Citation: | ZHAO Cong, TIE Yongbo, LIANG Jingtao. 2023. Quantitative evaluation of debris flow provenance erosion based on Airborne Lidar Technology. Sedimentary Geology and Tethyan Geology, 43(4): 808-816. doi: 10.19826/j.cnki.1009-3850.2021.09004 |
The material source is one of the three basic conditions for the formation of debris flow, and the change in erosion accumulation of the material source is an important index to measure the scale and frequency of debris flow. Currently, conventional techniques are still unable to achieve quantitative research on the change in source erosion accumulation. To solve this problem, this paper takes the gully debris flow at the back of the Qionghai water plant in Xichang City as an example, based on two periods of optical images and high-precision DEM (Digital Elevation Model) by LiDAR before and after the rainy season, carries out quantitative evaluation of debris flow provenance erosion. The results show that: the fire area of the basin is 65%, and there are slope erosion provenance, landslide provenance and gully accumulation sources in the basin. According to the superposition analysis of two high-precision DEM datasets, the source erosion amount of debris flow before and after the rainy season is 12209 cubic metres. The source erosion area is characterized by wide distribution, large number and scattered development. The debris flow is mainly caused by slope material source erosion, and the majority of the erosion thickness is within 0.5 m. Therefore, there will be high frequency debris flow in the future.
[1] | Alexander D, 1989. Progress in physical geography[J]. Urban Landslides, 13(2): 157-191. |
[2] | Axelsson P, 1999. Processing of laser scanner data-algorithms and applications[J]. ISPRS J Photogramm Remote Sens, 54(2-3): 138-147. doi: 10.1016/S0924-2716(99)00008-8 |
[3] | Chigira M, Duan F, Yagi H, et al. , 2004. Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics[J]. Landslides, (1): 203-209. |
[4] | Hanberg W C, Creighton A L, Medley E W, et al., 2005. Use of LiDAR to assess slope hazards at the Lihir Gold Mine, Papua New Guinea[R]. International Conference on Landslide Risk Management, Vancouver, British Columbia, Canada. |
[5] | Glenn N F, Streutker D R, Chadwick D J, et al. , 2006. Analysis of LiDAR-Derived topographic information for characterizing and differentiating landslide morphology and activity[J]. Geomorphology, 73(1/2): 131-148. |
[6] | Schulz W H, 2007. Landslide susceptibility revealed by LiDAR imagery and historical records, Seattle, Washington[J]. Engineering Geology, 89(1/2): 67-87. |
[7] | Tang C, Zhu J, Ding J, et al. , 2011. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake[J]. Landslides, 8(4): 485-497. doi: 10.1007/s10346-011-0269-5 |
[8] | Varnes D J, 1978. Slope movement type and process[J]. Special Report, 176: 11-33. |
[9] | 常鸣, 唐川, 蒋志林, 等, 2014. 强震区都江堰市龙池镇泥石流物源的遥感动态演变[J]. 山地学报, 32(1): 89-97 doi: 10.3969/j.issn.1008-2786.2014.01.012 Chang M, Tang C, Jiang Z L, et al. , 2014. Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan, Wenchuan Earthquake Area[J]. Mountain Research, 32 (1): 89-97. doi: 10.3969/j.issn.1008-2786.2014.01.012 |
[10] | 董秀军, 许强, 佘金星, 等, 2020. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报·信息科学版, 45(3): 432-441 Dong X J, Xu Q, She J X, et al. , 2020. Preliminary Study on Interpretation of Geological Hazards in Jiuzhaigou Based on Multi‐source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 45 (3): 432-441. |
[11] | 方群生, 唐川, 王毅, 等, 2016. 汶川极震区泥石流动储量及总物源量计算方法研究[J]. 防灾减灾工程学报, 36(6): 1008-1014 Fang Q S, Tang C, Wang Y, et al. , 2016. A Calculation Method for Predicting Dynamic Reserve and the Total Amount of Material Source of the Debris Flows in the Wenchuan Meizoseismal Area[J]. Journal of Disaster Prevention and Mitigation Engineering, 36 (6): 1008-1014. |
[12] | 冯增文, 2015. 基于多期DEM的地质灾害与环境动态监测[D]. 北京: 中国地质大学(北京). Feng Z W, 2015. Multi-phase DSM for the Dynamic Monitoring of Geological Hazard and Environment[D]. Beijing: China University of Geosciences. |
[13] | 蒋忠信, 1994. 泥石流固体物质储量变化的定量预测[J]. 山地研究, 12(3): 155-162 Jiang Z X, 1994. Aquantitative Forecast to Reserves Change of Solid Loose Materials in Debris Flow Ravine[J]. Mountain Research, 12 (3): 155-162. |
[14] | 李显巨, 2012. 基于LiDAR技术的复杂地质环境区滑坡识别研究[D]. 武汉: 中国地质大学(武汉). Li X J, 2012. Research of the Landslide Recognition Based on LiDAR Technology in the Complex Geological Environment Area[D]. Wuhan: China University of Geosciences. |
[15] | 刘圣伟, 郭大海, 陈伟涛, 等, 2012. 机载激光雷达技术在长江三峡工程库区滑坡灾害调查和监测中的应用研究[J]. 中国地质, 39(2): 507-517 Liu S W, Guo D H, Chen W T, et al. , 2012. The application of airborne lidar technology in landslide investigation and monitoring of Three Gorges Reservoir Area[J]. Geology in China, 39 (2): 507-517. |
[16] | 刘希林, 莫多闻, 2001. 论泥石流及其学科性质[J]. 自然灾害学报, 3(10): 1-5 Liu X L, Mo D W, 2002. Debris Flow and Its Subject Attribute[J]. Journal of Natural Disasters, 3 (10): 1-5. |
[17] | 潘聪, 2015. 汶川县七盘沟泥石流斜坡物源启动模式及动储量预测研究[D]. 成都: 西南交通大学. Pan C, 2015. Study on Startup Mode of Slope Material Sources and Dynamic Reserves Prediction of Qipan Gully Debris Flow in Wenchuan County[D]. Chengdu: Southwest Jiaotong University |
[18] | 佘金星, 程多祥, 刘飞, 等, 2018. 机载激光雷达技术在地质灾害调查中的应用——以四川九寨沟7.0级地震为例[J]. 中国地震, 34(3): 435 − 444 She J X, Cheng D X, Liu F, et al., 2018. Application of Airborne LiDAR Technology in Geological Disaster Investigation—Taking the Jiuzhaigou Ms 7.0 Earthquake in Sichuan Province as an Example[J]. Earthquake Research in China, 34 (3): 435 − 444. |
[19] | 王绚, 范宣梅, 杨帆, 等, 2020. 植被茂密山区地质灾害遥感解译方法研究[J]. 武汉大学学报·信息科学版, 45(11): 1771-1781 Wang X, Fan X M, Yang F, et al. , 2020. Remote Sensing Interpretation Method of Geological Hazards in Lush Mountainous Area[J]. Geomatics and Information Science of Wuhan University, 45 (11): 1771-1781. |
[20] | 谢谟文, 刘翔宇, 王增福, 等, 2011. 基于三维遥感系统的泥石流土方量计算及影响范围模拟[J]. 水文地质工程地质, 38(03): 115-119 Xie M W, Liu X Y, Wang Z F, et al. , 2011. A 3-D remote sensing system based on assessment of debris flow and impact area simulation[J]. Hydrogeology and Engineering Geology, 38 (03): 115-119. |
[21] | 徐弘, 1995. 泥石流松散固体物质临界集聚估算模型研究[J]. 西南交通大学学报, 30(2): 212-217 Xu H, 1995. An Estimation Model for Critical Accumulation of Porous Solid Mass in Debris Flow Study[J]. Journal of Southwest Jiaotong University, 30 (2): 212-217. |
[22] | 杨顺, 2014. 水动力作用下泥石流源区固体物质可移动判别模型研究[D]. 北京: 中国科学院大学. Yang S, 2014. Study on the movable criticle model of solid material under hydro-dynamical condition in debris flow area[D]. Beijing: University of the Chinese Academy of Sciences. |
[23] | 张佳佳, 刘建康, 高波, 等, 2018. 藏东南嘎龙曲冰川泥石流的物源特征及其对扎墨公路的影响[J]. 地质力学学报, 24(1): 106-115 Zhang J J, Liu J K, Gao B, et al. , 2018. Characteristics of Material Sources of Galongqu Glacial Debris Flow and the Influence to ZhaMo Road[J]. Journal of Geomechanics, 24 (1): 106-115. |
[24] | 张友谊, 袁亚东, 顾成壮, 2020. 震区泥石流物源储量评价方法综述[J]. 山地学报, 38(3): 394-401 doi: 10.16089/j.cnki.1008-2786.000519 Zhang Y Y, Yuan Y D, Gu C Z, et al. , 2020. Review of Evaluation Methods for Debris Flow Resource Reserves in Areas Affected by Earthquakes[J]. Mountain Research, 38 (3): 394-401. doi: 10.16089/j.cnki.1008-2786.000519 |
[25] | 周必凡, 李德基, 罗德富, 等, 1991. 泥石流防治指南[M]. 北京: 科学出版社. Zhou B F, Li D J, Luo D F, et al., 1991. Guidelines for Debris Flow Control[M]. Beijing: Science Press. |
Optical image of UAV in study area (June 2020)
DSM and DEM for two periods of Houshan gully of Qionghai water plant
Interpretation map of fire area distribution
Field verification photo of fire area distribution
Interpretation map of debris flow zoning and provenance distribution
Variation chart of erosion and accumulation of debris flow provenance
A-A'section
Field verification photos of provenance changes in gully mouth
B-B'section
C-C'section
Field verification photos of provenance changes in the middle and lower reaches of the basin