| Aichner B, Herzschuh U, Wilkes H, 2010. Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Xizang Plateau[J]. Organic Geochemistry, 41(7): 706-718. 						Google Scholar
						 | 
					
									 					| Basu S, Agrawal S, Sanyal P, et al., 2015. Carbon isotopic ratios of modern C3-C4 plants from the Gangetic Plain, India and its implications to paleovegetational reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 22-32. 						Google Scholar
						 | 
					
									 					| Beerling D J, Royer D L, 2011. Convergent Cenozoic CO2 history[J]. Nature Geoscience, 4(7): 418-420. 						Google Scholar
						 | 
					
									 					| Bi X H, Sheng G Y, Liu X H, et al., 2005. Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes[J]. Organic Geochemistry, 36(10): 1405-1417. 						Google Scholar
						 | 
					
									 					| Biasatti D, Wang Y, Gao F, et al., 2012. Paleoecologies and paleoclimates of late Cenozoic mammals from Southwest China: Evidence from stable carbon and oxygen isotopes[J]. Journal of Asian Earth Sciences, 44: 48-61. 						Google Scholar
						 | 
					
									 					| Bouchenak-Khelladi Y, Verboom G, Hodkinson T, et al., 2009. The origins and diversification of C4 grasses and savanna‐adapted ungulates[J]. Global Change Biology, 15(10): 2397-2417. 						Google Scholar
						 | 
					
									 					| Boutton T W, Archer S R, Midwood A J, et al., 1998. δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem[J]. Geoderma, 82(1-3): 5-41. 						Google Scholar
						 | 
					
									 					| Bowman C N, Wang Y, Wang X M, et al., 2017. Pieces of the puzzle: Lack of significant C4 in the late Miocene of southern California[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 475: 70-79. 						Google Scholar
						 | 
					
									 					| Castañeda I S, Mulitza S, Schefuẞ E, et al., 2009. Wet phases in the Sahara/Sahel region and human migration patterns in North Africa[J]. Proceedings of the National Academy of Sciences, 106(48): 20159-20163. 						Google Scholar
						 | 
					
									 					| Cerling T E, 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 71(2): 229-240. 						Google Scholar
						 | 
					
									 					| Cerling T E, Quade J, Wang Y, et al., 1989. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators[J]. Nature, 341(6238): 138-139. 						Google Scholar
						 | 
					
									 					| Cerling T E, Quade J, 1993a. Stable Carbon and Oxygen Isotopes in Soil Carbonates[M]. American Geophysical Union (AGU). 						Google Scholar
						 | 
					
									 					| Cerling T E, Wang Y, Quade J, 1993b. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene[J]. Nature, 361(6410): 344-345. 						Google Scholar
						 | 
					
									 					| Cerling T E, Harris J M, MacFadden B J, et al., 1997. Global vegetation change through the Miocene/Pliocene boundary[J]. Nature, 389(6647): 153-158. 						Google Scholar
						 | 
					
									 					| Cerling T E, Harris J M, 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies[J]. Oecologia, 120(3): 347-363. 						Google Scholar
						 | 
					
									 					| Cerling T E, Chritz K L, Jablonski N G, et al., 2013a. Diet of Theropithecus from 4 to 1 Ma in Kenya[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(26): 10507-10512. 						Google Scholar
						 | 
					
									 					| Cerling T E, Manthi F K, Mbua E N, et al., 2013b. Stable isotope-based diet reconstructions of Turkana Basin hominins[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(26): 10501-10506. 						Google Scholar
						 | 
					
									 					| Chikaraishi Y, Naraoka H, 2003. Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants[J]. Phytochemistry, 63(3): 361-371. 						Google Scholar
						 | 
					
									 					| Christin P-A,Besnard G, Samaritani E, et al., 2008. Oligocene CO2 Decline Promoted C4 Photosynthesis in Grasses[J]. Current Biology, 18(1): 37-43. 						Google Scholar
						 | 
					
									 					| Christin P-A, Boxall S F, Gregory R, et al., 2013a. Parallel recruitment of multiple genes into C4photosynthesis[J]. Genome biology and evolution, 5(11): 2174-2187. 						Google Scholar
						 | 
					
									 					| Christin P-A, Osborne C P,Chatelet D S, et al., 2013b. Anatomical enablers and the evolution of C4 photosynthesis in grasses[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(4): 1381-1386. 						Google Scholar
						 | 
					
									 					| Collatz G J, Berry J A, Clark J S, 1998. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future[J]. Oecologia, 114(4): 441-454. 						Google Scholar
						 | 
					
									 					| Collister J W, Rieley G, Stern B, et al., 1994. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms[J]. Organic Geochemistry, 21(6): 619-627. 						Google Scholar
						 | 
					
									 					| Cotton J M,Cerling T E, Hoppe K A, et al., 2016. Climate, CO2, and the history of North American grasses since the Last Glacial Maximum[J]. Science Advances, 2(3): e1501346. 						Google Scholar
						 | 
					
									 					| Covshoff S, Hibberd J M, 2012. Integrating C4 photosynthesis into C3 crops to increase yield potential[J]. Current Opinion in Biotechnology, 23(2): 209-214. 						Google Scholar
						 | 
					
									 					| Cramer B S,Toggweiler J R, Wright J D, et al., 2009. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation[J]. Paleoceanography, 24(4): PA4216. 						Google Scholar
						 | 
					
									 					| De Boer B,Bintanja R, Lourens L, et al., 2010. Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records[J]. Annals of Glaciology, 51(55): 23-33. 						Google Scholar
						 | 
					
									 					| Diefendorf A F, Mueller K E, Wing S L, et al., 2010. Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences, 107(13): 5738-5743. 						Google Scholar
						 | 
					
									 					| Duan Y, He J X, 2011. Distribution and isotopic composition of n-alkanes from grass, reed and tree leaves along a latitudinal gradient in China[J]. Geochemical journal, 45(3): 199-207. 						Google Scholar
						 | 
					
									 					| Edwards E J, Osborne C P,Strömberg C A E, et al., 2010a. The Origins of C4 Grasslands: Integrating Evolutionary and Ecosystem Science[J]. Science, 328(5978): 587-591. 						Google Scholar
						 | 
					
									 					| Edwards E J, Smith S A, Donoghue M J, 2010b. Phylogenetic Analyses Reveal the Shady History of C4 Grasses[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(6): 2532-2537. 						Google Scholar
						 | 
					
									 					| Ehleringer J R, Sage R F, Flanagan L B, et al., 1991. Climate change and the evolution of C4 photosynthesis[J]. Trends in Ecology & Evolution, 6(3): 95-99. 						Google Scholar
						 | 
					
									 					| Ehleringer J R, Cerling T E, Helliker B R, 1997. C4 photosynthesis, atmospheric CO2, and climate[J]. Oecologia, 112(3): 285-299. 						Google Scholar
						 | 
					
									 					| Gradstein F M,Ogg J G, 2012. Chapter 2 - The Chronostratigraphic Scale[M]. Boston: Elsevier. 						Google Scholar
						 | 
					
									 					| Hoetzel S, Dupont L, Schefuẞ E, et al., 2013. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution[J]. Nature Geoscience, 6(12): 1027-1030. 						Google Scholar
						 | 
					
									 					| Huang Y S, Shuman B, Wang Y, et al., 2006. Climatic and environmental controls on the variation of C3 and C4 plant abundances in central Florida for the past 62,000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 237(2): 428-435. 						Google Scholar
						 | 
					
									 					| Huang Y, Street-Perrott F A, Metcalfe S E, et al., 2001. Climate Change as the Dominant Control on Glacial-Interglacial Variations in C3 and C4 Plant Abundance[J]. Science, 293(5535): 1647-1651. 						Google Scholar
						 | 
					
									 					| Hui Z C,Gowan E J, Hou Z F, et al., 2021. Intensified fire activity induced by aridification facilitated Late Miocene C4 plant expansion in the northeastern Xizang Plateau, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 573: 110437. 						Google Scholar
						 | 
					
									 					| Ji J L, Zhang K X, Clift P D, et al., 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the Northern Qaidam Basin: Implications for the growth of the Northeastern Xizang Plateau[J]. Gondwana Research, 46: 141-155. 						Google Scholar
						 | 
					
									 					| Jia G D, Li Z Y, Peng P A, et al., 2012. Aeolian n-alkane isotopic evidence from North Pacific for a Late Miocene decline of C4 plant in the arid Asian interior[J]. Earth and Planetary Science Letters, 321-322: 32-40. 						Google Scholar
						 | 
					
									 					| Jia Y X, Wu H B, Zhang W C, et al., 2021. Quantitative Cenozoic climatic reconstruction and its implications for aridification of the northeastern Xizang Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110244. 						Google Scholar
						 | 
					
									 					| Jiang W Q, Wu J Y, Wu H B, et al., 2019. Evolution of the relative abundance of C4 plants on the Chinese Loess Plateau since the Last Glacial Maximum and its implications[J]. Journal of Quaternary Science, 34(2): 101-111. 						Google Scholar
						 | 
					
									 					| Kadereit G, Ackerly D, Pirie M, 2012. A broader model for C4 photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.)[J]. Proceedings Biological sciences / The Royal Society, 279(1741): 3304-3311. 						Google Scholar
						 | 
					
									 					| Keeley J E,Rundel P W, 2005. Fire and the Miocene expansion of C4 grasslands[J]. Ecology Letters, 8(7): 683-690. 						Google Scholar
						 | 
					
									 					| Koch P L, 1998. Isotopic reconstruction of past continental environments[J]. Annual Review of Earth and Planetary Sciences, 26(1): 573-613. 						Google Scholar
						 | 
					
									 					| Kohn M J, 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(46): 19691-19695. 						Google Scholar
						 | 
					
									 					| Krull E, Sachse D, Mugler I, et al., 2006. Compound-specific delta 13C and delta 2H analyses of plant and soil organic matter: A preliminary assessment of the effects of vegetation change on ecosystem hydrology[J]. Soil Biology & Biochemistry, 38(11): 3211-3221. 						Google Scholar
						 | 
					
									 					| Kuypers M M M, Pancost R D, Damsté J S S, 1999. A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times[J]. Nature, 399(6734): 342-345. 						Google Scholar
						 | 
					
									 					| Leegood R C, 2013. Strategies for engineering C4 photosynthesis[J]. Journal of Plant Physiology, 170(4): 378-388. 						Google Scholar
						 | 
					
									 					| Liu W G, Huang Y S,An Z S, et al., 2005. Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau: Carbon isotope evidence from bulk organic matter and individual leaf waxes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(3): 243-254. 						Google Scholar
						 | 
					
									 					| Liu W G, Yang H, Wang H Y, et al., 2015. Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments: A dual indicator of paleoenvironment in the Qinghai-Xizang Plateau[J]. Organic Geochemistry, 83-84: 190-201. 						Google Scholar
						 | 
					
									 					| Liu Z H, Zhang K X, Sun YY, et al., 2014. Cenozoic Environmental Changes in the Northern Qaidam Basin Inferred from n-alkane Records[J]. Acta Geologica Sinica, 88(5): 1547-1555. 						Google Scholar
						 | 
					
									 					| Long S P, 1999. Environmentalresponses[M]. San Diego: Academic Press. 						Google Scholar
						 | 
					
									 					| Lopez F B, Barclay G F, 2017. Chapter 4 - Plant Anatomy and Physiology[M]. Boston: Academic Press. 						Google Scholar
						 | 
					
									 					| Lu J Y,Algeo T J, Zhuang G S, et al., 2020. The Early Pliocene global expansion of C4 grasslands: A new organic carbon-isotopic dataset from the north China plain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 538: 109454. 						Google Scholar
						 | 
					
									 					| Ma X Y, Wei Z F, Wang Y L, et al., 2021. Speculation for quantifying increased C4 plants under future climate conditions: Inner Mongolia, China case study[J]. Quaternary International, 592: 97-110. 						Google Scholar
						 | 
					
									 					| Mead R, Xu Y P, Chong J, et al., 2005. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes[J]. Organic Geochemistry, 36(3): 363-370. 						Google Scholar
						 | 
					
									 					| Miao Y F, Herrmann M, Wu F L, et al., 2012.What controlled Mid-Late Miocene long-term aridification in Central Asia? — Global cooling or Xizang Plateau uplift: A review[J]. Earth-Science Reviews, 112(3): 155-172. 						Google Scholar
						 | 
					
									 					| Nelson D M, Hu F S, Michener R H, 2006. Stable-carbon isotope composition ofPoaceae pollen: an assessment for reconstructing C3 and C4 grass abundance[J]. The Holocene, 16(6): 819-825. 						Google Scholar
						 | 
					
									 					| Nelson D M, Hu F S,Mikucki J A, et al., 2007. Carbon-isotopic analysis of individual pollen grains from C3 and C4 grasses using a spooling-wire microcombustion interface[J]. Geochimica et Cosmochimica Acta, 71(16): 4005-4014. 						Google Scholar
						 | 
					
									 					| Nelson D M, Hu F S, Scholes D R, et al., 2008. Using SPIRAL (Single Pollen Isotope RatioAnaLysis) to estimate C3- and C4-grass abundance in the paleorecord[J]. Earth and Planetary Science Letters, 269(1): 11-16. 						Google Scholar
						 | 
					
									 					| Nelson D M, Urban M A, Hu F S, 2014. Spatiotemporal variation in the origin of C4 grasses: δ13C analysis of grass pollen from the southeastern United States[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 396: 227-231. 						Google Scholar
						 | 
					
									 					| Nelson D M, Urban M A, Kershaw A P, et al., 2016. Late-Quaternary variation in C3 and C4 grass abundance in southeastern Australia as inferred from δ13C analysis: Assessing the roles of climate, pCO2, and fire[J]. Quaternary Science Reviews, 139: 67-76. 						Google Scholar
						 | 
					
									 					| O’Leary M H, 1981. Carbon isotope fractionation inplants[J]. Phytochemistry, 20(4): 553-567. 						Google Scholar
						 | 
					
									 					| O’Leary M H, 1988. Carbon Isotopes in Photosynthesis: Fractionation techniques may reveal new aspects of carbon dynamics in plants[J]. BioScience, 38(5): 328-336. 						Google Scholar
						 | 
					
									 					| Osborne C P,Beerling D J, 2006. Nature’s green revolution: the remarkable evolutionary rise of C4 plants[J]. Philosophical Transactions: Biological Sciences, 361(1465): 173-194. 						Google Scholar
						 | 
					
									 					| Osborne C P, 2008.Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands?[J]. The Journal of ecology, 96(1): 35-45. 						Google Scholar
						 | 
					
									 					| Osborne C P, 2011. Chapter 17 The Geologic History of C4 Plants[M]. Dordrecht: Springer Netherlands. 						Google Scholar
						 | 
					
									 					| Pagani M, Zachos J C, Freeman K H, et al., 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene[J]. Science, 309(5734): 600-603. 						Google Scholar
						 | 
					
									 					| Pagani M, Huber M, Liu Z H, et al., 2011. The Role of Carbon Dioxide During the Onset of Antarctic Glaciation[J]. Science, 334(6060): 1261-1264. 						Google Scholar
						 | 
					
									 					| Pedentchouk N, Sumner W, Tipple B, et al., 2008. δ13C and δD compositions of n-alkanes from modern angiosperms and conifers: An experimental set up in central Washington State, USA[J]. Organic Geochemistry, 39(8): 1066-1071. 						Google Scholar
						 | 
					
									 					| Prasad V,Strömberg C A E, Leaché A D, et al., 2011. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae[J]. Nature Communications, 2(1): 480. 						Google Scholar
						 | 
					
									 					| Rao Z G,Guo W K, Cao J T, et al., 2017. Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: A global review[J]. Earth-Science Reviews, 165: 110-119. 						Google Scholar
						 | 
					
									 					| Rieley G, Collier R J, Jones D M, et al., 1991. Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds[J]. Nature, 352(6334): 425-427. 						Google Scholar
						 | 
					
									 					| Rieley G, Collister J, Stern B, et al., 1993. Gas chromatography/isotope ratio mass spectrometry of leaf wax n-alkanes from plants of differing carbon dioxide metabolisms[J]. Rapid Communications in Mass Spectrometry, 7: 488-491. 						Google Scholar
						 | 
					
									 					| Rommerskirchen F, Plader A, Eglinton G, et al., 2006. Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes[J]. Organic Geochemistry, 37(10): 1303-1332. 						Google Scholar
						 | 
					
									 					| Royer D L, Wing S L, Beerling D J, et al., 2001a. Paleobotanical evidence for near present-day levels of atmospheric CO2 During Part of the Tertiary[J]. Science, 292(5525): 2310-2313. 						Google Scholar
						 | 
					
									 					| Royer D L,Berner R A, Beerling D J, 2001b. Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches[J]. Earth-Science Reviews, 54(4): 349-392. 						Google Scholar
						 | 
					
									 					| Sage R F, Monson R K, 1998. C4 Plant Biology[M]. Elsevier. 						Google Scholar
						 | 
					
									 					| Sage R F, Li M, Monson, et al., 1999a. The taxonomic distribution of C4 photosynthesis[M]. San Diego: Academic Press. 						Google Scholar
						 | 
					
									 					| Sage R F,Wedin D A, Li M, 1999b. C4 Plant Biology[M]. San Diego: Academic Press. 						Google Scholar
						 | 
					
									 					| Sage R F,Kubien D S, 2003. Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants[J]. Photosynthesis Research, 77(2-3): 209-225. 						Google Scholar
						 | 
					
									 					| Sage R F, Christin P-A, Edwards E J, 2011a. The C4 plant lineages of planet Earth[J]. Journal of Experimental Botany, 62(9): 3155-3169. 						Google Scholar
						 | 
					
									 					| Sage R F, Zhu X G, 2011b. Exploiting the engine of C4 photosynthesis[J]. Journal of Experimental Botany, 62(9): 2989-3000. 						Google Scholar
						 | 
					
									 					| Sage R F, Sage T L,Kocacinar F, 2012. Photorespiration and the evolution of C4 photosynthesis[J]. Annual review of plant biology, 63(1): 19-47. 						Google Scholar
						 | 
					
									 					| Sage R F, Stata M, 2015. Photosynthetic diversity meets biodiversity: The C4 plant example[J]. Journal of Plant Physiology, 172: 104-119. 						Google Scholar
						 | 
					
									 					| Sage R F, 2017. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame[J]. Journal of experimental botany, 68(2): 4039-4056. 						Google Scholar
						 | 
					
									 					| Schefuẞ E, Ratmeyer V, Stuut J-B W, et al., 2003a. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic[J]. Geochimica et Cosmochimica Acta, 67(10): 1757-1767. 						Google Scholar
						 | 
					
									 					| Schefuẞ E, Schouten S, Jansen J H F, et al., 2003b. African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period[J]. Nature, 422(6930): 418-421. 						Google Scholar
						 | 
					
									 					| Still C, Berry J,Collatz G, et al., 2003. Global distribution of C3 and C4 vegetation: Carbon cycle implications[J]. Global Biogeochemical Cycles, 17(1): 1006. 						Google Scholar
						 | 
					
									 					| Strömberg C A E, 2005. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America[J]. Proceedings of the National Academy of Sciences, 102(34): 11980-11984. 						Google Scholar
						 | 
					
									 					| Strömberg C A E, 2011. Evolution of Grasses and Grassland Ecosystems[J]. Annual Review of Earth and Planetary Sciences, 39: 517-544. 						Google Scholar
						 | 
					
									 					| Sun J M,Lü T Y, Gong Y Z, et al., 2013. Effect of aridification on carbon isotopic variation and ecologic evolution at 5.3 Ma in the Asian interior[J]. Earth and Planetary Science Letters, 380: 1-11. 						Google Scholar
						 | 
					
									 					| Sun Y Y, Liu J, Liang Y, et al., 2020. Cenozoic moisture fluctuations on the northeastern Xizang Plateau and association with global climatic conditions[J]. Journal of Asian Earth Sciences, 200: 104490. 						Google Scholar
						 | 
					
									 					| Thomas E K, Huang Y S, Morrill C, et al., 2014. Abundant C4 plants on the Xizang Plateau during the Lateglacial and early Holocene[J]. Quaternary Science Reviews, 87: 24-33. 						Google Scholar
						 | 
					
									 					| Tipple B J,Pagani M, 2007. The Early Origins of Terrestrial C4 Photosynthesis[J]. Annual Review of Earth and Planetary Sciences, 35(1): 435-461. 						Google Scholar
						 | 
					
									 					| Tipple B J, Meyers S R,Pagani M, 2010a. Carbon isotope ratio of Cenozoic CO2: A comparative evaluation of available geochemical proxies[J]. Paleoceanography, 25(3): PA3202. 						Google Scholar
						 | 
					
									 					| Tipple B J,Pagani M, 2010b. A 35 Myr North American leaf-wax compound-specific carbon and hydrogen isotope record: Implications for C4 grasslands and hydrologic cycle dynamics[J]. Earth and Planetary Science Letters, 299(1-2): 250-262. 						Google Scholar
						 | 
					
									 					| Troughton J H, Card K A, 1975. Temperature effects on the carbon-isotope ratio of C3, C4 and crassulacean-acid-metabolism (CAM) plants[J]. Planta, 123(2): 185-190. 						Google Scholar
						 | 
					
									 					| Uno K,Polissar P, Jackson K, et al., 2016. Neogene biomarker record of vegetation change in eastern Africa[J]. Proceedings of the National Academy of Sciences, 113(23): 6355-6363. 						Google Scholar
						 | 
					
									 					| Urban M A, Nelson D M, Jiménez-Moreno G, et al., 2010. Isotopic evidence of C4 grasses in southwestern Europe during the Early Oligocene-Middle Miocene[J]. Geology, 38(12): 1091-1094. 						Google Scholar
						 | 
					
									 					| Vogts A, Moossen H, Rommerskirchen F, et al., 2009. Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species[J]. Organic Geochemistry, 40(10): 1037-1054. 						Google Scholar
						 | 
					
									 					| von Caemmerer S, Quick W P, Furbank R T, 2012. The development of C4 rice: current progress and future challenges[J]. Science, 336(6089): 1671-1672. 						Google Scholar
						 | 
					
									 					| Wang Y, Deng T, 2005. A 25 m.y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Xizang Plateau[J]. Earth and Planetary Science Letters, 236(1-2): 322-338. 						Google Scholar
						 | 
					
									 					| Weissmann S, Brutnell T P, 2012. Engineering C4 photosynthetic regulatory networks[J]. Current Opinion in Biotechnology, 23(3): 298-304. 						Google Scholar
						 | 
					
									 					| Zucol A, Brea M, Bellosi E, 2010. Phytolith analysis in Gran Barranca (central Patagonia): the middle-late Eocene[M]. Cambridge University Press. 						Google Scholar
						 | 
					
									 					| 李颖莉,冯乔,姜文娟,等,2012. 柴达木盆地西部新近纪岩相古地理研究[J]. 沉积与特提斯地质, 32(2): 31-36. 						Google Scholar
						 | 
					
									 					| 路晶芳,宋博文,陈锐明,等,2010. 柴达木盆地大柴旦地区大红沟古近纪孢粉组合序列与地层对比[J]. 地球科学: 中国地质大学学报, 35(5): 839-848. 						Google Scholar
						 | 
					
									 					| 宋博文,张克信,季军良,等,2010. 柴达木盆地北缘锡铁山-长山梁古近纪沉积演化[J]. 沉积与特提斯地质, 30(1): 1-10. 						Google Scholar
						 | 
					
									 					| 旺罗,吕厚远,吴乃琴,等,2004. 青藏高原高海拔地区C4植物的发现[J]. 科学通报, 49(13): 1290-1293. 						Google Scholar
						 | 
					
									 					| 杨柳, 2020. 巴丹吉林沙漠塔布吉格徳湖2000年来的正构烷烃单体碳同位素组成及气候变化[D]. 北京:中国地质大学(北京). DOI:10.19826/j.cnki.1009-3850.2022.06007 						Google Scholar
						 | 
					
									 					| 任军平,古阿雷,王杰,孙宏伟,左立波,孙凯,许康康,Chipilauka Mukofu,Evaristo Kasumba,DANIEL Malunga,杜明龙,邢仕,刘子江,张津瑞,董津蒙,2022.赞比亚班韦乌卢变质克拉通东北部姆巴拉组碎屑锆石U-Pb年龄和Hf同位素特征.沉积与特提斯地质,42(4):585-597.DOI:10.19826/j.cnki.1009-3850.2022.06007. 						Google Scholar
						 | 
					
									 					| REN J P, GU A L, WANG J, SUN H W, ZUO L B, SUN K, XU K K, Chipilauka Mukofu, Evaristo Kasumba, DANIEL Malunga, DU M L, XING S, LIU Z J, ZHANG J R, DONG J M, 2022. Detrital zircon U-Pb ages and Hf isotopic characteristics of the Mbala Formation in the northeast Bangweulu Metacraton, Zambia. Sedimentary Geology and Tethyan Geology, 42(4):585-597.DOI:10.19826/j.cnki.1009-3850.2022.06007. 						Google Scholar
						 |