 10.1146/annurev.ea.23.050195.001003

    CrossRef Google Scholar

    [51] Wolfe J A, 1993. A method of obtaining climatic parameters from leaf assemblages[M]. Washington: U. S. Geological Survey Bulletin 2040, 1.

    Google Scholar

    [52] Woodward F I, Williams B G, 1987. Climate and Plant Distribution at Global and Local Scales[J]. Vegetatio, 69(1-3): 189-197. doi: 10.1007/BF00038700

    CrossRef Google Scholar

    [53] 张蕾, 钟瀚霆, 陈安清, 等, 2020. 大数据驱动下的数字古地理重建: 现状与展望[J]. 高校地质学报, 26(1): 073-085.

    Google Scholar

    Zhang L, Zhong H T, Chen A Q, et al., 2020. Paleogeographic reconstruction driven by big data: challenges and prospects[J]. Geological Journal of China Universities, 26(1): 073-085.

    Google Scholar

    [54] Zhang S H, Li Z X, Evans D A D, et al. , 2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China[J]. Earth and Planetary Science Letters, 353-354: 145-155. doi: 10.1016/j.jpgl.2012.07.034

    CrossRef Google Scholar

    [55] Zhao G C, Cawood P A, Wilde S A, et al. , 2002. Review of global 2.1 – 1.8 Ga orogens: implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 59(1-4): 125-162. doi: 10.1016/S0012-8252(02)00073-9

    CrossRef Google Scholar

    [56] 周浙昆, 杨青松, 夏珂, 2007. 栎属高山栎组植物化石推测青藏高原的隆起[J]. 科学通报, 52(3): 249-257 doi: 10.3321/j.issn:0023-074X.2007.03.001

    CrossRef Google Scholar

    Zhou Z K, Yang Q S, Xia K, 2007. Plant fossils of Quercus group inferred the uplift of Qinghai-Tibet Plateau [J]. Chinese Science Bulletin, 52(3): 249-257. doi: 10.3321/j.issn:0023-074X.2007.03.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(1021) PDF downloads(458) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint