2022 Vol. 42, No. 4
Article Contents

LI Yuan, SUN Yuanyuan, DENG Guoshi, YUAN Feng, LIU Jun. 2022. Reconstruction of C4 plant content in Cenozoic lacustrine sediments: An example from the Dahonggou section, Qaidam Basin. Sedimentary Geology and Tethyan Geology, 42(4): 572-584. doi: 10.19826/j.cnki.1009-3850.2022.04019
Citation: LI Yuan, SUN Yuanyuan, DENG Guoshi, YUAN Feng, LIU Jun. 2022. Reconstruction of C4 plant content in Cenozoic lacustrine sediments: An example from the Dahonggou section, Qaidam Basin. Sedimentary Geology and Tethyan Geology, 42(4): 572-584. doi: 10.19826/j.cnki.1009-3850.2022.04019

Reconstruction of C4 plant content in Cenozoic lacustrine sediments: An example from the Dahonggou section, Qaidam Basin

More Information
  • Corresponding author: SUN Yuanyuan  
  • Global climate change has posed serious effect on the vegetation of our ecosystem. In order to understand the response of plant ecosystems to environmental and climate changes, we need to learn well from the earth’s past. C4 plants play a pivotal role in the modern ecosystems. Previous studies have shown that C4 plants originated prior to the Eocene-Oligocene transition, but the expansion of C4 grasses had not happened until the Middle to Late Miocene. What caused the origin and expansion of C4 plants is important in understanding the ecosystem evolution. The current method for estimating C4 contribution is mainly based on the differences in C3/C4 plant carbon isotopes and their structures. The commonly used samples include (paleo-) soil organic matters, pedogenic carbonates, terrestrial herbivore tissues, biomarkers, pollen and phytolith. The application of isotopic difference in these different samples has played an important role in the reconstruction of the relative biomass of C4 plants in modern ecosystems and geological records. This article summarizes the mainstream views related to the driving forces that triggered the origin and expansion of C4 plants, and briefly introduces the basic principles of various materials archiving the biomass of C4 plants evolution history. Finally, taking the Dahonggou section in the Cenozoic Qaidam Basin as an example, the methods and shortcomings of the reconstruction of C4 plant content in lacustrine sediments are discussed in detail based on the long-chain n-alkanes and carbon isotope analysis of Cenozoic terrestrial higher plants. The δ13Calk values of long-chain alkanes vary from~-30‰ to~-26‰, and the δ13Calk values are positive. We believe that the double superposition effect of drought and C4 plant expansion leads to the positive excursions of δ13Calk values. The expansion of C4 vegetation in the Cenozoic Qaidam Basin may be controlled by dry and wet conditions and climate change. But this hypothesis needs to be tested by carbon isotope analysis from single pollen grains.
  • 加载中
  • Aichner B, Herzschuh U, Wilkes H, 2010. Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Xizang Plateau[J]. Organic Geochemistry, 41(7): 706-718.

    Google Scholar

    Basu S, Agrawal S, Sanyal P, et al., 2015. Carbon isotopic ratios of modern C3-C4 plants from the Gangetic Plain, India and its implications to paleovegetational reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 22-32.

    Google Scholar

    Beerling D J, Royer D L, 2011. Convergent Cenozoic CO2 history[J]. Nature Geoscience, 4(7): 418-420.

    Google Scholar

    Bi X H, Sheng G Y, Liu X H, et al., 2005. Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes[J]. Organic Geochemistry, 36(10): 1405-1417.

    Google Scholar

    Biasatti D, Wang Y, Gao F, et al., 2012. Paleoecologies and paleoclimates of late Cenozoic mammals from Southwest China: Evidence from stable carbon and oxygen isotopes[J]. Journal of Asian Earth Sciences, 44: 48-61.

    Google Scholar

    Bouchenak-Khelladi Y, Verboom G, Hodkinson T, et al., 2009. The origins and diversification of C4 grasses and savanna‐adapted ungulates[J]. Global Change Biology, 15(10): 2397-2417.

    Google Scholar

    Boutton T W, Archer S R, Midwood A J, et al., 1998. δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem[J]. Geoderma, 82(1-3): 5-41.

    Google Scholar

    Bowman C N, Wang Y, Wang X M, et al., 2017. Pieces of the puzzle: Lack of significant C4 in the late Miocene of southern California[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 475: 70-79.

    Google Scholar

    Castañeda I S, Mulitza S, Schefuẞ E, et al., 2009. Wet phases in the Sahara/Sahel region and human migration patterns in North Africa[J]. Proceedings of the National Academy of Sciences, 106(48): 20159-20163.

    Google Scholar

    Cerling T E, 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 71(2): 229-240.

    Google Scholar

    Cerling T E, Quade J, Wang Y, et al., 1989. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators[J]. Nature, 341(6238): 138-139.

    Google Scholar

    Cerling T E, Quade J, 1993a. Stable Carbon and Oxygen Isotopes in Soil Carbonates[M]. American Geophysical Union (AGU).

    Google Scholar

    Cerling T E, Wang Y, Quade J, 1993b. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene[J]. Nature, 361(6410): 344-345.

    Google Scholar

    Cerling T E, Harris J M, MacFadden B J, et al., 1997. Global vegetation change through the Miocene/Pliocene boundary[J]. Nature, 389(6647): 153-158.

    Google Scholar

    Cerling T E, Harris J M, 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies[J]. Oecologia, 120(3): 347-363.

    Google Scholar

    Cerling T E, Chritz K L, Jablonski N G, et al., 2013a. Diet of Theropithecus from 4 to 1 Ma in Kenya[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(26): 10507-10512.

    Google Scholar

    Cerling T E, Manthi F K, Mbua E N, et al., 2013b. Stable isotope-based diet reconstructions of Turkana Basin hominins[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(26): 10501-10506.

    Google Scholar

    Chikaraishi Y, Naraoka H, 2003. Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants[J]. Phytochemistry, 63(3): 361-371.

    Google Scholar

    Christin P-A,Besnard G, Samaritani E, et al., 2008. Oligocene CO2 Decline Promoted C4 Photosynthesis in Grasses[J]. Current Biology, 18(1): 37-43.

    Google Scholar

    Christin P-A, Boxall S F, Gregory R, et al., 2013a. Parallel recruitment of multiple genes into C4photosynthesis[J]. Genome biology and evolution, 5(11): 2174-2187.

    Google Scholar

    Christin P-A, Osborne C P,Chatelet D S, et al., 2013b. Anatomical enablers and the evolution of C4 photosynthesis in grasses[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(4): 1381-1386.

    Google Scholar

    Collatz G J, Berry J A, Clark J S, 1998. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future[J]. Oecologia, 114(4): 441-454.

    Google Scholar

    Collister J W, Rieley G, Stern B, et al., 1994. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms[J]. Organic Geochemistry, 21(6): 619-627.

    Google Scholar

    Cotton J M,Cerling T E, Hoppe K A, et al., 2016. Climate, CO2, and the history of North American grasses since the Last Glacial Maximum[J]. Science Advances, 2(3): e1501346.

    Google Scholar

    Covshoff S, Hibberd J M, 2012. Integrating C4 photosynthesis into C3 crops to increase yield potential[J]. Current Opinion in Biotechnology, 23(2): 209-214.

    Google Scholar

    Cramer B S,Toggweiler J R, Wright J D, et al., 2009. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation[J]. Paleoceanography, 24(4): PA4216.

    Google Scholar

    De Boer B,Bintanja R, Lourens L, et al., 2010. Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records[J]. Annals of Glaciology, 51(55): 23-33.

    Google Scholar

    Diefendorf A F, Mueller K E, Wing S L, et al., 2010. Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences, 107(13): 5738-5743.

    Google Scholar

    Duan Y, He J X, 2011. Distribution and isotopic composition of n-alkanes from grass, reed and tree leaves along a latitudinal gradient in China[J]. Geochemical journal, 45(3): 199-207.

    Google Scholar

    Edwards E J, Osborne C P,Strömberg C A E, et al., 2010a. The Origins of C4 Grasslands: Integrating Evolutionary and Ecosystem Science[J]. Science, 328(5978): 587-591.

    Google Scholar

    Edwards E J, Smith S A, Donoghue M J, 2010b. Phylogenetic Analyses Reveal the Shady History of C4 Grasses[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(6): 2532-2537.

    Google Scholar

    Ehleringer J R, Sage R F, Flanagan L B, et al., 1991. Climate change and the evolution of C4 photosynthesis[J]. Trends in Ecology & Evolution, 6(3): 95-99.

    Google Scholar

    Ehleringer J R, Cerling T E, Helliker B R, 1997. C4 photosynthesis, atmospheric CO2, and climate[J]. Oecologia, 112(3): 285-299.

    Google Scholar

    Gradstein F M,Ogg J G, 2012. Chapter 2 - The Chronostratigraphic Scale[M]. Boston: Elsevier.

    Google Scholar

    Hoetzel S, Dupont L, Schefuẞ E, et al., 2013. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution[J]. Nature Geoscience, 6(12): 1027-1030.

    Google Scholar

    Huang Y S, Shuman B, Wang Y, et al., 2006. Climatic and environmental controls on the variation of C3 and C4 plant abundances in central Florida for the past 62,000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 237(2): 428-435.

    Google Scholar

    Huang Y, Street-Perrott F A, Metcalfe S E, et al., 2001. Climate Change as the Dominant Control on Glacial-Interglacial Variations in C3 and C4 Plant Abundance[J]. Science, 293(5535): 1647-1651.

    Google Scholar

    Hui Z C,Gowan E J, Hou Z F, et al., 2021. Intensified fire activity induced by aridification facilitated Late Miocene C4 plant expansion in the northeastern Xizang Plateau, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 573: 110437.

    Google Scholar

    Ji J L, Zhang K X, Clift P D, et al., 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the Northern Qaidam Basin: Implications for the growth of the Northeastern Xizang Plateau[J]. Gondwana Research, 46: 141-155.

    Google Scholar

    Jia G D, Li Z Y, Peng P A, et al., 2012. Aeolian n-alkane isotopic evidence from North Pacific for a Late Miocene decline of C4 plant in the arid Asian interior[J]. Earth and Planetary Science Letters, 321-322: 32-40.

    Google Scholar

    Jia Y X, Wu H B, Zhang W C, et al., 2021. Quantitative Cenozoic climatic reconstruction and its implications for aridification of the northeastern Xizang Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110244.

    Google Scholar

    Jiang W Q, Wu J Y, Wu H B, et al., 2019. Evolution of the relative abundance of C4 plants on the Chinese Loess Plateau since the Last Glacial Maximum and its implications[J]. Journal of Quaternary Science, 34(2): 101-111.

    Google Scholar

    Kadereit G, Ackerly D, Pirie M, 2012. A broader model for C4 photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.)[J]. Proceedings Biological sciences / The Royal Society, 279(1741): 3304-3311.

    Google Scholar

    Keeley J E,Rundel P W, 2005. Fire and the Miocene expansion of C4 grasslands[J]. Ecology Letters, 8(7): 683-690.

    Google Scholar

    Koch P L, 1998. Isotopic reconstruction of past continental environments[J]. Annual Review of Earth and Planetary Sciences, 26(1): 573-613.

    Google Scholar

    Kohn M J, 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(46): 19691-19695.

    Google Scholar

    Krull E, Sachse D, Mugler I, et al., 2006. Compound-specific delta 13C and delta 2H analyses of plant and soil organic matter: A preliminary assessment of the effects of vegetation change on ecosystem hydrology[J]. Soil Biology & Biochemistry, 38(11): 3211-3221.

    Google Scholar

    Kuypers M M M, Pancost R D, Damsté J S S, 1999. A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times[J]. Nature, 399(6734): 342-345.

    Google Scholar

    Leegood R C, 2013. Strategies for engineering C4 photosynthesis[J]. Journal of Plant Physiology, 170(4): 378-388.

    Google Scholar

    Liu W G, Huang Y S,An Z S, et al., 2005. Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau: Carbon isotope evidence from bulk organic matter and individual leaf waxes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(3): 243-254.

    Google Scholar

    Liu W G, Yang H, Wang H Y, et al., 2015. Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments: A dual indicator of paleoenvironment in the Qinghai-Xizang Plateau[J]. Organic Geochemistry, 83-84: 190-201.

    Google Scholar

    Liu Z H, Zhang K X, Sun YY, et al., 2014. Cenozoic Environmental Changes in the Northern Qaidam Basin Inferred from n-alkane Records[J]. Acta Geologica Sinica, 88(5): 1547-1555.

    Google Scholar

    Long S P, 1999. Environmentalresponses[M]. San Diego: Academic Press.

    Google Scholar

    Lopez F B, Barclay G F, 2017. Chapter 4 - Plant Anatomy and Physiology[M]. Boston: Academic Press.

    Google Scholar

    Lu J Y,Algeo T J, Zhuang G S, et al., 2020. The Early Pliocene global expansion of C4 grasslands: A new organic carbon-isotopic dataset from the north China plain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 538: 109454.

    Google Scholar

    Ma X Y, Wei Z F, Wang Y L, et al., 2021. Speculation for quantifying increased C4 plants under future climate conditions: Inner Mongolia, China case study[J]. Quaternary International, 592: 97-110.

    Google Scholar

    Mead R, Xu Y P, Chong J, et al., 2005. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes[J]. Organic Geochemistry, 36(3): 363-370.

    Google Scholar

    Miao Y F, Herrmann M, Wu F L, et al., 2012.What controlled Mid-Late Miocene long-term aridification in Central Asia? — Global cooling or Xizang Plateau uplift: A review[J]. Earth-Science Reviews, 112(3): 155-172.

    Google Scholar

    Nelson D M, Hu F S, Michener R H, 2006. Stable-carbon isotope composition ofPoaceae pollen: an assessment for reconstructing C3 and C4 grass abundance[J]. The Holocene, 16(6): 819-825.

    Google Scholar

    Nelson D M, Hu F S,Mikucki J A, et al., 2007. Carbon-isotopic analysis of individual pollen grains from C3 and C4 grasses using a spooling-wire microcombustion interface[J]. Geochimica et Cosmochimica Acta, 71(16): 4005-4014.

    Google Scholar

    Nelson D M, Hu F S, Scholes D R, et al., 2008. Using SPIRAL (Single Pollen Isotope RatioAnaLysis) to estimate C3- and C4-grass abundance in the paleorecord[J]. Earth and Planetary Science Letters, 269(1): 11-16.

    Google Scholar

    Nelson D M, Urban M A, Hu F S, 2014. Spatiotemporal variation in the origin of C4 grasses: δ13C analysis of grass pollen from the southeastern United States[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 396: 227-231.

    Google Scholar

    Nelson D M, Urban M A, Kershaw A P, et al., 2016. Late-Quaternary variation in C3 and C4 grass abundance in southeastern Australia as inferred from δ13C analysis: Assessing the roles of climate, pCO2, and fire[J]. Quaternary Science Reviews, 139: 67-76.

    Google Scholar

    O’Leary M H, 1981. Carbon isotope fractionation inplants[J]. Phytochemistry, 20(4): 553-567.

    Google Scholar

    O’Leary M H, 1988. Carbon Isotopes in Photosynthesis: Fractionation techniques may reveal new aspects of carbon dynamics in plants[J]. BioScience, 38(5): 328-336.

    Google Scholar

    Osborne C P,Beerling D J, 2006. Nature’s green revolution: the remarkable evolutionary rise of C4 plants[J]. Philosophical Transactions: Biological Sciences, 361(1465): 173-194.

    Google Scholar

    Osborne C P, 2008.Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands?[J]. The Journal of ecology, 96(1): 35-45.

    Google Scholar

    Osborne C P, 2011. Chapter 17 The Geologic History of C4 Plants[M]. Dordrecht: Springer Netherlands.

    Google Scholar

    Pagani M, Zachos J C, Freeman K H, et al., 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene[J]. Science, 309(5734): 600-603.

    Google Scholar

    Pagani M, Huber M, Liu Z H, et al., 2011. The Role of Carbon Dioxide During the Onset of Antarctic Glaciation[J]. Science, 334(6060): 1261-1264.

    Google Scholar

    Pedentchouk N, Sumner W, Tipple B, et al., 2008. δ13C and δD compositions of n-alkanes from modern angiosperms and conifers: An experimental set up in central Washington State, USA[J]. Organic Geochemistry, 39(8): 1066-1071.

    Google Scholar

    Prasad V,Strömberg C A E, Leaché A D, et al., 2011. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae[J]. Nature Communications, 2(1): 480.

    Google Scholar

    Rao Z G,Guo W K, Cao J T, et al., 2017. Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: A global review[J]. Earth-Science Reviews, 165: 110-119.

    Google Scholar

    Rieley G, Collier R J, Jones D M, et al., 1991. Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds[J]. Nature, 352(6334): 425-427.

    Google Scholar

    Rieley G, Collister J, Stern B, et al., 1993. Gas chromatography/isotope ratio mass spectrometry of leaf wax n-alkanes from plants of differing carbon dioxide metabolisms[J]. Rapid Communications in Mass Spectrometry, 7: 488-491.

    Google Scholar

    Rommerskirchen F, Plader A, Eglinton G, et al., 2006. Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes[J]. Organic Geochemistry, 37(10): 1303-1332.

    Google Scholar

    Royer D L, Wing S L, Beerling D J, et al., 2001a. Paleobotanical evidence for near present-day levels of atmospheric CO2 During Part of the Tertiary[J]. Science, 292(5525): 2310-2313.

    Google Scholar

    Royer D L,Berner R A, Beerling D J, 2001b. Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches[J]. Earth-Science Reviews, 54(4): 349-392.

    Google Scholar

    Sage R F, Monson R K, 1998. C4 Plant Biology[M]. Elsevier.

    Google Scholar

    Sage R F, Li M, Monson, et al., 1999a. The taxonomic distribution of C4 photosynthesis[M]. San Diego: Academic Press.

    Google Scholar

    Sage R F,Wedin D A, Li M, 1999b. C4 Plant Biology[M]. San Diego: Academic Press.

    Google Scholar

    Sage R F,Kubien D S, 2003. Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants[J]. Photosynthesis Research, 77(2-3): 209-225.

    Google Scholar

    Sage R F, Christin P-A, Edwards E J, 2011a. The C4 plant lineages of planet Earth[J]. Journal of Experimental Botany, 62(9): 3155-3169.

    Google Scholar

    Sage R F, Zhu X G, 2011b. Exploiting the engine of C4 photosynthesis[J]. Journal of Experimental Botany, 62(9): 2989-3000.

    Google Scholar

    Sage R F, Sage T L,Kocacinar F, 2012. Photorespiration and the evolution of C4 photosynthesis[J]. Annual review of plant biology, 63(1): 19-47.

    Google Scholar

    Sage R F, Stata M, 2015. Photosynthetic diversity meets biodiversity: The C4 plant example[J]. Journal of Plant Physiology, 172: 104-119.

    Google Scholar

    Sage R F, 2017. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame[J]. Journal of experimental botany, 68(2): 4039-4056.

    Google Scholar

    Schefuẞ E, Ratmeyer V, Stuut J-B W, et al., 2003a. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic[J]. Geochimica et Cosmochimica Acta, 67(10): 1757-1767.

    Google Scholar

    Schefuẞ E, Schouten S, Jansen J H F, et al., 2003b. African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period[J]. Nature, 422(6930): 418-421.

    Google Scholar

    Still C, Berry J,Collatz G, et al., 2003. Global distribution of C3 and C4 vegetation: Carbon cycle implications[J]. Global Biogeochemical Cycles, 17(1): 1006.

    Google Scholar

    Strömberg C A E, 2005. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America[J]. Proceedings of the National Academy of Sciences, 102(34): 11980-11984.

    Google Scholar

    Strömberg C A E, 2011. Evolution of Grasses and Grassland Ecosystems[J]. Annual Review of Earth and Planetary Sciences, 39: 517-544.

    Google Scholar

    Sun J M,Lü T Y, Gong Y Z, et al., 2013. Effect of aridification on carbon isotopic variation and ecologic evolution at 5.3 Ma in the Asian interior[J]. Earth and Planetary Science Letters, 380: 1-11.

    Google Scholar

    Sun Y Y, Liu J, Liang Y, et al., 2020. Cenozoic moisture fluctuations on the northeastern Xizang Plateau and association with global climatic conditions[J]. Journal of Asian Earth Sciences, 200: 104490.

    Google Scholar

    Thomas E K, Huang Y S, Morrill C, et al., 2014. Abundant C4 plants on the Xizang Plateau during the Lateglacial and early Holocene[J]. Quaternary Science Reviews, 87: 24-33.

    Google Scholar

    Tipple B J,Pagani M, 2007. The Early Origins of Terrestrial C4 Photosynthesis[J]. Annual Review of Earth and Planetary Sciences, 35(1): 435-461.

    Google Scholar

    Tipple B J, Meyers S R,Pagani M, 2010a. Carbon isotope ratio of Cenozoic CO2: A comparative evaluation of available geochemical proxies[J]. Paleoceanography, 25(3): PA3202.

    Google Scholar

    Tipple B J,Pagani M, 2010b. A 35 Myr North American leaf-wax compound-specific carbon and hydrogen isotope record: Implications for C4 grasslands and hydrologic cycle dynamics[J]. Earth and Planetary Science Letters, 299(1-2): 250-262.

    Google Scholar

    Troughton J H, Card K A, 1975. Temperature effects on the carbon-isotope ratio of C3, C4 and crassulacean-acid-metabolism (CAM) plants[J]. Planta, 123(2): 185-190.

    Google Scholar

    Uno K,Polissar P, Jackson K, et al., 2016. Neogene biomarker record of vegetation change in eastern Africa[J]. Proceedings of the National Academy of Sciences, 113(23): 6355-6363.

    Google Scholar

    Urban M A, Nelson D M, Jiménez-Moreno G, et al., 2010. Isotopic evidence of C4 grasses in southwestern Europe during the Early Oligocene-Middle Miocene[J]. Geology, 38(12): 1091-1094.

    Google Scholar

    Vogts A, Moossen H, Rommerskirchen F, et al., 2009. Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species[J]. Organic Geochemistry, 40(10): 1037-1054.

    Google Scholar

    von Caemmerer S, Quick W P, Furbank R T, 2012. The development of C4 rice: current progress and future challenges[J]. Science, 336(6089): 1671-1672.

    Google Scholar

    Wang Y, Deng T, 2005. A 25 m.y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Xizang Plateau[J]. Earth and Planetary Science Letters, 236(1-2): 322-338.

    Google Scholar

    Weissmann S, Brutnell T P, 2012. Engineering C4 photosynthetic regulatory networks[J]. Current Opinion in Biotechnology, 23(3): 298-304.

    Google Scholar

    Zucol A, Brea M, Bellosi E, 2010. Phytolith analysis in Gran Barranca (central Patagonia): the middle-late Eocene[M]. Cambridge University Press.

    Google Scholar

    李颖莉,冯乔,姜文娟,等,2012. 柴达木盆地西部新近纪岩相古地理研究[J]. 沉积与特提斯地质, 32(2): 31-36.

    Google Scholar

    路晶芳,宋博文,陈锐明,等,2010. 柴达木盆地大柴旦地区大红沟古近纪孢粉组合序列与地层对比[J]. 地球科学: 中国地质大学学报, 35(5): 839-848.

    Google Scholar

    宋博文,张克信,季军良,等,2010. 柴达木盆地北缘锡铁山-长山梁古近纪沉积演化[J]. 沉积与特提斯地质, 30(1): 1-10.

    Google Scholar

    旺罗,吕厚远,吴乃琴,等,2004. 青藏高原高海拔地区C4植物的发现[J]. 科学通报, 49(13): 1290-1293.

    Google Scholar

    杨柳, 2020. 巴丹吉林沙漠塔布吉格徳湖2000年来的正构烷烃单体碳同位素组成及气候变化[D]. 北京:中国地质大学(北京). DOI:10.19826/j.cnki.1009-3850.2022.06007

    Google Scholar

    任军平,古阿雷,王杰,孙宏伟,左立波,孙凯,许康康,Chipilauka Mukofu,Evaristo Kasumba,DANIEL Malunga,杜明龙,邢仕,刘子江,张津瑞,董津蒙,2022.赞比亚班韦乌卢变质克拉通东北部姆巴拉组碎屑锆石U-Pb年龄和Hf同位素特征.沉积与特提斯地质,42(4):585-597.DOI:10.19826/j.cnki.1009-3850.2022.06007.

    Google Scholar

    REN J P, GU A L, WANG J, SUN H W, ZUO L B, SUN K, XU K K, Chipilauka Mukofu, Evaristo Kasumba, DANIEL Malunga, DU M L, XING S, LIU Z J, ZHANG J R, DONG J M, 2022. Detrital zircon U-Pb ages and Hf isotopic characteristics of the Mbala Formation in the northeast Bangweulu Metacraton, Zambia. Sedimentary Geology and Tethyan Geology, 42(4):585-597.DOI:10.19826/j.cnki.1009-3850.2022.06007.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(491) PDF downloads(85) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint