2022 Vol. 42, No. 4
Article Contents

REN Junping, GU Alei, WANG Jie, SUN Hongwei, ZUO Libo, SUN Kai, XU Kangkang, CHIPILAUKA Mukofu, EVARISTO Kasumba, DANIEL Malunga, DU Minglong, XING Shi, LIU Zijiang, ZHANG Jinrui, DONG Jinmeng. 2022. Detrital zircon U-Pb ages and Hf isotopic characteristics of the Mbala Formation in the northeast Bangweulu Metacraton, Zambia. Sedimentary Geology and Tethyan Geology, 42(4): 585-597. doi: 10.19826/j.cnki.1009-3850.2022.06007
Citation: REN Junping, GU Alei, WANG Jie, SUN Hongwei, ZUO Libo, SUN Kai, XU Kangkang, CHIPILAUKA Mukofu, EVARISTO Kasumba, DANIEL Malunga, DU Minglong, XING Shi, LIU Zijiang, ZHANG Jinrui, DONG Jinmeng. 2022. Detrital zircon U-Pb ages and Hf isotopic characteristics of the Mbala Formation in the northeast Bangweulu Metacraton, Zambia. Sedimentary Geology and Tethyan Geology, 42(4): 585-597. doi: 10.19826/j.cnki.1009-3850.2022.06007

Detrital zircon U-Pb ages and Hf isotopic characteristics of the Mbala Formation in the northeast Bangweulu Metacraton, Zambia

  • The activity time and crustal growth of Bangweulu Metacraton have always been the focus of geologists. This paper studied the detrital zircon U-Pb ages and Hf isotopic characteristics of quartz sandstone from the Mbala Formation in Kapatu area. Based on the previous results of Bangweulu Metacraton, the paper has obtained the following understanding: (1) The Mbala Formation might formed between (1833±22 Ma) and (1712±22 Ma), belonging to the Paleoproterozoic. (2) The Mbala Formation is rich in material sources, among which the material of 2728 ~ 2602 Ma (peak age is 2650 Ma) may be derived from granitoids, trachyandesite, rhyolite and other rocks in Tanzania Craton. The material of 2246~1833 Ma (peak age is 1880 Ma) is mainly derived from granitoids, quartz diorite, volcanic rocks and other rocks in the Bangweulu Block. (3) The activity time of the Bangweulu Metacraton includes Middle Archean, Neoarchean, Paleoproterozoic and Mesoproterozoic. The Paleoproterozoic (1870 Ma) was the peak of the activity, which may be closely related to the evolution of the Columbia Supercontinent. (4) In addition to the recycled materials from the ancient crust, the crust accretion in the source area of the Bangweulu Metacraton sedimentary rocks also contains new crust materials. The crust has achieved growth from Paleoarchean to Paleoproterozoic, with the fastest growth in Kenorland Supercontinent convergence (Neoarchean 2550 Ma). Before Paleoproterozoic, the main growth period of the Bangweulu Metacraton is basically the same as the Tanzania Craton and the global continental crust.
  • 加载中
  • Abdelsalam M, Liégeois J P, Stern R J, 2002. The Saharan metacraton[J]. Journal of African Earth Sciences, 34(3-4):119-136.

    Google Scholar

    Ackermann E, 1950. Ein neuer Faltengürtel in Nordrhodesien und seine tektonische Stellung im afrikanischen Grundgebirge[J]. Geologische Rundschau, 38(1):24-39..

    Google Scholar

    Amelin Y, Lee D C, Halliday A N, et al., 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 399:252-255.

    Google Scholar

    Andersen L S, Unrug R, 1984. Geodynamic evolution of the Bangweulu Block, northern Zambia[J]. Precambrian Research, 25(1):187-212.

    Google Scholar

    Andrews-Speed C P, 1986. Gold-bearing fluvial and associated tidalmarine sediments of Proterozoic age in the Mporokoso Basin, northern Zambia[J]. Sediment Geology, 48(3-4):193-222.

    Google Scholar

    Andrews-Speed C P, 1989. The Mid-Proterozoic Mporokoso basin, northern Zambia:sequence stratigraphy, tectonic setting and potentialfor gold and uranium mineralisation[J]. Precambrian Research, 44(1):1-17.

    Google Scholar

    Armstrong R A, Master S, Robb L J, 2005. Geochronology of the Nchanga Granite, and constraints on the maximum age of the Katanga Supergroup, Zambian Copper belt[J]. Journal of African Earth Sciences, 42(1):32-40.

    Google Scholar

    Black R, Liégeois J P, 1993. Cratons, mobile belts, alkaline rocks and continental lithospheric mantle:the Pan-African testimony[J]. Journal of the Geological Society of London, 150(1):89-98.

    Google Scholar

    Blichert-Toft J, Albarède F, 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 148(1-2):243-258.

    Google Scholar

    Boven A, Theunissen K, Sklyarov E., et al., 1999. Timing of exhumation of a high-pressure mafic granulite terrane of the Paleoproterozoic Ubende belt(West Tanzania)[J]. Precambrian Research, 93(1):119-137.

    Google Scholar

    Cailteux J L H, Binda P L, Katekesha W M, et al., 1994. Lithostratigraphical correlation of the Neoproterozoic Roan Supergroup from Shaba(Zaire) and Zambia, in the Central African copper-cobalt metallogenic province[J]. Journal of African Earth Sciences, 19(4):265-278.

    Google Scholar

    Cailteux J L H, De Putter T, 2019. The Neoproterozoic Katanga Supergroup(D. R. Congo):State-of-the-art and revisions of the lithostratigraphy, sedimentary basin and geodynamic evolution[J]. Journal of African Earth Sciences, 150:522-531.

    Google Scholar

    Cailteux J L H, Kampunzu A B, Lerouge C, 2007. The Neoproterozoic Mwashva-Kansuki sedimentary rock succession in the central African Copperbelt, its Cu-Co mineralisation, and regional correlations[J]. Gondwana Research, 11(3):414-431.

    Google Scholar

    Cailteux J L H, Kampunzu A B, Lerouge C, et al., 2005. Genesis of sediment-hosted stratiform copper-cobalt deposits, central African copper belts[J]. Journal of African Earth Sciences, 42(1/5):134-158.

    Google Scholar

    Condie K C, 1998. Episodic continental growth and supercontinents:a mantle avalanche connection?[J]. Earth and Planetary Science Letters, 163(1-4):97-108.

    Google Scholar

    Cosi M, De Bonis A, Gosso G, et al., 1992. Late Proterozoic thrust tectonics, high-pressure metamorphism and uranium mineralization in the Domes area, Lufilian Arc, northwestern Zambia[J]. Precambrian Research, 58(1-4):215-240.

    Google Scholar

    Daly M C, Chakraborty S K, Kasolo P., et al., 1984. The Lufilian arc and Irumide belt of Zambia:results of a geotraverse across their intersection[J]. Journal of African Earth Sciences, 2(4):311-318.

    Google Scholar

    Daly M C, Unrug R, 1982. The Muva Supergroup, Northern Zambia[J]. Transactions of the Geological Society of Africa, 85(3):155-165.

    Google Scholar

    De Swardt A M J, Garrard P, Simpson J G, 1965. Major zones of transcurrent dislocation and superposition of orogenic belts in parts of central Africa[J]. Bulletin Geological Society of America, 76(1):89-102.

    Google Scholar

    De Waele B, Johnson S P, Nkemba S,et al., 2005. High-temperature, low-pressure tectono-thermal evolution of the Irumide Belt, central, Southern Africa: Lithosphere delamination during arc-accretion[J]. Frontier Research on Earth Evolution Report, 2004(2):1-9.

    Google Scholar

    De Waele B, Fitzsimons I C W, 2007. The nature and timing of Palaeoproterozoic sedimentation at the southeastern margin of the Congo Craton:zircon U-Pb geochronology of plutonic, volcanic and clastic units in northern Zambia[J]. Precambrian Research, 159:95-116.

    Google Scholar

    De Waele B, Fitzsimons I C W, Wingate M T D, et al., 2009. The geochronological framework of the Irumide Belt:A prolonged crustal history along the margin of the Bangweulu Craton[J]. American Journal of Science, 309:132-187

    Google Scholar

    De Waele B, Liégeois J P, Nemchin A A, et al., 2006a. Isotopic and geochemical evidence of proterozoic episodic crustal reworking within the Irumide e belt of south-central Africa, the southern metacratonic boundary of an Archaean Bangweulu Craton[J]. Precambrian Research, 148, 225-256.

    Google Scholar

    De Waele B, Kampunzu A B, Mapani B S E, et al., 2006b. The Mesoproterozoic Irumide belt of Zambia[J]. Journal of African Earth Sciences, 46:36-70.

    Google Scholar

    De Waele B, Wingate M T D, Mapani B, et al., 2003b. Untying the Kibaran knot:a reassessment of Mesoproterozoic correlations in southern Africa based on SHRIMP U-Pb data from the Irumide belt[J]. Geology, 31(6):509-512.

    Google Scholar

    Drysdall A R, Johnson R L, Moore T A, et al., 1972. Outline of the geology of Zambia[J]. Geol. Mijnbouw, 51:265-276.

    Google Scholar

    Geng J Z, Qiu K F, Gou Z Y, et al., 2017. Tectonic regime switchover of Triassic Western Qinling Orogen:Constraints from LA-ICP-MS zircon U-Pb geochronology and Lu-Hf isotope of Dangchuan intrusive complex in Gansu, China[J]. Geochemistry, 77(4):637-651.

    Google Scholar

    Hoskin P W O, Black L P, 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 18(4):423-439.

    Google Scholar

    John T, Schenk V, Mezger K, et al., 2004. Timing and PT Evolution of Whiteschist Metamorphism in the Lufilian Arc-Zambezi Belt Orogen(Zambia):Implications for the Assembly of Gondwana[J]. The Journal of Geology, 112(1):71-90.

    Google Scholar

    Kampunzu A B, Cailteux J L H, Kamona A F, et al., 2009. Sediment-hosted Zn-Pb-Cu deposits in the Central African Copperbelt[J]. Ore Geology Reviews, 35(3-4):263-297.

    Google Scholar

    Kampunzu A B, Cailteux J, 1999. Tectonic evolution of the Lufilian Arc(central African copper belt) during Neoproterozoic Pan African orogenesis[J]. Gondwana Research, 2(3):401-421.

    Google Scholar

    Key R M, Liyungu A K, Njamu F M, et al., 2001. The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization[J]. Journal of African Earth Sciences, 33(3-4):503-528.

    Google Scholar

    Kröner A., 1977. The Precambrian geotectonic evolution of Africa:plate accretion versus plate destruction[J]. Precambrian Research, 4(2):163-213.

    Google Scholar

    Lenoir J L, Liégeois J P, Theunissen K, et al., 1994. The Palaeoproterozoic Ubendian shear belt in Tanzania:geochronology and structure[J]. Journal of African Earth Sciences, 19:169-184.

    Google Scholar

    Li H K, Zhang C L, Yao C Y, et al., 2013. U-Pb zircon age and Hf isotope compositions of Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif[J]. Science China: Earth Sciences, 56(4):628-639.

    Google Scholar

    Liu Y S, Gao S, Hu Z C, et al., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2):537-571.

    Google Scholar

    Mapani B S E, 1992. Stratigraphy and correlation of the Serenje and adjoining areas[J]. Zambian Journal of Applied Earth Sciences, 6(1):1-8.

    Google Scholar

    Master S, Rainaud C, Armstrong R A, et al., 2005. Provenance ages of the Neoproterozoic Katanga Supergroup(Central African Copperbelt), with implications for basin evolution[J]. Journal of African Earth Sciences, 42(1):41-60.

    Google Scholar

    Mc Gowan R R, Roberts S, Boyce A J, 2006. Origin of the Nchanga copper-cobalt deposits of the Zambian Copperbelt[J]. Mineralium Deposita, 40(6-7):617-638.

    Google Scholar

    Muchez P, Brems D, Clara E, et al., 2010. Evolution of Cu-Co mineralizing fluids at Nkana Mine, Central African Copperbelt, Zambia[J]. Journal of African Earth Sciences, 58:457-474.

    Google Scholar

    Pehrsson S J, Berman R G, Eglington B, et al., 2013. Two Neoarchean supercontinents revisited: The case for a Rae family of cratons[J]. Precambrian Research, 232:27-48.

    Google Scholar

    Pinna P, Cocherie A, Thieblemont D, et al., 1999. The Archaean evolution of the Tanzanian Craton(2.93- 2.53 Ga)[J]. Journal of African Earth Sciences, 28(4):62-63.

    Google Scholar

    Rainaud C, Master S, Armstrong R A, et al., 2003. A cryptic Mesoarchaean terrane in the basement to the central African Copperbelt[J]. Journal of the Geological Society, 160(1):11-14.

    Google Scholar

    Rainaud C, Master S, Armstrong R A, et al., 2005. Geochronology and nature of the Palaeoproterozoic basement in the Central African Copperbelt(Zambia and the Democratic Republic of Congo), with regional implications[J]. Journal of African Earth Sciences, 42(1-5):1-31.

    Google Scholar

    Ren J P, Wang J, Gu A L, et al., 2022. Study on gold enrichment characteristics in Zambia: Based on 1∶1000000 geochemical mapping[J].China Geology, 5(1):60-70.

    Google Scholar

    Ren J P, Wang J, Zuo L B, et al., 2017. Zircon U-Pb and biotite 40Ar/39Ar geochronology from the Anzan emerald deposit in Zambia[J]. Ore Geology Reviews, 91:612-619.

    Google Scholar

    Ren J P, Wang J, Zuo L, et al., 2020. Enrichment characteristics of Cu and Co displayed by low-density geochemical mapping in Zambia[J]. Journal of Geochemical Exploration, 219(2):106634, doi.org/10.1016/j.gexplo.2020.106634.

    Google Scholar

    Sanislav I V, Wormald R J, Dirks P H G M, et al., 2014. Zircon U-Pb ages and Lu-Hf isotope systematics from late-tectonic granites, Geita Greenstone Belt:Implications for crustal growth of the Tanzania Craton[J]. Precambrian Research, 242:187-204.

    Google Scholar

    Schandelmeier H, 1981. The Precambrian of NE-Zambia in relation to the dated Kate, Mambwe and Luchewe intrusives[J]. Geologische Rundschau, 70(3):956-971.

    Google Scholar

    Unrug R, 1984. The Mid-Proterozoic Mporokoso Group of northern Zambia:stratigraphy, sedimentation and regional position[J]. Precambrian Research, 24(2):99-121.

    Google Scholar

    Wendorff M, 2005. Evolution of Neoproterozoic-Lower Palaeozoic Lufilian arc, Central Africa:a new model based on syntectonic conglomerates[J]. Journal of the Geological Society, 162(1):5-8.

    Google Scholar

    Yang D B, Xu W L, Xu Y G, et al., 2013. Provenance of sediments from Mesozoic basins in western Shandong: Implications for the evolution of the North China Block[J]. Journal of Asian Earth Sciences, 76(2):12-29.

    Google Scholar

    第五春荣,2021.华北克拉通南部太古宙大陆地壳的生长和演化[J].岩石学报,37(2):317-340.

    Google Scholar

    杜明龙,纪山青,任军平,等,2021.赞比亚伊索卡南部Kachinga长石砂岩碎屑锆石U-Pb年龄、地球化学特征及地质意义[J].地质学报,95(4):1050-1071.

    Google Scholar

    耿建珍,李怀坤,张健,等,2011.锆石Hf同位素组成的LA-MC-ICP-MS测定[J].地质通报,30(10):1508-1513.

    Google Scholar

    古阿雷,王杰,任军平,等,2021.赞比亚北部卡帕图地区古元古代花岗岩成因:岩石地球化学、锆石年代学及Hf同位素约束[J].地质学报,95(4):999-1018.

    Google Scholar

    刘晓阳,王杰,任军平,等,2017.赞比亚谦比西铜矿花岗岩年龄及其指示意义[J].中国地质,44(4):755-765.

    Google Scholar

    陆松年,陈志宏,相振群,等,2006.秦岭岩群副变质岩碎屑锆石年龄谱及其地质意义探讨[J].地学前缘,13(6):303-310.

    Google Scholar

    任军平,胡鹏,王杰,等,2021a.非洲矿业发展概况[J].地质学报,95(4):945-961.

    Google Scholar

    任军平,王杰,古阿雷,等,2017a.赞比亚卢弗里安弧地区矿产资源研究现状及找矿潜力分析[J].中国矿业,26(11):139-144.

    Google Scholar

    任军平,王杰,古阿雷,等,2018a.赞比亚东北部卡萨马—陇都地区碎屑锆石裂变径迹年代学特征[J].原子能科学技术,52(12):2275-2282.

    Google Scholar

    任军平,王杰,古阿雷,等,2019b.赞比亚东北部正长花岗岩的锆石U-Pb年龄和Lu-Hf同位素特征[J].地质调查与研究,42(3):161-165.

    Google Scholar

    任军平,王杰,古阿雷,等,2021b.赞比亚东北部班韦乌卢地块泛非期以来构造演化的裂变径迹约束[J].地质学报,95(4):1072-1081.

    Google Scholar

    任军平,王杰,刘晓阳,等,2013.非洲中南部卢弗里安弧Cu-Co矿床研究进展[J].地质科技情报,32(5):142-152.

    Google Scholar

    任军平,王杰,刘晓阳,等,2017b.非洲中南部铜多金属矿床研究现状及找矿潜力分析[J].吉林大学学报(地球科学版),47(4):1083-1103.

    Google Scholar

    任军平,王杰,孙宏伟,等,2019a.赞比亚东北部卡萨马群形成环境:碎屑锆石U-Pb年龄与Hf同位素的限定[J].中国地质,46(3):575-586.

    Google Scholar

    任军平,王杰,张东红,等,2018b.赞比亚卢弗里安弧构造带再活化的证据:锆石和磷灰石裂变径迹年代学[J].地球科学,43(6):1850-1860.

    Google Scholar

    任军平,王杰,左立波,等,2019c.赞比亚北部省卡萨马西部石英闪长岩锆石U-Pb和Lu-Hf同位素及地球化学特征[J].地质学报,93(11):2832-2846.

    Google Scholar

    任军平,左立波,许康康,等,2016.赞比亚北部班韦乌卢地块演化及矿产资源研究现状[J].地质论评,62(4):979-996.

    Google Scholar

    孙宏伟,王杰,任军平,等,2021.班韦乌卢地块中部变质表壳岩碎屑锆石U-Pb年代学、Hf同位素研究及其构造意义[J].地质学报,95(4):1245-1259.

    Google Scholar

    万渝生,董春艳,颉颃强,等,2015.华北克拉通太古宙研究若干进展[J].地球学报,36(6):685-700.

    Google Scholar

    吴福元,李献华,郑永飞,等,2007.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,23(2):185-220.

    Google Scholar

    邢仕,纪山青,王杰,等,2021.赞比亚东北部卡布韦卢马组碎屑锆石U-Pb年代学和Hf同位素特征[J].地质学报,95(4):1191-1211.

    Google Scholar

    许康康,孙凯,何胜飞,等,2021.赞比亚西北省Solwezi地区石榴云母片岩的碎屑锆石U-Pb年龄及其地质意义[J].华北地质,44(3):1-3.

    Google Scholar

    左立波,任军平,邱亮,等,2021.赞比亚伊索卡东部片麻岩锆石U-Pb年代学、地球化学特征及岩石成因[J].地质学报,95(4):1144-1158.

    Google Scholar

    左立波,任军平,王杰,等,2020.赞比亚班韦乌卢地块花岗岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J].地质调查与研究,43(1):30-41.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1492) PDF downloads(117) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint