2023 Vol. 43, No. 4
Article Contents

ZHANG Xiaobo, ZHOU Ping, ZHANG Kun, ZHANG Xing, LIU Baoshan, DENG Hui. 2023. Evaluation method of geological hazard susceptibility: A case study on GIS and CF-Logistic regression model in Huangzhong, Qinghai. Sedimentary Geology and Tethyan Geology, 43(4): 797-807. doi: 10.19826/j.cnki.1009-3850.2020.12003
Citation: ZHANG Xiaobo, ZHOU Ping, ZHANG Kun, ZHANG Xing, LIU Baoshan, DENG Hui. 2023. Evaluation method of geological hazard susceptibility: A case study on GIS and CF-Logistic regression model in Huangzhong, Qinghai. Sedimentary Geology and Tethyan Geology, 43(4): 797-807. doi: 10.19826/j.cnki.1009-3850.2020.12003

Evaluation method of geological hazard susceptibility: A case study on GIS and CF-Logistic regression model in Huangzhong, Qinghai

More Information
  • The evaluation method for the susceptibility of geological hazards has very important practical significance for the prevention and control of geological hazards. This paper takes Huangzhong County, Xining City, Qinghai Province as the research area to investigate the most suitable assessment method for the area’s geological hazard susceptibility. The results show that using seven evaluation factors (including elevation, slope, aspect, topographic undulation, distance from river, distance from fault, and engineering rock group) and the certainty factor and logistic regression model to evaluate the geological hazard susceptibility of Huangzhong County is suitable and reliable. Using the determinant coefficient and logistic regression model, we calculate the probability of geological hazard in each cell. Subsequently, we use the ROC curve and the AUC value to verify the classification accuracy of the model. The AUC value is 0.863, indicating that our method has good applicability for evaluating the susceptibility of geological disasters in the study area. The four factors of high-rise, aspect, distance from river, and engineering rock group have the most significant impacts on geological disasters in the study area. From the perspective of the spatial distribution of geological hazard susceptibility, extremely high and high susceptibility areas calculated using this method are mainly distributed in the low mountain and hilly areas on both sides of the Huangshui River and its main stream, while low susceptibility areas are mainly distributed in the northern and southern regions of the study area. From the perspective of geological hazard evaluation factors, high susceptibility areas are mainly distributed on loose alluvial strata and weak clastic rock strata 500 m away from the river.The research results indicate that the CF-Logistic regression model has strong reference value for evaluating the susceptibility of geological hazards in the study area and can provide theoretical and methodological basis for the prevention and control of geological hazards in the study area.

  • 加载中
  • [1] Heckerman D. Probabilistic Interpretation for MYCIN s Certainty Factors[C]. Proceedings UAI, 1985.

    Google Scholar

    [2] Shortliffe E H, Buchanan B G. A model of inexact reasoning in medicine[J]. Mathematical Biosciences, 1975, 23: 351 − 379.

    Google Scholar

    [3] 陈绪钰, 李明辉, 王德伟, 等, 2019. 基于GIS和信息量法的四川峨眉山市地质灾害易发性定量评价[J]. 沉积与特提斯地质, 39(4): 100 − 112

    Google Scholar

    Chen X Y, Li M H, Wang D W, et al., 2019. Quantitative evalution of geohazards susceptibility based on GIS and information value model for Emeishan City, Sichuan. Sedimentary Geology and Tethyan Geology, 39(4): 100 − 112.

    Google Scholar

    [4] 程维明, 周成虎, 柴慧霞, 等, 2009. 中国陆地地貌基本形态类型定量提取与分析[J]. 地球信息科学学报, (6): 725-736 doi: 10.3969/j.issn.1560-8999.2009.06.007

    CrossRef Google Scholar

    Cheng W M, Zhou C H, Chai H X, et al. , 2009. Quantitative extraction and analysis of basic morphological types of land geomorphology in China[J]. Journal of Geo-Information Science, 11(6): 725-736. doi: 10.3969/j.issn.1560-8999.2009.06.007

    CrossRef Google Scholar

    [5] 冯新科, 2014. 基于GIS的地震地质灾害危险性评价: 以彝良县为例[D]. 北京: 中国地震局地质研究所.

    Google Scholar

    Feng X K, 2014. Risk assessiment of earthquake-induced geological hazards based GIS -A Case Study of Yiliang County. Beijing: Institute of Geology, China Earthquake Administration.

    Google Scholar

    [6] 郭芳芳, 杨农, 孟晖, 等, 2008. 地形起伏度和坡度分析在区域滑坡灾害评价中的应用[J]. 中国地质, . 35(1): 131-144.

    Google Scholar

    Guo F F, Yang N, Meng H, et al. , 2008. Application of the relief amplitude and slope analysis to regional landslide hazard assessments[J]. Geology in China, 35(1): 131-143.

    Google Scholar

    [7] 贺鹏, 童立强, 郭兆成, 等, 2016. GIS支持下基于层次分析法的西藏札达地区滑坡灾害易发性评价研究[J]. 科学技术与工程, 16(25): 193-200 doi: 10.3969/j.issn.1671-1815.2016.25.033

    CrossRef Google Scholar

    He P, Tong L Q, Guo Z C, et al. , 2016. Evaluation research on the landslide disaster liability in Zha Da Region of Tibet[J]. Science Technology and Engineering, 16(25): 193-200. doi: 10.3969/j.issn.1671-1815.2016.25.033

    CrossRef Google Scholar

    [8] 洪增林, 李永红, 张玲玉, 等, 2020. 一种基于主成分分析法的区域性地质灾害危险性评估方法[J]. 灾害学, 118-124.

    Google Scholar

    Hong Z L, Li Y H, Zhang L Y, et al. , 2020. A method of regional geological hazard assessment based on princeiple component analysis [J]. Jourmal of Catastrophology, 35(1): 118-124.

    Google Scholar

    [9] 胡凯衡, 崔鹏, 韩用顺, 等, 2012. 基于聚类和最大似然法的汶川灾区泥石流滑坡易发性评价[J]. 中国水土保持科学, 12 − 18.

    Google Scholar

    Hu K H, Cui F, Han Y S, et al., 2012. Susceptibility mapping of landslides and debris flows in 2008 Wenchuan earthquake by using cluster analysis and maximum likelihood classification methods. Science of Soil and Water Conservation, 10(1): 12 − 18.

    Google Scholar

    [10] 黄润秋, 许向宁, 唐川, 等, 2008. 地质环境评价与地质灾害管理[M]. 北京: 科学出版社.

    Google Scholar

    Huang R Q, Xu X N, Tang C, et al., 2008. Assessment of the Geological Environment and Geo-hazard Management. Beijing: Science Press.

    Google Scholar

    [11] 李鑫, 2009. 台山市崩滑地质灾害风险评价与风险管理研究[D]. 中山大学.

    Google Scholar

    Li X, 2009. Development mechanism of slope geological disasters and risk assessment of slopes in TaiShan. Guangzhou: Zhongshan University.

    Google Scholar

    [12] 刘艳芳, 方佳琳, 陈晓慧, 等, 2014. 基于确定性系数分析方法的秭归县滑坡易发性评价[J]. 自然灾害学报, 23(6): 209-217 doi: 10.13577/j.jnd.2014.0626

    CrossRef Google Scholar

    Liu Y F, Fang J L, Chen X H, et al. , 2014. Evaluation of landslide susceptibility in Zigui County based on certainty factor method [J]. Journal of Natural Disasters, 23(6): 209-217. doi: 10.13577/j.jnd.2014.0626

    CrossRef Google Scholar

    [13] 饶品增, 曹冉, 蒋卫国, 2017. 基于地理加权回归模型的云南省地质灾害易发性评价[J]. 自然灾害学报, 26(2): 134-143 doi: 10.13577/j.jnd.2017.0216

    CrossRef Google Scholar

    Rao P Z, Cao R, Jiang W G, 2017. Susceptibility evaluation of geological disasters in Yunnan Province based on geographically weighted regression model[J]. Journal of Natural Disasters, 26(2): 134-143. doi: 10.13577/j.jnd.2017.0216

    CrossRef Google Scholar

    [14] 沈玲玲, 刘连友, 许冲, 等, 2016. 基于多模型的滑坡易发性评价——以甘肃岷县地震滑坡为例[J]. 工程地质学报, 19-28.

    Google Scholar

    Shen L L, Liu L Y, Xu C, et al. , 2016: Multi-models based landslide susceptibility evaluation illustrated with landslides triggered by Minxian earthquake. Journal of Engineering Geology, 24(1): 19-28.

    Google Scholar

    [15] 覃乙根, 杨根兰, 江兴元, 等, 2020. 基于确定性系数模型与逻辑回归模型耦合的地质灾害易发性评价——以贵州省开阳县为例[J]. 科学技术与工程, 20(1): 96-103 doi: 10.3969/j.issn.1671-1815.2020.01.015

    CrossRef Google Scholar

    Qin Y G, Yang G L, Jiang X Y, et al. , 2020. Geohazard susceptibility assessment based on the integrated model of certainty factor model and logistic regression model: a case study in Kaiyang County, Guizhou Province [J]. Science Technology and Engineering, 20(1): 96-103. doi: 10.3969/j.issn.1671-1815.2020.01.015

    CrossRef Google Scholar

    [16] 汤国安, 李发源, 刘学军, 2016. 数字高程模型教程(第3版)[M]. 北京: 科学出版社.

    Google Scholar

    Tang G A, Li F Y, Liu X J, 2016. Digital Elevation Model Tutorial[M]. 3rd ed. Beijing: Science Press.

    Google Scholar

    [17] 田春山, 刘希林, 汪佳, 2016. 基于CF和Logistic回归模型的广东省地质灾害易发性评价[J]. 水文地质工程地质, 43(6): 154-161 doi: 10.16030/j.cnki.issn.1000-3665.2016.06.24

    CrossRef Google Scholar

    Tian C S, Liu X L, Wang J, 2016. Geohazard susceptibility assessment based on CF model and logistic regression models in Guangdong[J]. Hydrogeology & Engineering Geology, 43(6): 154-161. doi: 10.16030/j.cnki.issn.1000-3665.2016.06.24

    CrossRef Google Scholar

    [18] 向喜琼, 黄润秋, 2000. 基于GIS的人工神经网络模型在地质灾害危险性区划中的应用[J]. 中国地质灾害与防治学报, 11(3): 23 − 27

    Google Scholar

    Xiang X Q , Huang R Q, 2000. Application of GIS-based artificial neural networks on assessment of geohazards risk. The Chinese Journal of Geological Hazard and Control, 11(3): 23 − 27.

    Google Scholar

    [19] 杨德宏, 范文, 2015. 基于ARCGIS的地质灾害易发性分区评价——以旬阳县为例[J]. 中国地质灾害与防治学报, 26(4): 82 − 86

    Google Scholar

    Yang D H, Fan W, 2015. Zoning of probable occurrence level of geological disasters based on ArcGIS: a case of Xunyang. The Chinese Journal of Geological Hazard and Control, 26(4): 82-86.

    Google Scholar

    [20] 赵艳南, 牛瑞卿, 2010. 基于证据权法的滑坡危险性区划探索[J]. 地理与地理信息科学, 26(6): 19 − 23

    Google Scholar

    Zhao Y N, Niu R Q, 2010. Exploration of Landslide Hazard Zonation Based on the Weights of Evidence Method. Geography and Geo-Information Science, 26(6): 19 − 23.

    Google Scholar

    [21] 钟亩锋, 2019. 基于确定性系数与Logistic回归模型的地质灾害易发性评价[J]. 世界有色金属, (23): 186 − 190

    Google Scholar

    Zhong M F, 2019. Geological Hazard Susceptibility Evaluation Based on Certainty Factor and Logistic Regression Model. World Nonferrous Metals, (23): 186 − 190.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(4)

Article Metrics

Article views(1293) PDF downloads(136) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint