2021 Vol. 41, No. 2
Article Contents

GENG Quanru, LI Wenchang, WANG Liquan, ZENG Xiangting, PENG Zhimin, ZHANG Xiangfei, ZHANG Zhang, CONG Feng, GUAN Junlei. 2021. Paleozoic tectonic framework and evolution of the central and western Tethys. Sedimentary Geology and Tethyan Geology, 41(2): 297-315. doi: 10.19826/j.cnki.1009-3850.2021.02012
Citation: GENG Quanru, LI Wenchang, WANG Liquan, ZENG Xiangting, PENG Zhimin, ZHANG Xiangfei, ZHANG Zhang, CONG Feng, GUAN Junlei. 2021. Paleozoic tectonic framework and evolution of the central and western Tethys. Sedimentary Geology and Tethyan Geology, 41(2): 297-315. doi: 10.19826/j.cnki.1009-3850.2021.02012

Paleozoic tectonic framework and evolution of the central and western Tethys

  • The Paleozoic tectonic domain in central and western Tethys is divided in this paper on the basis of the results of research and regional geological correlation at home and abroad,into the Iapetus tornquist Caledonian orogenic belt, the Rheic Variscan orogenic belt and the Ural Tianshan Central Asia orogenic belt.The results of research in this paper led us to the following conclusions. (1) The Proto-Tethyan ocean formed by the break-up of Rodinia supercontinent during the Neoproterozoic is represented by the Iapetus and Tornquist suture zones in Europe, which closed to form Caledonian orogenic zones at ~ 420 Ma, similar to the Qinling-Qilian-Kunlun orogenic zones in China.(2) The Rheic Ocean is similar to the Longmucuo-Shuanghu-Changning-Mmenglian Ocean in the eastern part of the Tethys. It was the major Paleozoic Tethyan Ocean and the Paleo-Tethys formed during the Devonian was actually one of its sub-branches. All of the Rheic sub-branch oceans closed at 320~ 310 Ma, forming the Variscan orogenic zone and Pangea supercontinent.(3) The Plankogel zone in the Southern Alps, the pontides zone in northern Turkey and the Rasht -Mashhad zone in northern Iran are Paleo-Tethyan suture zones, representing Devonian-Permian ocean basins. The Late Carboniferous-Early Triassic Silk Road Arc corresponds to the Wangguoshan volcanic arc in central Qiangtang, China.(4) The Cimmerides zone in central and western Tethys and the Indosinian zone in central Qiangtang are typical accretionary orogenic zones of Paleo-Tethys.
  • 加载中
  • Abati J, Gerdes A, Suárez J F, et al., 2010. Magmatism and early-Variscan continental subduction in the northern Gondwana margin recorded in zircons from the basal units of Galicia, NW Spain[J]. GSA Bulletin, 122(1-2): 219-235.

    Google Scholar

    Ager D V, 1980. The Geology of Europe[M]. London: McGraw-Hill.

    Google Scholar

    Alvarez-Marron J, Brown D, Perez-Estaun A, et al., 2000. Accretionary complex structure and kinematics during Paleozoic arc-continent collision in the southern Urals[J]. Tectonophysics, 325(1-2): 175-191.

    Google Scholar

    Antić M, Peytcheva I, Von Quadt A, et al., 2016. Pre-Alpine evolution of a segment of the North-Gondwanan margin: geochronological and geochemical evidence from the central Serbo-Macedonian Massif[J]. Gondwana Research, 36: 523-544.

    Google Scholar

    Augland L E, Andresen A, Corfu F, 2012. Late ordovician to silurian ensialic magmatism in liverpool land, east Greenland: new evidence extending the northeastern branch of the continental laurentian magmatic arc[J]. Geological Magazine, 149(4): 561-577.

    Google Scholar

    Bagheri S, Stampfli G M, 2008. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications[J]. Tectonophysics, 451(1-4): 123-155.

    Google Scholar

    Baran Z O, Dilek Y, Stockli D, 2017. Diachronous uplift and cooling history of the Menderes core complex, western Anatolia (Turkey), based on new Zircon (U-Th)/He ages[J]. Tectonophysics, 694: 181-196.

    Google Scholar

    Bingen B, Belousova E A, Griffin W L, 2011. Neoproterozoic Recycling of the Sveconorwegian Orogenic Belt: detrital-zircon data from the Sparagmite Basins in the Scandinavian Caledonides[J]. Precambrian Research, 189(3-4): 347-367.

    Google Scholar

    Bonev N, Dilek Y, 2010. Geochemistry and tectonic significance of proto-ophiolitic metamafic units from the Serbo-Macedonian and western Rhodope massifs (Bulgaria-Greece)[J]. International Geology Review, 52(2-3): 298-335.

    Google Scholar

    Brown D, Spadea P, Puchkov V, et al., 2006. Arc-continent collision in the Southern Urals[J]. Earth-Science Reviews, 79(3-4): 261-287.

    Google Scholar

    Brueckner H K, Gilotti J A, Nutman A P, 1998. Caledonian eclogite-facies metamorphism of Early Proterozoic protoliths from the North-East Greenland Eclogite Province[J]. Contributions to Mineralogy and Petrology, 130(2): 103-120.

    Google Scholar

    Buchs D M, Bagheri S, Martin L, et al., 2013. Paleozoic to Triassic ocean opening and closure preserved in Central Iran: constraints from the geochemistry of meta-igneous rocks of the Anarak area[J]. Lithos, 172-173: 267-287.

    Google Scholar

    Cawood P A, Johnson M R W, Nemchin A A, 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 255(1-2): 70-84.

    Google Scholar

    Charvet J, Shu L S, Laurent-Charvet S, et al., 2011. Palaeozoic tectonic evolution of the Tianshan belt, NW China[J]. Science China Earth Sciences, 54(2): 166-184.

    Google Scholar

    Doublier M P, Potel S, Franke W, et al., 2012. Very low-grade metamorphism of Rheno-Hercynian allochthons (Variscides, Germany): facts and tectonic consequences[J]. International Journal of Earth Sciences, 101(5): 1229-1252.

    Google Scholar

    Fernández R D, Arenas R, Pereira M F, et al., 2016. Tectonic evolution of Variscan Iberia: Gondwana-Laurussia collision revisited[J]. Earth-Science Reviews, 162: 269-292.

    Google Scholar

    Franke W, Cocks L R M, Torsvik T H, 2017. The Palaeozoic Variscan oceans revisited[J]. Gondwana Research, 48: 257-284.

    Google Scholar

    Furnes H, Dilek Y, Zhao G C, et al., 2020. Geochemical characterization of ophiolites in the Alpine-Himalayan Orogenic Belt: magmatically and tectonically diverse evolution of the Mesozoic Neotethyan oceanic crust[J]. Earth-Science Reviews, 208: 103258.

    Google Scholar

    Gessner K, Piazolo S, Güngör T, et al., 2001. Tectonic significance of deformation patterns in granitoid rocks of the Menderes nappes, Anatolide belt, southwest Turkey[J]. International Journal of Earth Sciences, 89(4): 766-780.

    Google Scholar

    Glass L M, Phillips D, 2006. The Kalkarindji continental flood basalt province: a new Cambrian large igneous province in Australia with possible links to faunal extinctions[J]. Geology, 34(6): 461-464.

    Google Scholar

    Görür N, 1991. Aptian-Albian palaeogeography of Neo-Tethyan domain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 87(1-4): 267-288.

    Google Scholar

    Guest B, Axen G J, Lam P S, et al., 2006. Late Cenozoic shortening in the west-central Alborz Mountains, northern Iran, by combined conjugate strike-slip and thin-skinned deformation[J]. Geosphere, 2(1): 35-52.

    Google Scholar

    Guillot F, Schaltegger U, Bertrand J M, et al., 2002. Zircon U-Pb geochronology of Ordovician magmatism in the polycyclic Ruitor Massif (Internal W Alps)[J]. International Journal of Earth Sciences, 91(6): 964-978.

    Google Scholar

    Hajialioghli R, Moazzen M, Droop G T R, et al., 2007. Serpentine polymorphs and P-T evolution of metaperidotites and serpentinites in the Takab area, NW Iran[J]. Mineralogical Magazine, 71(2): 203-222.

    Google Scholar

    Hatcher Jr R D, 2002. Alleghanian (Appalachian) orogeny, a product of zipper tectonics: rotational transpressive continent-continent collision and closing of ancient oceans along irregular margins[M]// Martinez Catalan J R, Hatcher Jr R D, Arenas R, et al.Variscan-Appalachian Dynamics: the Building of the Late Paleozoic Basement. Special Paper of the Geological Society of America. 199-208.

    Google Scholar

    Hetzel R, Reischmann T, 1996. Intrusion age of Pan-African augen gneisses in the southern Menderes massif and the age of cooling after Alpine ductile extensional deformation[J]. Geological Magazine, 133(5): 565-572.

    Google Scholar

    Hippolyte J C, 2002. Geodynamics of Dobrogea (Romania): new constraints on the evolution of the Tornquist-Teisseyre Line, the Black Sea and the Carpathians[J]. Tectonophysics, 357(1-4): 33-53.

    Google Scholar

    Hsü K J, Pan G T, Sengör A M C, et al., 1995. Tectonic evolution of the Tibetan Plateau: a working hypothesis based on the Archipelago model of orogenesis[J]. International Geology Review, 37(6): 473-508.

    Google Scholar

    Ivanov K S, Puchkov V N, Fyodorov Y N, et al., 2013. Tectonics of the Urals and adjacent part of the West-Siberian platform basement: Main features of geology and development[J]. Journal of Asian Earth Sciences, 72: 12-24.

    Google Scholar

    Johnston S M, Hartz E H, Brueckner H K, et al., 2010. U-Pb zircon geochronology and tectonostratigraphy of southern liverpool land, east greenland: implications for deformation in the overriding plates of continental collisions[J]. Earth and Planetary Science Letters, 297(3-4): 512-524.

    Google Scholar

    Kalsbeek F, Jepsen H F, Nutman A P, 2001. From source migmatites to plutons: tracking the origin of ca.435 Ma S-Type granites in the east greenland caledonian orogen[J]. Lithos, 57(1): 1-21.

    Google Scholar

    Kalvoda J, Bábek O, 2010. The margins of laurussia in central and southeast Europe and southwest Asia[J]. Gondwana Research, 17(2-3): 526-545.

    Google Scholar

    Karimpour M H, Farmer G L, Stern C R, 2010. Geochronology, radiogenic isotope geochemistry, and petrogenesis of Sangbast Paleo-Tethys monzogranite, Mashhad, Iran[J]. Journal of Crystallography and Mineralogy, 17(4): 707-719.

    Google Scholar

    Koglin N, Kostopoulos D, Reischmann T, 2009. The Lesvos mafic-ultramafic complex, Greece: ophiolite or incipient rift?[J]. Lithos, 108(1-4): 243-261.

    Google Scholar

    Li S Z, Zhao S J, Liu X, et al., 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 186: 37-75.

    Google Scholar

    Liang X, Wang G H, Yang B, et al., 2017. Stepwise exhumation of the Triassic Lanling high-pressure metamorphic belt in Central Qiangtang, Tibet: Insights from a coupled study of metamorphism, deformation, and geochronology[J]. Tectonics, 36(4): 652-670.

    Google Scholar

    Liu Y J, Neubauer F, Yuan S H, et al., 2019. The Plankogel complex within the Austroalpine nappe complex of Eastern Alps: A Paleotethyan suture?[C]//Emile Argand Conference on Alpine Geological Studies 2019. Sion.

    Google Scholar

    Maino M, Gaggero L, Langone A, et al., 2019. Cambro-Silurian magmatisms at the northern Gondwana margin (Penninic basement of the Ligurian Alps)[J]. Geoscience Frontiers, 10(1): 315-330.

    Google Scholar

    Manafi M, Arian M, Raeesi S H T, et al., 2013. Tethys subduction history in Caucasus Region[J]. Open Journal of Geology, 3(3): 222-232.

    Google Scholar

    Mazur S, Krzywiec P, Malinowski M, et al., 2018. On the nature of the Teisseyre-Tornquist Zone[J]. Geology, Geophysics & Environment, 44(1): 17-30.

    Google Scholar

    Moghadam H S, Stern R J, 2014. Ophiolites of Iran: keys to understanding the tectonic evolution of SW Asia: (I) Paleozoic ophiolites[J]. Journal of Asian Earth Sciences, 91: 19-38.

    Google Scholar

    Moghadam H S, Stern R J, 2015. Ophiolites of Iran: keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites[J]. Journal of Asian Earth Sciences, 100: 31-59.

    Google Scholar

    Moix P, Beccaletto L, Kozur H W, et al., 2008. A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region[J]. Tectonophysics, 451(1-4): 7-39.

    Google Scholar

    Natal’in B A,Şengör A M C, 2005. Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: The pre-history of the Palaeo-Tethyan closure[J]. Tectonophysics, 404(3-4): 175-202.

    Google Scholar

    Nikishin A M, Ziegler P A, Abbott D, et al., 2002. Permo-Triassic intraplate magmatism and rifting in Eurasia: implications for mantle plumes and mantle dynamics[J]. Tectonophysics, 351(1-2): 3-39.

    Google Scholar

    Okay A I, Bozkurt E, Satır M, et al., 2008. Defining the southern margin of Avalonia in the Pontides: Geochronological data from the Late Proterozoic and Ordovician granitoids from NW Turkey[J]. Tectonophysics, 461(1-4): 252-264.

    Google Scholar

    Palmeri R, Fanning M, Franceschelli M, et al., 2004. SHRIMP dating of zircons in eclogite from the Variscan basement in north-eastern Sardinia (Italy)[J]. Neues Jahrbuch Für Mineralogie-Monatshefte(6): 275-288.

    Google Scholar

    Pamić J, 1993. Eoalpine to Neoalpine magmatic and metamorphic processes in the northwestern Vardar Zone, the easternmost Periadriatic Zone and the southwestern Pannonian Basin[J]. Tectonophysics, 226(1-4): 503-518.

    Google Scholar

    Pan G T, Wang L Q, Li R S, et al., 2012. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 53: 3-14.

    Google Scholar

    Pereira M F, Castro A, Fernández C, 2015. The inception of a Paleotethyan magmatic arc in Iberia[J]. Geoscience Frontiers, 6(2): 297-306.

    Google Scholar

    Poshtkoohi M, 2012. Evaluation of tectonic setting of the Proto-tethyan remnants in Central Iran: a geochemical study[J]. Acta Geoscietica Sinica, 33(S1): 55-57.

    Google Scholar

    Poshtkoohi M, Ahmad T, Choudhary A K, 2018. Geochemistry and petrogenesis of Biabanak-Bafq mafic magmatism: Implication for the evolution of central Iranian terrane[J]. Journal of Earth System Science, 127(5): 72, doi: 10.1007/s12040-018-0969-5.

    Google Scholar

    Reischmann T, Kostopoulos D K, Loos S, et al., 2001. Late palaeozoic magmatism in the basement rocks Southwest of Mt. Olympos, Central Pelagonian zone, Greece: Remnants of a permo-carboniferous magmatic arc[J]. Bulletin of the Geological Society of Greece, 34(3): 985-993.

    Google Scholar

    Robert B, Domeier M, Jakob J, 2020. Iapetan oceans: an analog of tethys?[J]. Geology, 48(9): 929-933.

    Google Scholar

    Robertson A, 2004. Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions[J]. Earth-Science Reviews, 66(3-4): 331-387.

    Google Scholar

    Rolland Y, 2017. Caucasus collisional history: review of data from East Anatolia to West Iran[J]. Gondwana Research, 49: 130-146.

    Google Scholar

    Saccani E, Azimzadeh Z, Dilek Y, Jahangiri A, 2013. Geochronology and petrology of the Early Carboniferous Misho Mafic Complex (NW Iran), and implications for the melt evolution of Paleo-Tethyan rifting in Western Cimmeria[J]. Lithos, 162-163: 264-278.

    Google Scholar

    Saki A, 2010. Proto-Tethyan remnants in northwest Iran: geochemistry of the gneisses and metapelitic rocks[J]. Gondwana Research, 17(4): 704-714.

    Google Scholar

    Schmid S M, Bernoulli D, Fügenschuh B, et al., 2008. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units[J]. Swiss Journal of Geosciences, 101(1): 139-183.

    Google Scholar

    Schmid S M, Fügenschuh B, Kounov A, et al., 2020. Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey[J]. Gondwana Research, 78: 308-374.

    Google Scholar

    Şengör A M C, 1979. Mid-mesozoic closure of Permo-Triassic Tethys and its implications[J]. Nature, 279(5714): 590-593.

    Google Scholar

    Şengör A M C, 1989. The Tethyside orogenic system: an introduction[M]//Şengör A M C. Tectonic Evolution of the Tethyan Region. Dordrecht: Springer. 1-22.

    Google Scholar

    Şengör A M C, Cin A, Rowley D B, et al., 1991. Magmatic evolution of the Tethysides: a guide to reconstruction of collage history[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 87(1-4): 411-440.

    Google Scholar

    Şengör A M C, Natal’in B A, Sunal G, et al., 2018. The tectonics of the altaids: crustal growth during the construction of the continental lithosphere of central Asia between ~750 and ~130 Ma Ago[J]. Annual Review of Earth and Planetary Sciences, 46: 439-494.

    Google Scholar

    Song S G, Bi H Z, Qi S S, et al., 2018. HP-UHP metamorphic belt in the East Kunlun Orogen: Final closure of the Proto-Tethys Ocean and formation of the Pan-North-China continent[J]. Journal of Petrology, 59(11): 2043-2060.

    Google Scholar

    Stampfli G M, Borel G D, 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons[J]. Earth and Planetary Science Letters, 196(1-2): 17-33.

    Google Scholar

    Stampfli G M, Borel G D, 2004. The TRANSMED transects in space and time: constraints on the Paleotectonic evolution of the Mediterranean domain[M]//Cavazza W, Roure F, Spakman W, et al. The Transmed Atlas: the Mediterranean Region from Crust to Mantle. Heidelberg: Springer. 53-90.

    Google Scholar

    Stöcklin J, 1968. Structural history and tectonics of Iran: a review[J]. AAPG Bulletin, 52(7): 1229-1258.

    Google Scholar

    Tikhomirov P L, Chalot-Prat F, Nazarevich B P, 2004. Triassic volcanism in the Eastern Fore-Caucasus: evolution and geodynamic interpretation[J]. Tectonophysics, 381(1-4): 119-142.

    Google Scholar

    Topuz G, Okay A I, Schwarz W H, et al., 2018. A middle Permian ophiolite fragment in Late Triassic greenschist-to blueschist-facies rocks in NW Turkey: an earlier pulse of suprasubduction-zone ophiolite formation in the Tethyan belt[J]. Lithos, 300-301: 121-135.

    Google Scholar

    Torsvik T H, 2019. Earth history: a journey in time and space from base to top[J]. Tectonophysics, 760: 297-313.

    Google Scholar

    Torsvik T H, Cocks L R M, 2013. Gondwana from top to base in space and time[J]. Gondwana Research, 24(3-4): 999-1030.

    Google Scholar

    Torsvik T H, Rehnström E F, 2003. The Tornquist sea and Baltica-Avalonia docking[J]. Tectonophysics, 362(1-4): 67-82.

    Google Scholar

    Von Raumer J F, Bussy F, Stampfli G M, 2009. The Variscan evolution in the External massifs of the Alps and place in their Variscan framework[J]. Comptes Rendus Geoscience, 341(2-3): 239-252.

    Google Scholar

    Von Raumer J F, Stampfli G M, 2008. The birth of the Rheic ocean: Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios[J]. Tectonophysics, 461(1-4): 9-20.

    Google Scholar

    Whitney D L, Dilek Y, 1997. Core complex development in Central Anatolia, Turkey[J]. Geology, 25(11): 1023-1026.

    Google Scholar

    Whitney D L, Dilek Y, 1998. Metamorphism during Alpine crustal thickening and extension in central Anatolia, Turkey: the Niǧde metamorphic core complex[J]. Journal of Petrology, 39(7): 1385-1403.

    Google Scholar

    Yanev S, 2000. Palaeozoic terranes of the Balkan Peninsula in the framework of Pangea assembly[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 161(1-2): 151-177.

    Google Scholar

    Yiǧitbaş E, Kerrich R, Yılmaz Y, et al., 2004. Characteristics and geochemistry of Precambrian ophiolites and related volcanics from the Istanbul-Zonguldak Unit, Northwestern Anatolia, Turkey: following the missing chain of the Precambrian South European suture zone to the east[J]. Precambrian Research, 132(1-2): 179-206.

    Google Scholar

    Zhong X Y, Li Z H, 2019. Forced subduction initiation at passive continental margins: velocity-driven versus stress-driven[J]. Geophysical Research Letters, 46(20): 11054-11064, doi: 10.1029/2019GL084022.

    Google Scholar

    Zhong X Y, Li Z H, 2020. Subduction initiation during collision-induced subduction transference: numerical modeling and implications for the Tethyan evolution[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB019288, doi: 10.1029/2019JB019288.

    Google Scholar

    Zulauf G, Dörr W, Fisher-Spurlock S C, et al., 2015. Closure of the paleotethys in the external hellenides: constraints from U-Pb ages of magmatic and detrital zircons (Crete)[J]. Gondwana Research, 28(2): 642-667.

    Google Scholar

    Zuza A V, Yin A, 2017. Balkatach hypothesis: a new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains[J]. Geosphere, 13(5): 1664-1712.

    Google Scholar

    耿全如, 潘桂棠, 王立全, 等, 2011. 班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景[J]. 地质通报, 30(8): 1261-1274.

    Google Scholar

    黄岗, 张占武, 董志辉, 等, 2011. 南天山铜花山蛇绿混杂岩中斜长花岗岩锆石LA-ICP-MS微区U-Pb定年及其地质意义[J]. 中国地质, 38(1): 94-102.

    Google Scholar

    黄汲清, 陈炳蔚, 1987. 中国及邻区特提斯海的演化[M]. 北京: 地质出版社. 1-90.

    Google Scholar

    江庆源, 李才, 解超明, 等, 2014. 藏北羌塘冈玛错地区望果山组火山岩地球化学特征及LA-ICP-MS锆石U-Pb年龄[J]. 地质通报, 33(11): 1702-1714.

    Google Scholar

    李才, 董永胜, 翟庆国, 等, 2008. 青藏高原羌塘早古生代蛇绿岩——堆晶辉长岩的锆石SHRIMP定年及其意义[J]. 岩石学报, 24(1): 31-36.

    Google Scholar

    李才, 黄小鹏, 翟庆国, 等, 2006. 龙木错一双湖一吉塘板块缝合带与青藏高原冈瓦纳北界[J]. 地学前缘, 13(4): 136-147.

    Google Scholar

    李才, 谢尧武, 董永胜, 等, 2009. 北澜沧江带的性质-是冈瓦纳板块与扬子板块的界线吗?[J]. 地质通报, 28(12): 1711-1719.

    Google Scholar

    李继亮, 2004. 增生型造山带的基本特征[J]. 地质通报, 23(9-10): 947-951.

    Google Scholar

    李三忠, 杨朝, 赵淑娟, 等, 2016a. 全球早古生代造山带(Ⅱ): 俯冲一增生型造山[J]. 吉林大学学报(地球科学版), 46(4): 968-1004.

    Google Scholar

    李三忠, 杨朝, 赵淑娟, 等, 2016b. 全球早古生代造山带(Ⅰ): 碰撞型造山[J]. 吉林大学学报(地球科学版), 46(4): 945-967.

    Google Scholar

    刘凤山, 1999. 欧洲大陆岩石圈动力学研究现状与进展[J]. 地质科技情报, 18(4): 1-6.

    Google Scholar

    马中平, 夏林圻, 徐学义, 等, 2007. 南天山库勒湖蛇绿岩锆石年龄及其地质意义[J]. 西北大学学报(自然科学版), 37(1): 107-110.

    Google Scholar

    毛晓长, 王根厚, 梁晓, 等, 2015. 增生杂岩带1:5万地质填图的实践与探索: 以西藏羌塘中部角木日地区为例[J]. 地学前缘, 22(3): 382-393.

    Google Scholar

    潘桂棠, 陈智梁, 李兴振, 等, 1997. 东特提斯地质构造形成演化[M]. 北京: 地质出版社. 1-197.

    Google Scholar

    潘桂棠, 李兴振, 王立全, 等, 2002. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 21(11): 701-707.

    Google Scholar

    潘桂棠, 王立全, 耿全如, 等, 2020. 班公湖-双湖-怒江-昌宁-孟连对接带时空结构——特提斯大洋地质及演化问题[J]. 沉积与特提斯地质, 40(3): 1-19.

    Google Scholar

    潘桂棠, 王立全, 李荣社, 2012. 多岛弧盆系构造模式: 认识大陆地质的关键[J]. 沉积与特提斯地质, 32(3): 1-20.

    Google Scholar

    潘桂棠, 王立全, 尹福光, 等, 2004. 从多岛弧盆系研究实践看板块构造登陆的魅力[J]. 地质通报, 23(9-10): 933-939.

    Google Scholar

    潘桂棠, 肖庆辉, 陆松年, 等, 2008. 大地构造相的定义、划分、特征及其鉴别标志[J]. 地质通报, 27(10): 1613-1637.

    Google Scholar

    潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1-28.

    Google Scholar

    潘桂棠, 肖庆辉, 尹福光, 等, 2015. 中国大地构造图(1: 250万)说明书[M]. 北京: 地质出版社.

    Google Scholar

    彭智敏, 耿全如, 潘桂棠, 等, 2014. 青藏高原羌塘中部变玄武岩锆石SHRIMP年代学及Nd-Pb同位素特征[J]. 中国科学: 地球科学, 44(5): 872-883.

    Google Scholar

    宋述光, 张贵宾, 张聪, 等, 2013. 大洋俯冲和大陆碰撞的动力学过程: 北祁连-柴北缘高压-超高压变质带的岩石学制约[J]. 科学通报, 58(23): 2240-2245.

    Google Scholar

    万博, 吴福元, 陈凌, 等, 2019. 重力驱动的特提斯单向裂解-聚合动力学[J]. 中国科学(地球科学), 49(12): 2004-2017.

    Google Scholar

    王保弟, 王立全, 潘桂棠, 等, 2013. 昌宁-孟连结合带南汀河早古生代辉长岩锆石年代学及地质意义[J]. 科学通报, 58(4): 344-354.

    Google Scholar

    王斌, 陈博, 计文化, 等, 2016. 吉尔吉斯南天山Djanydjer蛇绿混杂岩地质特征及辉长岩年代学研究[J]. 地学前缘, 23(3): 198-209.

    Google Scholar

    王鸿祯, 1997. 地球的节律与大陆动力学的思考[J]. 地学前缘, 4(3-4): 1-12.

    Google Scholar

    王立全, 潘桂棠, 李才, 等, 2008a. 藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP U-Pb年龄-兼论原-古特提斯洋的演化[J]. 地质通报, 27(12): 2045-2056.

    Google Scholar

    王立全, 潘桂棠, 朱弟成, 等, 2008b. 西藏冈底斯带石炭纪-二叠纪岛弧造山作用: 火山岩和地球化学证据[J]. 地质通报, 27(9): 1509-1534.

    Google Scholar

    吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627-1674.

    Google Scholar

    许志琴, 杨经绥, 李海兵, 等, 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成[J]. 地质学报, 80(12): 1793-1806.

    Google Scholar

    袁四化, 刘永江, Neubauer F, 等, 2020. 东阿尔卑斯原-古特提斯构造演化[J]. 岩石学报, 36(8): 2357-2382.

    Google Scholar

    袁四化,刘永江,常瑞虹,等,2021. 从多岛弧盆系构造看西特提斯造山系构造演化[J/OL].沉积与特提斯地质.https://doi.org/10.19826/j.cnki.1009-3850.2021.02004.

    Google Scholar

    张克信, 潘桂棠, 何卫红, 等, 2015. 中国构造-地层大区划分新方案[J]. 地球科学-中国地质大学学报, 40(2): 206-233.

    Google Scholar

    周鼎武, 苏犁, 简平, 等, 2004. 南天山榆树沟蛇绿岩地体中高压麻粒岩SHRIMP锆石U-Pb年龄及构造意义[J]. 科学通报, 49(14): 1411-1415.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1390) PDF downloads(69) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint