2024 Vol. 44, No. 1
Article Contents

LEI Chuanyang, WANG Bo, LIU Zhaoxin, FAN Min, XIE Haiyang, HAO Jinbo. 2024. Development of fluvial terraces in Chengdu Plain: Implications for the paleoclimate and Neotectonic Movement. Sedimentary Geology and Tethyan Geology, 44(1): 20-33. doi: 10.19826/j.cnki.1009-3850.2022.07003
Citation: LEI Chuanyang, WANG Bo, LIU Zhaoxin, FAN Min, XIE Haiyang, HAO Jinbo. 2024. Development of fluvial terraces in Chengdu Plain: Implications for the paleoclimate and Neotectonic Movement. Sedimentary Geology and Tethyan Geology, 44(1): 20-33. doi: 10.19826/j.cnki.1009-3850.2022.07003

Development of fluvial terraces in Chengdu Plain: Implications for the paleoclimate and Neotectonic Movement

  • In order to study the paleoclimate and neotectonic movement characteristics of the Chengdu Plain since the Quaternary, a detailed study of the river terrace sequence of the Minjiang River system examined the chronological framework, pollen assemblage characteristics in different geological periods, and geochemical characteristics of vermicular red clay from T4 in Chengdu Plain. Based on a large amount of data, along with field verification, and combined with geological, geomorphological, and chronological data, we identified 5 fluvial terraces in the transverse drainage of the Minjiang River system in the Chengdu Plain. The terrace thicknesses from T5 to T1 are 98~127 m, 59~79 m, 36~52 m, 4~10 m, and 2~5 m, respectively. The results show that the terraces T5~T2 formed at 925±92 ka, 722±77 ka, 462±46 ka, 30.13±2.86 ka and 9.0 ka respectively, which are base terrace, whose development is driven by tectonic movement and climate change, and can be used as the geomorphic symbol of the uplift of the south section of Longquan anticline on the eastern edge of Chengdu Plain since Quaternary. T1 is the accumulation terrace, whose development is mainly driven by climate change. Pollen assemblages show that the Chengdu Plain has been dominated by forest and grassland vegetation since the Quaternary, and the climate has a trend of changing from warm and wet to warm and dry. Terrace data reveal that the south section of Longquan anticline has experienced four intermittent uplifts since the Quaternary, with an uplift height of 127 meters. The uplift of the south section of Longquan anticline reached its peak in the middle of the early Pleistocene, with an uplift rate of 0.089~0.335 mm/a. By the late Early Pleistocene, the uplift rate decreased sharply to 0.027~0.165 mm/a, and then showed a gradually increasing trend, to 0.133~0.322 mm/a in the late Pleistocene Holocene. There is differential uplift between the south and north sections of Longquan anticline. The uplift rate and amplitude of the north section are significantly greater than those of the south section. In modern geomorphology, the north section of Longquan Mountain is dominated by low mountains, and the south section transits to low mountains and hills.

  • 加载中
  • [1] Bridgland D and Westaway R, 2008. Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon[J]. Geomorphology, 98(3-4): 285-315. doi: 10.1016/j.geomorph.2006.12.032

    CrossRef Google Scholar

    [2] Bridgland D, Maddy D, Bates M, 2004. River terrace sequences: Templates for Quaternary geochronology and marine–terrestrial correlation[J]. Journal of Quaternary Science, 19(2): 203-218. doi: 10.1002/jqs.819

    CrossRef Google Scholar

    [3] Bull W B, 1990. Stream-terrace genesis: Implications for soil development[J]. Geomorphology, 3(3-4): 351-367. doi: 10.1016/0169-555X(90)90011-E

    CrossRef Google Scholar

    [4] Burbank D W, Leland J, Filding E, et al. , 1996. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas[J]. Nature, 379(6565): 505-510. doi: 10.1038/379505a0

    CrossRef Google Scholar

    [5] 常宏, 安芷生, 强小科, 等, 2005. 河流阶地的形成及其对构造与气候的意义[J]. 海洋地质动态, 21(2): 8-11+37-38 doi: 10.3969/j.issn.1009-2722.2005.02.003

    CrossRef Google Scholar

    Chang H, An Z S, Qiang X K, et al. , 2005. Formation of fluvial terrace and its tectonic and climate significance [J]. Marine Geology Letters, 21(2): 8-11+37-38. doi: 10.3969/j.issn.1009-2722.2005.02.003

    CrossRef Google Scholar

    [6] 陈之端, 1994. 桦木科植物的系统发育和地理分布(续)[J]. 植物分类学报, 32(2): 101-153

    Google Scholar

    Chen Z D, 1994. Phylogeny and phytogeography of the Betulaceae (Cont. ) [J]. Journal of Systematics and Evolution, 32(2): 101-153.

    Google Scholar

    [7] 邓宾, 刘树根, 李智武, 等, 2008. 青藏高原东缘及四川盆地晚中生代以来隆升作用对比研究[J]. 成都理工大学学报(自然科学版), 35(4): 477-486 doi: 10.3969/j.issn.1671-9727.2008.04.018

    CrossRef Google Scholar

    Deng B, Liu S G, Li Z W, et al. , 2008. A comparative study of the late Mesozoic uplifting in the eastern margin of Qinghai-Tibet Plateau and Sichuan Basin, China [J]. Journal of Chengdu University of Technology (Science and Technology Edition), 35(4): 477-486. doi: 10.3969/j.issn.1671-9727.2008.04.018

    CrossRef Google Scholar

    [8] 董铭, 苏怀, 史正涛, 等, 2018. 金沙江金江街段河流阶地年代及对河谷水系演化历史的启示[J]. 地理学报, 73(9): 1728-1736 doi: 10.11821/dlxb201809009

    CrossRef Google Scholar

    Dong M, Su H, Shi Z T, et al. , 2018. The age of river terraces in the Jinjiangjie reach of the Jinsha river and its implications for valley and drainage evolution [J]. Acta Geographica Sinica, 73(9): 1728-1736. doi: 10.11821/dlxb201809009

    CrossRef Google Scholar

    [9] 冯兴雷, 付修根, 谭富文, 等, 2014. 羌塘盆地孔孔茶卡地区石炭系擦蒙组烃源岩沉积环境分析[J]. 现代地质, 28(5): 953-961 doi: 10.3969/j.issn.1000-8527.2014.05.010

    CrossRef Google Scholar

    Feng X L, Fu X G, Tan F W, et al. , 2014. Sedimentary environment characteristics of Upper Carboniferous Cameng Formation in Kongkong Chaka area of northern Qiangtang basin, Tibet [J]. Geoscience, 28(5): 953-961. doi: 10.3969/j.issn.1000-8527.2014.05.010

    CrossRef Google Scholar

    [10] 郭子奇, 李胜伟, 王东辉, 等, 2019. 浅析四川成都龙泉山城市森林公园主要环境地质问题[J]. 沉积与特提斯地质, 39(4): 90-99 doi: 10.3969/j.issn.1009-3850.2019.04.010

    CrossRef Google Scholar

    Guo Z Q, Li S W, Wang D H, et al. , 2019. Environmental geology of the Longquanshan urban forest park, Chengdu, Sichuan [J]. Sedimentary Geology and Tethyan Geology, 39(4): 90-99. doi: 10.3969/j.issn.1009-3850.2019.04.010

    CrossRef Google Scholar

    [11] He Z X, Zhang X J, Qiao Y, et al. , 2015. Formation of the Yalong Downstream Terraces in the SE Tibetan Plateau and its implication for the uplift of the plateau[J]. Acta Geologica Sinica (English Edition), 89(2): 542-560. doi: 10.1111/1755-6724.12446

    CrossRef Google Scholar

    [12] Hu Z B, Pan B T, Wang J P, et al. , 2012. Fluvial terrace formation in the eastern Fenwei Basin, China, during the past 1.2 Ma as a combined archive of tectonics and climate change[J]. Journal of Asian Earth Sciences, 60, 235-245.

    Google Scholar

    [13] 胡春生. 2014, 河流阶地研究进展综述[J]. 地球环境学报, 5(5):353-362

    Google Scholar

    Hu C S. 2014, Progress in research on river terraces[J]. Journal of Earth Environment, 5(5):353-362.

    Google Scholar

    [14] 胡俊杰, 马寅生, 王宗秀, 等, 2017. 地球化学记录揭示的柴达木盆地北缘地区中—晚侏罗世古环境与古气候[J]. 古地理学报, 19(3): 480-490 doi: 10.7605/gdlxb.2017.03.037

    CrossRef Google Scholar

    Hu J J, Ma Y S, Wang Z X, et al. , 2017. Palaeoenvironment and palaeoclimate of the Middle to Late Jurassic revealed by geochemical records in northern margin of Qaidam basin [J]. Journal of Palaeogeography, 19(3): 480-490. doi: 10.7605/gdlxb.2017.03.037

    CrossRef Google Scholar

    [15] 胡小飞, 潘保田, 高红山, 等, 2013. 祁连山东段全新世河流阶地发育及其与气候变化的关系研究[J]. 第四纪研究, 33(4): 723-736 doi: 10.3969/j.issn.1001-7410.2013.04.10

    CrossRef Google Scholar

    Hu X F, Pan B T, Gao H S, et al. , 2013. Development of Holocene fluvial terraces in the eastern Qilianshan mountain and its relationship with climatic changes [J]. Quaternary Sciences, 33(4): 723-736. doi: 10.3969/j.issn.1001-7410.2013.04.10

    CrossRef Google Scholar

    [16] Jia L Y, Zhang X J, He Z X, et al. , 2015. Late quaternary climatic and tectonic mechanisms driving river terrace development in an area of mountain uplift: A case study in the Langshan area, Inner Mongolia, Northern China[J]. Geomorphology, 234(1): 109-121.

    Google Scholar

    [17] 雷传扬, 刘兆鑫, 王波, 等, 2021. “互联网+”背景下地质大数据共享服务研究[J]. 中国国土资源经济, 34(11): 22-27+89 doi: 10.19676/j.cnki.1672-6995.000626

    CrossRef Google Scholar

    Lei C Y, Liu Z X, Wang B, et al. , 2021. Research on geological big data sharing service under the background of "internet plus" [J]. Natural Resource Economics of China, 34(11): 22-27+89. doi: 10.19676/j.cnki.1672-6995.000626

    CrossRef Google Scholar

    [18] 雷传扬, 刘兆鑫, 文辉, 等, 2022. 基于多源数据和先验知识约束的复杂地质体三维建模研究[J]. 地质论评, 68(4): 1393-1411

    Google Scholar

    Lei C Y, Liu Z X, Wen H, et al. , 2022. Research on 3D geological modeling of complex geological body based on multi-source data and prior geological knowledge [J]. Geological Review, 68(4): 1393-1411.

    Google Scholar

    [19] 雷传扬, 王静, 谢海洋, 等, 2020. 地质大数据建库存量资料收集与整理方法研究[J]. 国土资源科技管理, 37(4): 70-80

    Google Scholar

    Lei C Y, Wang J, Xie H Y, et al. , 2020. Research on the method of the collection and sorting out the stocking data of the construction of geological big database [J]. Scientific and Technological Management of Land and Resources, 37(4): 70-80.

    Google Scholar

    [20] 李康, 徐锡伟, 谭锡斌, 2013. 龙泉山背斜的地壳缩短与隆升——来自河流阶地变形的证据[J]. 地震地质, 35(1): 22-36 doi: 10.3969/j.issn.0253-4967.2013.01.002

    CrossRef Google Scholar

    Li K, Xu X W, Tan X B, 2013. Using deformation terraces to confine the shortening and uplift of the Longquan anticline [J]. Seismology and Geology, 35(1): 22-36. doi: 10.3969/j.issn.0253-4967.2013.01.002

    CrossRef Google Scholar

    [21] 梁斌, 王全伟, 朱兵, 等, 2013. 川西地区成都粘土的光释光年代学[J]. 第四纪研究, 33(4): 823-828 doi: 10.3969/j.issn.1001-7410.2013.04.18

    CrossRef Google Scholar

    Liang B, Wang Q W, Zhu B, et al. , 2013. Optically stimulated luminescence dating of the Chengdu clay in the west Sichuan basin [J]. Quaternary Sciences, 33(4): 823-828. doi: 10.3969/j.issn.1001-7410.2013.04.18

    CrossRef Google Scholar

    [22] 梁斌, 朱兵, 王全伟, 等, 2014. 成都平原第四纪地质与环境[M]. 北京: 科学出版社.

    Google Scholar

    Liang B, Zhu B, Wang Q W, et al., 2014. Quaternary geology and environment of Chengdu plain[M]. Beijing: Science Press.

    Google Scholar

    [23] 刘洪, 黄瀚霄, 欧阳渊, 等, 2020. 基于地质建造的土壤地质调查及应用前景分析——以大凉山区西昌市为例[J]. 沉积与特提斯地质, 40(1): 91-105

    Google Scholar

    Liu H, Huang H Z, Ouyang Y, et al. , 2020. Soil's geologic investigation in Daliangshan, Xichang, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(1): 91-105.

    Google Scholar

    [24] 刘树根, 罗志立, 赵锡奎, 等, 2003. 中国西部盆山系统的耦合关系及其动力学模式——以龙门山造山带—川西前陆盆地系统为例[J]. 地质学报, 77(2): 177-186 doi: 10.3321/j.issn:0001-5717.2003.02.005

    CrossRef Google Scholar

    Liu S G, Luo Z L, Zhao X K, et al. , 2003. Coupling relationships of sedimentary basin-orogenic belt systems and their dynamic models in west China--A case study of the Longmenshan orogenic belt-west Sichuan foreland basin system [J]. Acta Geologica Sinica, 77(2): 177-186. doi: 10.3321/j.issn:0001-5717.2003.02.005

    CrossRef Google Scholar

    [25] 刘兴诗, 1983. 四川盆地的第四系[M]. 成都: 四川科技出版社, 1-20

    Google Scholar

    Liu X S, 1983. Quaternary system in Sichuan basin [M]. Chengdu: Sichuan Science and Technology Press, 1-20.

    Google Scholar

    [26] 柳存喜, 黎莎, 刘冠男, 2021.2020年龙泉山断裂带ms5.1地震成因综合分析[J]. 地震工程学报, 43(2): 306-315+330 doi: 10.3969/j.issn.1000-0844.2021.02.306

    CrossRef Google Scholar

    Liu C X, Li S, Liu G N, 2021. Comprehensive analysis of seismogenesis of the 2020 ms5.1 earthquake on the Longquanshan fault zone, SW China [J]. China Earthquake Engineering Journal, 43(2): 306-315+330. doi: 10.3969/j.issn.1000-0844.2021.02.306

    CrossRef Google Scholar

    [27] 罗丽萍, 朱利东, 向芳, 等, 2008. 成都平原4000aBP以来的孢粉记录与环境变化[J]. 古生物学报, 47(2): 195-202 doi: 10.3969/j.issn.0001-6616.2008.02.006

    CrossRef Google Scholar

    Luo L P, Zhu L D, Xiang F, et al. , 2008. Spore-pollen assemblage and environmental changes of the Chengdu plain during the late Holocene [J]. Acta Palaeontologica Sinica, 47(2): 195-202. doi: 10.3969/j.issn.0001-6616.2008.02.006

    CrossRef Google Scholar

    [28] Maddy D, Bridgland D, Green C P, 2000. Crustal uplift in southern England: Evidence from the river terrace records[J]. Geomorphology, 33(3-4): 167-181. doi: 10.1016/S0169-555X(99)00120-8

    CrossRef Google Scholar

    [29] Maddy D, Demir T, Bridgland D R, et al. , 2008. The Early Pleistocene development of the Gediz River, Western Turkey: An uplift-driven, climate-controlled system? [J]. Quaternary International, (189): 115-128.

    Google Scholar

    [30] 潘保田, 刘小丰, 高红山, 等, 2007. 渭河上游陇西段河流阶地的形成时代及其成因[J]. 自然科学进展, 17(8): 1063-1068 doi: 10.3321/j.issn:1002-008x.2007.08.008

    CrossRef Google Scholar

    Pan B T, Liu X F, Gao H S, et al. , 2007. Formation age and origin of river terraces in Longxi section of the upper reaches of Weihe river [J]. Progress In Natural Science, 17(8): 1063-1068. doi: 10.3321/j.issn:1002-008x.2007.08.008

    CrossRef Google Scholar

    [31] Pan B T, Hu X F, Gao H S, et al. , 2013. Late Quaternary River incision rates and rock uplift pattern of the eastern Qilian Shan Mountain, China[J]. Geomorphology, 184(1): 84-97.

    Google Scholar

    [32] 秦锋, 赵艳, 2013. 基于孢粉组合定量重建古气候的方法在中国的运用及思考[J]. 第四纪研究, 33(6): 1054-1068 doi: 10.3969/j.issn.1001-7410.2013.06.02

    CrossRef Google Scholar

    Qin F, Zhao Y, 2013. Methods of quantitative climate reconstruction based on palynological data and their applications in China [J]. Quaternary Sciences, 33(6): 1054-1068. doi: 10.3969/j.issn.1001-7410.2013.06.02

    CrossRef Google Scholar

    [33] 石宁, 1996. 上新世—早更新世云杉属和冷杉属在华北地区的发展及其气候指示意义[J]. 第四纪研究, 16(4): 319-328 doi: 10.3321/j.issn:1001-7410.1996.04.004

    CrossRef Google Scholar

    Shi N, 1996. Development of spruce and fir in North China during the Pliocene and early Pleistocene: Paleoclimatic implications[J]. Quaternary Sciences, 16(4): 319-328. doi: 10.3321/j.issn:1001-7410.1996.04.004

    CrossRef Google Scholar

    [34] 四川省地质调查院, 2012. 中华人民共和国区域地质调查报告1: 250000成都幅[R].

    Google Scholar

    Sichuan Province Geological Survey, 2012. Regional geological survey report of the people's Republic of China (1: 250000)[R].

    Google Scholar

    [35] Sun X J, Wang B Y, Song C Q, 1996. Pollen-climate response surface analysis of some genus in northern China[J]. Science in China, 26(5): 431-436.

    Google Scholar

    [36] 唐领余, 毛礼米, 吕新苗, 等, 2013. 第四纪沉积物中重要蕨类孢子和微体藻类的古生态环境指示意义[J]. 科学通报, 58(20): 1969-1983 doi: 10.1360/csb2013-58-20-1969

    CrossRef Google Scholar

    Tang L Y, Mao L M, Lü X M, et al. , 2013. Palaeoecological and palaeoenvironmental significance of some important spores and micro-algae in Quaternary deposits [J]. Chinese Science Bulletin, 58(20): 1969-1983. doi: 10.1360/csb2013-58-20-1969

    CrossRef Google Scholar

    [37] Taylor S R and McLennan S M, The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publication, 1985,277.

    Google Scholar

    [38] Tian Y T, Kohn B P, Qiu N S, et al. , 2018. Eocene to Miocene out-of-sequence deformation in the eastern Tibetan Plateau: Insights from shortening structures in the Sichuan Basin[J]. Journal of Geophysical Research-Solid Earth, 123(2): 1840-1855. doi: 10.1002/2017JB015049

    CrossRef Google Scholar

    [39] Wang A, Smith J A, Wang G C, et al. , 2009. Late quaternary river terrace sequences in the eastern Kunlun range, northern Tibet: a combined record of climatic change and surface uplift[J]. Journal of Asian Earth Sciences, 34(4), 532-543.

    Google Scholar

    [40] 王楠, 钟静, 李勇, 等, 2018. 基于孢粉记录的中国西南地区全新世气候变化研究进展[J]. 应用与环境生物学报, 24(5): 1015-1022

    Google Scholar

    Wang N, Zhong J, Li Y, et al. , 2018. Research progress on pollen-inferred Holocene climate histories in southwestern China [J]. Chinese Journal of Applied and Environmental Biology, 24(5): 1015-1022.

    Google Scholar

    [41] 王全伟, 梁斌, 朱兵, 等, 2013. 川西龙泉山西坡更新世泥石流的发现及其意义[J]. 沉积与特提斯地质, 33(1): 1-4 doi: 10.3969/j.issn.1009-3850.2013.01.001

    CrossRef Google Scholar

    Wang Q W, Liang B, Zhu B, et al. , 2013. The discovery and significance of the Pleistocene debris flow deposits on the western slope of the Longquan mountains in western Sichuan [J]. Sedimentary Geology and Tethyan Geology, 33(1): 1-4. doi: 10.3969/j.issn.1009-3850.2013.01.001

    CrossRef Google Scholar

    [42] 王羽珂, 陈浩, 冯兴雷, 等, 2019. 成都平原东郊台地中更新统合江组沉积特征及工程地质意义[J]. 沉积与特提斯地质, 39(3): 33-39 doi: 10.3969/j.issn.1009-3850.2019.03.004

    CrossRef Google Scholar

    Wang Y K, Chen H, Feng X L, et al. , 2019. Sedimentary characteristics and engineering geological significance of the middle Pleistocene Hejiang Formation in the eastern suburb platform on the Chengdu Plain, Sichuan [J]. Sedimentary Geology and Tethyan Geology, 39(3): 33-39. doi: 10.3969/j.issn.1009-3850.2019.03.004

    CrossRef Google Scholar

    [43] 魏全伟, 谭利华, 王随继, 2006. 河流阶地的形成、演变及环境效应[J]. 地理科学进展, 25(3): 55-61 doi: 10.3969/j.issn.1007-6301.2006.03.007

    CrossRef Google Scholar

    Wei Q W, Tan L H, Wang S J, 2006. Formation and evolution of river terrace and environment responses [J]. Progress in Geography, 25(3): 55-61. doi: 10.3969/j.issn.1007-6301.2006.03.007

    CrossRef Google Scholar

    [44] Westaway R, 2009. Active crustal deformation beyond the SE margin of the Tibetan Plateau: Constraints from the evolution of fluvial systems[J]. Global and Planetary Change, 68(4): 395-417. doi: 10.1016/j.gloplacha.2009.03.008

    CrossRef Google Scholar

    [45] Westaway R, Bridgland D R, Sinha R, et al. , 2009. Fluvial sequences as evidence for landscape and climatic evolution in the Late Cenozoic: A synthesis of data from IGCP 518[J]. Global and Planetary Change, 68(4), 237-253.

    Google Scholar

    [46] 吴环环, 吴学文, 李玥, 等, 2019. 黄河共和—贵德段河流阶地对青藏高原东北缘晚期隆升的指示[J]. 地质学报, 93(12): 3239-3248 doi: 10.3969/j.issn.0001-5717.2019.12.015

    CrossRef Google Scholar

    Wu H H, Wu X W, Li Y, et al. , 2019. River terraces in the Gonghe-Guide section of the Yellow River: Implications for the late uplift of the northeastern margin of the Qinghai-Tibet plateau[J]. Acta Geologica Sinica, 93(12): 3239-3248. doi: 10.3969/j.issn.0001-5717.2019.12.015

    CrossRef Google Scholar

    [47] Xu X W, Wen X Z, Yu G H, et al. , 2009. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7. 9 Wenchuan earthquake, China[J]. Geology, 37(6), 515-518.

    Google Scholar

    [48] 徐崇凯, 刘池洋, 郭佩, 等, 2018. 潜江凹陷古近系潜江组盐间泥岩地球化学特征及地质意义[J]. 沉积学报, 36(3): 617-629

    Google Scholar

    Xu C K, Liu C Y, Guo P, et al. , 2018. Geochemical characteristics and their geological significance of intrasalt mudstones from the Paleogene Qianjiang formation in the Qianjiang gra-ben, Jianghan basin, China [J]. Acta Sedimentologica Sinica, 36(3): 617-629.

    Google Scholar

    [49] 杨景春, 李有利, 2001. 地貌学原理[M]. 北京: 北京大学出版社, 47-58

    Google Scholar

    Yang J C, Li Y L, 2001. Principles of geomorphology [M]. Beijing: Peking University Press, 47-58.

    Google Scholar

    [50] 姚轶锋, 李奎, 刘建, 等, 2005. 成都金沙遗址距今3000年的古气候探讨[J]. 古地理学报, 7(4): 549-560 doi: 10.3969/j.issn.1671-1505.2005.04.013

    CrossRef Google Scholar

    Yao Y F, Li K, Liu J, et al. , 2005. Discussion on palaeoclimate of Jinsha site in Chengdu in 3000 a BP [J]. Journal of Palaeogeography, 7(4): 549-560. doi: 10.3969/j.issn.1671-1505.2005.04.013

    CrossRef Google Scholar

    [51] 应立朝, 梁斌, 王全伟, 等, 2012a. 川西平原中更新世网纹红土主量元素地球化学特征[J]. 高校地质学报, 18(4): 759-764

    Google Scholar

    Ying L C, Liang B, Wang Q W, et al. , 2012a. Major elements characters of the middle Pleistocene vermicular red clay from the western Sichuan plain [J]. Geological Journal of China Universities, 18(4): 759-764.

    Google Scholar

    [52] 应立朝, 梁斌, 王全伟, 等, 2012b. 成都平原区成都粘土的粒度特征及其成因意义[J]. 沉积与特提斯地质, 32(1): 72-77

    Google Scholar

    Ying L C, Liang B, Wang Q W, et al. , 2012b. Grain size analysis and origin of the Chengdu clay from the Chengdu plain, Sichuan [J]. Sedimentary Geology and Tethyan Geology, 32(1): 72-77.

    Google Scholar

    [53] 应立朝, 梁斌, 王全伟, 等, 2013. 成都粘土地球化学特征及其对物源和风化强度的指示[J]. 中国地质, 40(5): 1666-1674 doi: 10.3969/j.issn.1000-3657.2013.05.029

    CrossRef Google Scholar

    Ying L C, Liang B, Wang Q W, et al. , 2013. Geochemical characteristics of Chengdu clay and their implications for provenance and weathering intensity [J]. Geology in China, 40(5): 1666-1674. doi: 10.3969/j.issn.1000-3657.2013.05.029

    CrossRef Google Scholar

    [54] 袁庆东, 郭召杰, 张志诚, 等, 2006. 天山北缘河流阶地形成及构造变形定量分析[J]. 地质学报, 80(2): 210-216 doi: 10.3321/j.issn:0001-5717.2006.02.005

    CrossRef Google Scholar

    Yuan Q D, Guo Z J, Zhang Z C, et al. , 2006. The late Cenozoic deformation of terraces on the north flank of Tianshan Mt. and the tectonic evolution [J]. Acta Geologica Sinica, 80(2): 210-216. doi: 10.3321/j.issn:0001-5717.2006.02.005

    CrossRef Google Scholar

    [55] 张家声, 李燕, 韩竹均, 2003. 青藏高原向东挤出的变形响应及南北地震带构造组成[J]. 地学前缘, (S1): 168-175

    Google Scholar

    Zhang J S, Li Y, Han Z J, 2003. Deformation responses to eastward escaping of the Qinghai-Tibet plateau and tectonics of the South- North seismic zones in China [J]. Earth Science Frontiers, (S1): 168-175.

    Google Scholar

    [56] 张蕾, 张绪教, 武法东, 等, 2013. 太行山南缘晚更新世以来河流阶地的发育及其新构造运动意义[J]. 现代地质, 27(4): 791-798 doi: 10.3969/j.issn.1000-8527.2013.04.005

    CrossRef Google Scholar

    Zhang L, Zhang X J, Wu F D, et al. , 2013. River terraces' development and significance of neotectonic movement on the southern margin of Taihang mountains since late Pleistocene [J]. Geoscience, 27(4): 791-798. doi: 10.3969/j.issn.1000-8527.2013.04.005

    CrossRef Google Scholar

    [57] 张天琪, 吕红华, 赵俊香, 等, 2014. 河流阶地演化与构造抬升速率——以天山北麓晚第四纪河流作用为例[J]. 第四纪研究, 34(2): 281-291 doi: 10.3969/j.issn.1001-7410.2014.02.02

    CrossRef Google Scholar

    Zhang T Q, Lü H H, Zhao J X, et al. , 2014. Fluvial terrace formation and tectonic uplift rate——A case study of late Quaternary fluvial process in the north piedmont of the Tianshan, northwestern China [J]. Quaternary Sciences, 34(2): 281-291. doi: 10.3969/j.issn.1001-7410.2014.02.02

    CrossRef Google Scholar

    [58] 张威, 周荣军, 何玉林, 等, 2020. 龙泉山西麓山前断裂浅部构造特征及活动性[J]. 大地测量与地球动力学, 40(9): 942-946

    Google Scholar

    Zhang W, Zhou R J, He Y L, et al. , 2020. Characteristic of shallow structure and fault activity in western piedmont of Longquanshan [J]. Journal of Geodesy and Geodynamics, 40(9): 942-946.

    Google Scholar

    [59] 赵辰辰, 王永波, 胥勤勉, 2020.2. 5 Ma以来中国陆地孢粉记录反映的古气候变化[J]. 海洋地质与第四纪地质, 40(4): 175-191

    Google Scholar

    Zhao C C, Wang Y B, Xu Q M, 2020. Climate changes on Chinese continent since 2.5 Ma: Evidence from fossil pollen records [J]. Marine Geology and Quaternary Geology, 40(4): 175-191.

    Google Scholar

    [60] 赵志中, 乔彦松, 王燕, 等, 2007. 成都平原红土堆积的磁性地层学及古环境记录[J]. 中国科学(D辑: 地球科学), 37(3): 370-377

    Google Scholar

    Zhao Z Z, Qiao Y S, Wang Y, et al. , 2007. The magnetic stratigraphy and paleo-environment of red soil accumulation in Chengdu plain [J]. Science in China (Series D), 37(3): 370-377.

    Google Scholar

    [61] 钟宁, 2017. 岷江上游晚更新世湖相沉积的古地震及物源分析[D]. 中国地震局地质研究所.

    Google Scholar

    Zhong N, 2017. Earthquake and provenance analysis of the lacustrine sediments in the upper reaches of the Min River during the late Pleistocene[D]. Institute of Geology, China Earthquake Administration.

    Google Scholar

    [62] 周晓梅, 刘宝健, 介冬梅, 2020. 基于孢粉植物类群气候区间的全新世东北地区气候变化[J]. 吉林师范大学学报(自然科学版), 41(2): 104-110

    Google Scholar

    Zhou X M, Liu B J, Jie D M, 2020. Climate change in northeast China of Holocene based on climate interval of palynological flora [J]. Jilin Normal University Journal (Natural Science Edition), 41(2): 104-110.

    Google Scholar

    [63] 朱宏博, 向芳, 王金元, 等, 2019. 三峡及邻区第四纪沉积物地球化学特征及其对古气候的指示[J]. 成都理工大学学报(自然科学版), 46(6): 746-753

    Google Scholar

    Zhu H B, Xiang F, Wang J Y, et al. , 2019. The geochemical characteristics of sediments in the Three Gorges of Yangtze River and its adjacent areas: Implication for Quaternary paleoclimate [J]. Journal of Chengdu University of Technology (Science and Technology Edition), 46(6): 746-753.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(1308) PDF downloads(407) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint