2021 Vol. 41, No. 2
Article Contents

YUAN Sihua, LIU Yongjiang, CHANG Ruihong, NEUBAUER Franz, GENSER Johann, GUAN Qingbing, HUANG Qianwen. 2021. A brief review on the tectonic evolution of the west Tethysides. Sedimentary Geology and Tethyan Geology, 41(2): 316-331. doi: 10.19826/j.cnki.1009-3850.2021.02004
Citation: YUAN Sihua, LIU Yongjiang, CHANG Ruihong, NEUBAUER Franz, GENSER Johann, GUAN Qingbing, HUANG Qianwen. 2021. A brief review on the tectonic evolution of the west Tethysides. Sedimentary Geology and Tethyan Geology, 41(2): 316-331. doi: 10.19826/j.cnki.1009-3850.2021.02004

A brief review on the tectonic evolution of the west Tethysides

  • The research progress of the main suture zones in the west Tethysides and the development characteristics of the oceanic basin represented by them are reviewed. We propose the potential location of the Paleo-Tethys suture and summarize a brief evolution of the Paleo-Tethyan Ocean. Combining with regional geological data, this paper discusses the tectonic framework of the west Tethysides during the latest Paleozoic to the Mesozoic. The similar tectonic evolution is also found within the Paleo-Tethys which can be compared between the east and west parts. From the latest Paleozoic onward, the west Tethysides realm was mainly affected by double-sided subduction of the Paleo-Tethys.The Neo-Tethys was characterised by archipelagic arc-basin system during the Mesozoic, which succeed the Permian rifts in the aftermath of the Paleo-Tethys subduction. The west Tethysides was mainly manifested by the orogenesis of collaped back-arc basin.
  • 加载中
  • Akbayram K, Okay A I, SatƖr M, 2013. Early Cretaceous closure of the Intra-Pontide Ocean in western Pontides (northwestern Turkey)[J]. Journal of Geodynamics, 65: 38-55.

    Google Scholar

    Alparslan G, Dilek Y, 2018. Seafloor spreading structure, geochronology, and tectonic evolution of the Küre ophiolite, Turkey: a Jurassic continental backarc basin oceanic lithosphere in southern Eurasia[J]. Lithosphere, 10(1): 14-34.

    Google Scholar

    Amante C, Eakins B W, 2009. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis[R]. NOAA Technical Memorandum NESDIS NGDC-24. Boulder: NOAA.

    Google Scholar

    Anders B, Reischmann T, Kostopoulos D, et al., 2006. The oldest rocks of Greece: first evidence for a Precambrian terrane within the Pelagonian Zone[J]. Geological Magazine, 143(1): 41-58.

    Google Scholar

    Anders B, Reischmann T, Poller U, et al., 2005. Age and origin of granitic rocks of the eastern Vardar Zone, Greece: new constraints on the evolution of the Internal Hellenides[J]. Journal of the Geological Society, 162(5): 857-870.

    Google Scholar

    Argnani A, 2018. Subduction evolution of the dinarides and the cretaceous orogeny in the eastern alps: hints from a new paleotectonic interpretation[J]. Tectonics, 37(2): 621-635.

    Google Scholar

    Aysal N,Şahin S Y, Güngör Y, et al., 2018. Middle Permian-early Triassic magmatism in the Western Pontides, NW Turkey: geodynamic significance for the evolution of the Paleo-Tethys[J]. Journal of Asian Earth Sciences, 164: 83-103.

    Google Scholar

    Babić L, Hochuli P A, Zupanic J, 2002. The Jurassic ophiolitic mélange in the NE Dinarides: dating, internal structure and geotectonic implications[J]. Eclogae Geologicae Helvetiae, 95(3): 263-275.

    Google Scholar

    Bauer C, Rubatto D, Krenn K, et al., 2007. A zircon study from the Rhodope metamorphic complex, N-Greece: time record of a multistage evolution[J]. Lithos, 99(3-4): 207-228.

    Google Scholar

    Bernoulli D, Jenkyns H C, 1974. Alpine, mediterranean, and central atlantic mesozoic facies in relation to the early evolution of the tethys[M]//Dott R H Jr, Shaver R H. Modern and Ancient Geosynclinal Sedimentation. SEPM Special Publications. 129-160.

    Google Scholar

    Bernoulli D, Laubscher H, 1972. The palinspastic problem of the hellenides[J]. Eclogae Geologicae Helvetiae, 65(1): 107-118.

    Google Scholar

    Berza T, Constantinescu E, Vlad S-N, 1998. Upper cretaceous magmatic series and associated mineralisation in the carpathian -balkan orogen[J]. Resource Geology, 48(4): 291-306.

    Google Scholar

    Billi A, Faccenna C, Bellier O, et al., 2011. Recent tectonic reorganization of the Nubia-Eurasia convergent boundary heading for the closure of the western Mediterranean[J]. Bulletin de la Société Géologique de France, 182(4): 279-303.

    Google Scholar

    Bonev N, Marchev P, Moritz R, et al., 2015. Jurassic subduction zone tectonics of the Rhodope Massif in the Thrace region (NE Greece) as revealed by new U-Pb and 40Ar/39Ar geochronology of the Evros ophiolite and high-grade basement rocks[J]. Gondwana Research, 27(2): 760-775.

    Google Scholar

    Bortolotti V, Chiari M, Marroni M, et al., 2013. Geodynamic evolution of ophiolites from Albania and Greece (Dinaric-Hellenic belt): one, two, or more oceanic basins?[J]. International Journal of Earth Sciences, 102(3): 783-811.

    Google Scholar

    Bortolotti V, Kodra A, Marroni M, et al., 1996. Geology and petrology of ophiolitic sequences in Mirdita region (northern Albania)[J]. Ofioliti, 21(1): 3-20.

    Google Scholar

    Bortolotti V, Marroni M, Nicolae I, et al., 2002a. Geodynamic implications of jurassic ophiolites associated with island-arc volcanics, south Apuseni Mountains, western Romania[J]. International Geology Review, 44(10): 938-955.

    Google Scholar

    Bortolotti V, Marroni M, Nicolae I, et al., 2004. An update of the Jurassic ophiolites and associated Calc-alkaline rocks in the South Apuseni Mountains (Western Romania)[J]. Ofioliti, 29(1): 5-18.

    Google Scholar

    Bortolotti V, Marroni M, Pandolfi L, et al., 2002b. Interaction between mid-ocean ridge and subduction magmatism in Albanian ophiolites[J]. The Journal of Geology, 110(5): 561-576.

    Google Scholar

    Božović M, Prelević D, Romer R L, et al., 2013. The demir kapija ophiolite, macedonia (FYROM): a snapshot of subduction initiation within a back-arc[J]. Journal of Petrology, 54(7): 1427-1453.

    Google Scholar

    Bragin N, Bragina L, Spajić N G, et al., 2019. New radiolarian data from the Jurassic ophiolitic mélange of Avala Mountain (Serbia, Belgrade Region)[J]. Swiss Journal of Geosciences, 112(1): 235-249.

    Google Scholar

    Brown S A M, Robertson A H F, 2004. Evidence for Neotethys rooted within the Vardar suture zone from the Voras Massif, northernmost Greece[J]. Tectonophysics, 381(1-4): 143-173.

    Google Scholar

    Brunn J H, Argyriadis I, Ricou L E, et al., 1976. Elements majeurs de liaison entre Taurides et Hellenides[J]. Bulletin de la Société Géologique de France, 18(2): 481-497.

    Google Scholar

    Burchfiel B C, 1980. Eastern European Alpine system and the Carpathian orocline as an example of collision tectonics[J]. Tectonophysics, 63(1-4): 31-61.

    Google Scholar

    Candan O, Akal C, Koralay O E, et al., 2016. Carboniferous granites on the northern margin of Gondwana, Anatolide-Tauride Block, Turkey-Evidence for southward subduction of Paleotethys[J]. Tectonophysics, 683: 349-366.

    Google Scholar

    Castellarin A, Lucchini F, Rossi P L, et al., 1988. The Middle Triassic magmatic-tectonic arc development in the Southern Alps[J]. Tectonophysics, 146(1-4): 79-89.

    Google Scholar

    Cavazza W, Roure F, Spakman W, et al., 2004. The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle[M]. Berlin: Springer. 141.

    Google Scholar

    Channell J E T, Kozur H W, 1997. How many oceans? Meliata, Vardar and Pindos oceans in Mesozoic Alpine paleogeography[J]. Geology, 25(2): 183-186.

    Google Scholar

    Chiari M, Marcucci M, Prela M, 2002. New species of Jurassic radiolarians in the sedimentary cover of ophiolites in the Mirdita area, Albania[J]. Micropaleontology, 48(1): 61-87.

    Google Scholar

    Cocks L R M, Torsvik T H, 2011. The Palaeozoic geography of Laurentia and western Laurussia: a stable craton with mobile margins[J]. Earth-Science Reviews, 106(1-2): 1-51, doi: 10.1016/j.earscirev.2011.01.007.

    Google Scholar

    Csontos L, Vörös A, 2004. Mesozoic plate tectonic reconstruction of the Carpathian region[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1): 1-56.

    Google Scholar

    Cvetković V,Šarić K, Grubić A, et al., 2014. The Upper Cretaceous ophiolite of North Kozara-remnants of an anomalous mid-ocean ridge segment of the Neotethys?[J]. Geologica Carpathica, 65(2): 117-130.

    Google Scholar

    de Broucker G, Mellin A, Duindam P, 1998. Tectono-stratigraphic evolution of the Transylvanian Basin pre-salt sequence Romania[M]//Dinu C, Mocanu V H. Geological Structure and Hydrocarbon Potential of the Romanian Area. Bucharest Geoscience Forum. 36-69.

    Google Scholar

    de Lamotte D F, Fourdan B, Leleu S, et al., 2015. Style of rifting and the stages of Pangea breakup[J]. Tectonics, 34(5): 1009-1029.

    Google Scholar

    Decarlis A, Dallagiovanna G, Lualdi A, et al., 2013. Stratigraphic evolution in the Ligurian Alps between Variscan heritages and the Alpine Tethys opening: a review[J]. Earth-Science Reviews, 125: 43-68.

    Google Scholar

    Degnan P J, Robertson A H F, 1998. Mesozoic-early Tertiary passive margin evolution of the Pindos ocean (NW Peloponnese, Greece)[J]. Sedimentary Geology, 117(1-2): 33-70.

    Google Scholar

    Dilek Y, Furnes H, 2009. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems[J]. Lithos, 113(1-2): 1-20.

    Google Scholar

    Dilek Y, Furnes H, Shallo M, 2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust[J]. Lithos, 100(1-4): 174-209.

    Google Scholar

    Dimitrijević M D, 1997. Geology of Yugoslavia[M]. Belgrade: Geological Institute GEMINI Special Publication. 187.

    Google Scholar

    Dimitrijević M N, Dimitrijević M D, Karamata S, et al., 2003. Olistostrome/mélanges-an overview of the problems and preliminary comparison of such formations in Yugoslavia and NE Hungary[J]. Slovak Geological Magazine, 9(1): 3-21.

    Google Scholar

    Dimo-Lahitte A, Monié P, Vergély P, 2001. Metamorphic soles from the Albanian ophiolites: petrology, 40Ar/39Ar geochronology, and geodynamic evolution[J]. Tectonics, 20(1): 78-96. Dosztály L, Józsa S, 1992. Geochronological evaluation of Mesozoic formations of Darnó Hill at Recsk on the basis of radiolarians and K-Ar age data[J]. Acta Geologica Hungarica, 35(4): 371-393.

    Google Scholar

    Dunćić M, Dulić I, Popov O, et al., 2017. The Campanian- Maastrichtian foraminiferal biostratigraphy of the basement sediments from the southern Pannonian Basin (Vojvodina, northern Serbia): implications for the continuation of the Eastern Vardar and Sava zones[J]. Geologica Carpathica, 68(2): 130-146, doi: 10.1515/geoca-2017-0011.

    Google Scholar

    Faryad S W, Spišiak J, Horváth P, et al., 2005. Petrological and geochemical features of the Meliata mafic rocks from the sutured Triassic Oceanic Basin, Western Carpathians[J]. Ofioliti, 30(1): 27-35. Faupl P, Pavlopoulos A, Migiros G, 1999. The Paleogene history of the Pelagonian zone s.l. (Hellenides, Greece): heavy mineral study from terrigenous flysch sediments[J]. Geologica Carpathica, 50(6): 449-458.

    Google Scholar

    Favre P, Stampfli G M, 1992. From rifting to passive margin: the examples of the Red Sea, Central Atlantic and Alpine Tethys[J]. Tectonophysics, 215(1-2): 69-97.

    Google Scholar

    Ferriere J, Baumgartner P O, Chanier F, 2016. The Maliac Ocean: the origin of the Tethyan Hellenic ophiolites[J]. International Journal of Earth Sciences, 105(7): 1941-1963.

    Google Scholar

    Ferrière J, Chanier F, Ditbanjong P, 2012. The Hellenic ophiolites: eastward or westward obduction of the Maliac Ocean, a discussion[J]. International Journal of Earth Sciences, 101(6): 1559-1580.

    Google Scholar

    Florineth D, Froitzheim N, 1994. Transition from continental to oceanic basement in the Tasna nappe (Engadine window, Graubünden, Switzerland): evidence for early Cretaceous opening of the Valais Ocean[J]. Schweizerische Mineralogische und Petrographische Mitteilungen, 74(3): 437-448.

    Google Scholar

    Froitzheim N, Jahn-Awe S, Frei D, et al., 2014. Age and composition of meta-ophiolite from the Rhodope Middle Allochthon (Satovcha, Bulgaria): a test for the maximum-allochthony hypothesis of the Hellenides[J]. Tectonics, 33(8): 1477-1500.

    Google Scholar

    Gaina C, Torsvik T H, van Hinsbergen D J J, et al., 2013. The African Plate: a history of oceanic crust accretion and subduction since the Jurassic[J]. Tectonophysics, 604: 4-25, doi: 10.1016/j.tecto.2013.05.037.

    Google Scholar

    Gallhofer D, van Quadt A, Peytcheva I, et al., 2015. Tectonic, magmatic, and metallogenic evolution of the Late Cretaceous arc in the Carpathian-Balkan orogen[J]. Tectonics, 34(9): 1813-1836.

    Google Scholar

    Gallhofer D, von Quadt A, Schmid S M, et al., 2017. Magmatic and tectonic history of Jurassic ophiolites and associated granitoids from the South Apuseni Mountains (Romania)[J]. Swiss Journal of Geosciences, 110(2): 699-719.

    Google Scholar

    Gawlick H-J, Frisch W, Hoxha L, et al., 2008. Mirdita Zone ophiolites and associated sediments in Albania reveal Neotethys Ocean origin[J]. International Journal of Earth Sciences, 97(4): 865-881.

    Google Scholar

    Gawlick H-J, Missoni S, 2019. Middle-Late Jurassic sedimentary mélange formation related to ophiolite obduction in the Alpine-Carpathian-Dinaridic Mountain Range[J]. Gondwana Research, 74: 144-172.

    Google Scholar

    Goes S, Giardini D, Jenny S, et al., 2004. A recent tectonic reorganization in the south-central Mediterranean[J]. Earth and Planetary Science Letters, 226(3-4): 335-345.

    Google Scholar

    Golonka J, 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic[J]. Tectonophysics, 381(1-4): 235-273.

    Google Scholar

    Göncüoglu M C, Marroni M, Pandolfi L, et al., 2014. The Arkot DaǧMélange in Araç area, central Turkey: evidence of its origin within the geodynamic evolution of the Intra-Pontide suture zone[J]. Journal of Asian Earth Sciences, 85: 117-139.

    Google Scholar

    Göncüoglu M C, Turhan N,Şentürk K, et al., 2000. A geotraverse across northwestern turkey: tectonic units of the central sakarya region and their tectonic evolution[J]. Geological Society, London, Special Publications, 173(1): 139-161.

    Google Scholar

    Grubić A, Radoićić R, Knežević M, et al., 2009. Occurrence of Upper Cretaceous pelagic carbonates within ophiolite-related pillow basalts in the Mt. Kozara area of the Vardar zone western belt, northern Bosnia[J]. Lithos, 108(1-4): 126-130.

    Google Scholar

    Gutiérrez-Alonso G, Fernández-Suárez J, Weil A B, et al., 2008. Self-subduction of the Pangaean global plate[J]. Nature Geoscience, 1(8): 549-553.

    Google Scholar

    Halamić J, Goričan Š, 1995. Triassic radiolarites from Mts. kalnik and medvednica (Northwestern Croatia)[J]. Geologia Croatica, 48(2): 129-146.

    Google Scholar

    Handy M R, Schmid S M, Bousquet R, et al., 2010. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps[J]. Earth-Science Reviews, 102(3-4): 121-158.

    Google Scholar

    Hoeck V, Ionescu C, Balintoni I, et al., 2009. The Eastern Carpathians “ophiolites” (Romania): remnants of a Triassic ocean[J]. Lithos, 108(1-4): 151-171.

    Google Scholar

    Hsü K J, Pan G T, Sengör A M C, 1995. Tectonic evolution of the Tibetan Plateau: a working hypothesis based on the archipelago model of orogenesis[J]. International Geology Review, 37(6): 473-508.

    Google Scholar

    Ionescu C, Hoeck V, Tomek C, et al., 2009. New insights into the basement of the Transylvanian Depression (Romania)[J]. Lithos, 108(1-4): 172-191.

    Google Scholar

    Ivan P, 2002. Relics of the Meliata Ocean crust: geodynamic implications of mineralogical, petrological and geochemical proxies[J]. Geologica Carpathica, 53(4): 245-256.

    Google Scholar

    Kane I, Stampolidis A, Tsokas N G, et al., 2005. The structure of the ophiolitic beltin Albania inferred from geomagnetic anomalies[J]. Annals of Geophysics, 48(2): 231-246.

    Google Scholar

    Karamata S, 2006. The geological development of the Balkan Peninsula related to the approach, collision and compression of Gondwanan and Eurasian units[J]. Geological Society, London, Special Publications, 260(1): 155-178.

    Google Scholar

    Kock S, Martini R, Reischmann T, et al., 2007. Detrital zircon and micropalaeontological ages as new constraints for the lowermost tectonic unit (Talea Ori unit) of Crete, Greece[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 243(3-4): 307-321.

    Google Scholar

    Kounov A, Schmid S M, 2013. Fission-track constraints on the thermal and tectonic evolution of the Apuseni Mountains (Romania)[J]. International Journal of Earth Sciences, 102: 207-233.

    Google Scholar

    Koutsovitis P, Magganas A, Katerinopoulos A, 2009. Calc-alkaline volcanic rocks in mélange formations from the South Othris region, Greece: petrogenetic and geotectonic implications[J]. Geochemistry, Mineralogy and Petrology, 47: 79-95.

    Google Scholar

    Kozur H, 1991. The evolution of the Meliata-Hallstatt ocean and its significance for the early evolution of the Eastern Alps and Western Carpathians[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 87(1-4): 109-135.

    Google Scholar

    Kozur H W, Aydin M, Demir O, et al., 1999. Geological evolution of Middle Pontide area (Northern Turkey) and eastward continuation of the Meliata-Hallstatt Ocean[J]. Geologicky Zbornik, 50: 154-155.

    Google Scholar

    Kozur H W, Aydin M, Demir O, et al., 2000. New stratigraphic and palaeogeographic results from the palaeozoic and early mesozoic of the middle pontides (Northern Turkey) in the azdavay, devrekani, küre and inebolu areas: implications for the carboniferous-early cretaceous geodynamic evolution and some related remarks to the karakaya oceanic rift basin[J]. Geologia Croatica, 53(2): 209-268.

    Google Scholar

    Krenn K, Bauer C, Proyer A, et al., 2010. Tectonometamorphic evolution of the Rhodope orogen[J]. Tectonics, 29(4): TC4001.

    Google Scholar

    Kukoš D, Goričan Š, Košir A, et al., 2015. Middle Jurassic age of basalts and the post-obduction sedimentary sequence in the Guevgueli Ophiolite Complex (Republic of Macedonia)[J]. International Journal of Earth Sciences, 104(2): 435-447.

    Google Scholar

    Li S Z, Zhao S J, Liu X, et al., 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 186: 37-75.

    Google Scholar

    Liati A, Froitzheim N, Fanning C M, 2005. Jurassic ophiolites within the Valais domain of the Western and Central Alps: geochronological evidence for re-rifting of oceanic crust[J]. Contributions to Mineralogy and Petrology, 149(4): 446-461.

    Google Scholar

    Liati A, Theye T, Fanning C M, et al., 2016. Multiple subduction cycles in the Alpine orogeny, as recorded in single zircon crystals (Rhodope zone, Greece)[J]. Gondwana Research, 29(1): 199-207.

    Google Scholar

    Liu Y, Neubauer F, Yuan S, et al., 2019. The Plankogel complex within the Austroalpine nappe complex of Eastern Alps: a paleotethyan suture?[C]//Emile Argand Conference on Alpine Geological Studies 2019. Sion. 44.

    Google Scholar

    Lugović B, Altherr R, Raczek I, et al., 1991. Geochemistry of peridotites and mafic igneous rocks from the Central Dinaric Ophiolite Belt, Yugoslavia[J]. Contributions to Mineralogy and Petrology, 106(2): 201-216.

    Google Scholar

    Lugović B, Slovenec D, Schuster R, et al., 2015. Petrology, geochemistry and tectono-magmatic affinity of gabbroic olistoliths from the ophiolite mélange in the NW Dinaric-Vardar ophiolite zone (Mts. Kalnik and Ivanščica, North Croatia)[J]. Geologia Croatica, 68(1): 25-49.

    Google Scholar

    Maffione M, van Hinsbergen D J J, 2018. Reconstructing plate boundaries in the jurassic neo-tethys from the east and west vardar ophiolites (Greece and Serbia)[J]. Tectonics, 37(3): 858-887, doi: 10.1002/2017tc004790.

    Google Scholar

    Mandl G W, 2000. The Alpine sector of the Tethyan shelf-Examples of Triassic to Jurassic sedimentation and deformation from the Northern Calcareous Alps[J]. Mitt. Österr. Geo. Ges., 92: 61-77.

    Google Scholar

    Marsellos A E, Foster D A, Kamenov G D, et al., 2012. Detrital zircon U-Pb data from the Hellenic south Aegean belts: constraints on the age and source of the South Aegean basement[J]. Journal of the Virtual Explorer, 42(3): 1-12.

    Google Scholar

    Masson H, Bussy F, Eichenberger M, et al., 2008. Early Carboniferous age of the Versoyen ophiolites and consequences: non-existence of a "Valais ocean" (Lower Penninic, western Alps)[J]. Bulletin de la Société Géologique de France, 179(4): 337-355.

    Google Scholar

    Metcalfe I, 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys[J]. Australian Journal of Earth Sciences, 43(6): 605-623.

    Google Scholar

    Metcalfe I, 2013a. Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 66: 1-33.

    Google Scholar

    Metcalfe I, 2013b. Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 66: 1-33.

    Google Scholar

    Milovanovic D, Marchig V, Stevan K, 1995. Petrology of the crossite schist from Fruška Gora Mts (Yugoslavia), relic of a subducted slab of the Tethyan oceanic crust[J]. Journal of Geodynamics, 20(3): 289-304.

    Google Scholar

    Natal’in B A, Sunal G, Gün E, et al., 2016. Precambrian to Early Cretaceous rocks of the Strandja Massif (northwestern Turkey): evolution of a long lasting magmatic arc[J]. Canadian Journal of Earth Sciences, 53(11): 1312-1335.

    Google Scholar

    Neubauer F, Genser J, Handler R, 2000. The Eastern Alps: result of a two-stage collision process[J]. Mitt. Öesterr. Geol. Ges., 92: 117-134.

    Google Scholar

    Neubauer F, Heinrich C, 2003. Late Cretaceous and Tertiary geodynamics and ore deposit evolution of the Alpine-Balkan-Carpathian-Dinaride orogen[C]//Mineral Exploration and Sustainable Development. Rotterdam: Millpress.

    Google Scholar

    Nicolae I, Saccani E, 2003. Petrology and geochemistry of the Late Jurassic calc-alkaline series associated to Middle Jurassic ophiolites in the South Apuseni Mountains (Romania)[J]. Swiss Bulletin of Mineralogy and Petrology, 83(1): 81-96.

    Google Scholar

    Okay A I, Sunal G, Sherlock S, et al., 2020.[AKI·]zmir-ankara suture as a triassic to cretaceous plate boundary—data from central anatolia[J]. Tectonics, 39(5): e2019TC005849.

    Google Scholar

    Pamić J, Balen D, Herak M, 2002a. Origin and geodynamic evolution of Late Paleogene magmatic associations along the Periadriatic-Sava-Vardar magmatic belt[J]. Geodinamica Acta, 15(4): 209-231.

    Google Scholar

    Pamić J, Jurković I, 2002. Paleozoic tectonostratigraphic units of the northwest and central Dinarides and the adjoining South Tisia[J]. International Journal of Earth Sciences, 91(3): 538-554, doi: 10.1007/s00531-001-0229-8.

    Google Scholar

    Pamić J, Tomljenović B, Balen D, 2002b. Geodynamic and petrogenetic evolution of Alpine ophiolites from the central and NW Dinarides: an overview[J]. Lithos, 65(1-2): 113-142.

    Google Scholar

    Pan G T, Wang L Q, Li R S, et al., 2012. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 53: 3-14.

    Google Scholar

    Papanikolaou D, 2009. Timing of tectonic emplacement of the ophiolites and terrane paleogeography in the Hellenides[J]. Lithos, 108(1-4): 262-280.

    Google Scholar

    Papanikolaou D, 2013. Tectonostratigraphic models of the Alpine terranes and subduction history of the Hellenides[J]. Tectonophysics, 595-596: 1-24.

    Google Scholar

    Pe-Piper G, 1998. The nature of Triassic extension-related magmatism in Greece: evidence from Nd and Pb isotope geochemistry[J]. Geological Magazine, 135(3): 331-348.

    Google Scholar

    Pe-Piper G, Piper D J W, 1991. Early mesozoic oceanic subduction-related volcanic rocks, Pindos Basin, Greece[J]. Tectonophysics, 192(3-4): 273-292.

    Google Scholar

    Petrík I, Janák M, Froitzheim N, et al., 2016. Triassic to Early Jurassic (c. 200 Ma) UHP metamorphism in the Central Rhodopes: evidence from U-Pb-Th dating of monazite in diamond-bearing gneiss from Chepelare (Bulgaria)[J]. Journal of Metamorphic Geology, 34(3): 265-291.

    Google Scholar

    Piper D J W, 2006. Sedimentology and tectonic setting of the Pindos Flysch of the Peloponnese, Greece[J]. Geological Society, London, Special Publications, 260(1): 493-505.

    Google Scholar

    Plašienka D, 1995. Passive and active margin history of the northern Tatricum (Western Carpathians, Slovakia)[J]. Geologische Rundschau, 84(4): 748-760.

    Google Scholar

    Plašienka D, 2003. Dynamics of Mesozoic pre-orogenic rifting in the Western Carpathians[J]. Mitt. Österr. Geol. Ges., 94: 79-98.

    Google Scholar

    Plašienka D, 2018. Continuity and episodicity in the early Alpine tectonic evolution of the western Carpathians: how large-scale processes are expressed by the orogenic architecture and rock record data[J]. Tectonics, 37(7): 2029-2079.

    Google Scholar

    Plašienka D, Méres Š, Ivan P, et al., 2019. Meliatic blueschists and their detritus in Cretaceous sediments: new data constraining tectonic evolution of the West Carpathians[J]. Swiss Journal of Geosciences, 112(1): 55-81.

    Google Scholar

    Popov P, Berza T, Grubic A, et al., 2002. Late Cretaceous Apuseni-Banat-Timok-Srednogorie (ABTS) magmatic and metallogenic belt in the Carpathian-Balkan orogen[J]. Geologica Balcanica, 32(2): 145-163.

    Google Scholar

    Prela M, Chiari M, Marcucci M, 2000. Jurassic radiolarian biostratigraphy of the sedimentary cover of ophiolites in the Mirdita Area, ALBANIA: new data[J]. Ofioliti, 25(1): 55-62.

    Google Scholar

    Prelević D, Wehrheim S, Reutter M, et al., 2017. The Late Cretaceous Klepa basalts in Macedonia (FYROM)—Constraints on the final stage of Tethys closure in the Balkans[J]. Terra Nova, 29(3): 145-153.

    Google Scholar

    Putiš M, Soták J, Li Q-L, et al., 2019. Origin and age determination of the neotethys meliata basin ophiolite fragments in the late jurassic-early cretaceous accretionary wedge mélange (inner western carpathians, slovakia)[J]. Minerals, 9(11): 652.

    Google Scholar

    Ratschbacher L, Frisch W, Linzer H-G, et al., 1991. Lateral extrusion in the eastern Alps, PArt 2: structural analysis[J]. Tectonics, 10(2): 257-271.

    Google Scholar

    Reischmann T, Kostopoulos D, Loos S, et al., 2001. Late palaeozoic magmatism in the basement rocks Southwest of Mt. Olympos, Central Pelagonian zone, Greece: remnants of a permo-carboniferous magmatic arc[J]. Bulletin of the Geological Society of Greece, 34(3): 985-993.

    Google Scholar

    Robertson A H F, 2012. Late Palaeozoic-Cenozoic tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region[J]. International Geology Review, 54(4): 373-454.

    Google Scholar

    Robertson A H F, Clift P D, Degnan P J, et al., 1991. Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 87(1-4): 289-343.

    Google Scholar

    Robertson A H F, Trivić B, Derić N, et al., 2013. Tectonic development of the Vardar ocean and its margins: evidence from the Republic of Macedonia and Greek Macedonia[J]. Tectonophysics, 595-596: 25-54.

    Google Scholar

    Robertson A H F, Ustaömer T, 2004. Tectonic evolution of the Intra-Pontide suture zone in the Armutlu Peninsula, NW Turkey[J]. Tectonophysics, 381(1-4): 175-209.

    Google Scholar

    Robertson A H F, Ustaömer T, 2009. Formation of the Late Palaeozoic Konya Complex and comparable units in southern Turkey by subduction-accretion processes: implications for the tectonic development of Tethys in the Eastern Mediterranean region[J]. Tectonophysics, 473(1-2): 113-148.

    Google Scholar

    Romano S S, Dörr W, Zulauf G, 2004. Cambrian granitoids in pre-Alpine basement of Crete (Greece): evidence from U-Pb dating of zircon[J]. International Journal of Earth Sciences, 93(5): 844-859, doi: 10.1007/s00531-004-0422-7.

    Google Scholar

    Saccani E, Beccaluva L, Photiades A, et al., 2011. Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albanian-Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic-Jurassic evolution of the Neo-Tethys in the Dinaride sector[J]. Lithos, 124(3-4): 227-242.

    Google Scholar

    Saccani E, Photiades A, Santato A, et al., 2008. New evidence for supra-subduction zone ophiolites in the Vardar Zone of northern Greece: implications for the tectono-magmatic evolution of the Vardar oceanic basin[J]. Ofioliti, 33(1): 65-85.

    Google Scholar

    Sayit K, Bedi Y, Tekin U K, et al., 2017. Middle Triassic back-arc basalts from the blocks in the Mersin Mélange, southern Turkey: implications for the geodynamic evolution of the Northern Neotethys[J]. Lithos, 268-271: 102-113.

    Google Scholar

    Sayit K, Marroni M, Göncüoglu M C, et al., 2016. Geological setting and geochemical signatures of the mafic rocks from the Intra-Pontide Suture Zone: implications for the geodynamic reconstruction of the Mesozoic Neotethys[J]. International Journal of Earth Sciences, 105(1): 39-64, doi: 10.1007/s00531-015-1202-2.

    Google Scholar

    Sayit K, Tekin U K, Göncüoglu M C, 2011. Early-middle Carnian radiolarian cherts within the Eymir Unit, Central Turkey: constraints for the age of the Palaeotethyan Karakaya Complex[J]. Journal of Asian Earth Sciences, 42(3): 398-407.

    Google Scholar

    Schefer S, Cvetković V, Fügenschuh B, et al., 2011. Cenozoic granitoids in the Dinarides of southern Serbia: age of intrusion, isotope geochemistry, exhumation history and significance for the geodynamic evolution of the Balkan Peninsula[J]. International Journal of Earth Sciences, 100(5): 1181-1206.

    Google Scholar

    Schmid S M, Bernoulli D, Fügenschuh B, et al., 2008. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units[J]. Swiss Journal of Geosciences, 101(1): 139-183.

    Google Scholar

    Schmid S M, Fügenschuh B, Kissling E, et al., 2004. Tectonic map and overall architecture of the Alpine orogen[J]. Eclogae Geologicae Helvetiae, 97(1): 93-117.

    Google Scholar

    Schmid S M, Fügenschuh B, Kounov A, et al., 2020. Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey[J]. Gondwana Research, 78: 308-374.

    Google Scholar

    Şenggör A M C, 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications[J]. Nature, 279(5714): 590-593.

    Google Scholar

    Şenggör A M C, 1987. Tectonics of the Tethysides: orogenic collage development in a collisional setting[J]. Annual Review of Earth and Planetary Sciences, 15: 213-224.

    Google Scholar

    Slovenec D, Lugović B, Meyer H-P, et al., 2011. A tectono-magmatic correlation of basaltic rocks from ophiolite mélanges at the north-eastern tip of the Sava-Vardar suture zone, northern Croatia, constrained by geochemistry and petrology[J]. Ofioliti, 36(1): 77-100.

    Google Scholar

    Smith A G, 2006. Tethyan ophiolite emplacement, Africa to Europe motions, and Atlantic spreading[J]. Geological Society, London, Special Publications, 260(1): 11-34.

    Google Scholar

    Sokol K, Prelevic D, Romer R, et al., 2017. The Late Cretaceous lamprophyres within the Sava Zone: petrology, geochemistry and geodynamic significance[C]//Proceedings of the 13th workshop on Alpine Geological Studies. EGU Series: Emile Argand Conference Zlatibor Mts. 99.

    Google Scholar

    Spahić D, Glavaš-Trbić B, Gaudenyi T, 2020. The inception of the Maliac Ocean: regional geological constraints on the western Circum-Rhodope belt (northern Greece)[J]. Marine and Petroleum Geology, 113: 104133.

    Google Scholar

    Spray J G, Bébien J, Rex D C, et al., 1984. Age constraints on the igneous and metamorphic evolution of the Hellenic-Dinaric ophiolites[J]. Geological Society, London, Special Publications, 17(1): 619-627.

    Google Scholar

    Stampfli G M, Borel G D, 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons[J]. Earth and Planetary Science Letters, 196(1-2): 17-33.

    Google Scholar

    Stampfli G M, Borel G D, 2004. The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the mediterranean domain[M]//Cavazza W, Roure F, Spakman W, et al. The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle: Geological and Geophysical Framework of the Mediterranean and the Surrounding Areas. Berlin: Springer. 3-80.

    Google Scholar

    Stampfli G M, Hochard C, 2009. Plate tectonics of the Alpine realm[J]. Geological Society, London, Special Publications, 327(1): 89-111.

    Google Scholar

    Stampfli G M, Hochard C, Vérard C, et al., 2013. The formation of Pangea[J]. Tectonophysics, 593: 1-19.

    Google Scholar

    Stampfli G M, Kozur H W, 2006. Europe from the Variscan to the Alpine cycles[J]. Geological Society, London, Memoirs, 32(1): 57-82.

    Google Scholar

    Stampfli G M, Mosar J, Favre P, et al., 2001. Permo-Mesozoic evolution of the western Tethyan realm: the Neotethys/East- Mediterranean connection[M]//Ziegler P A, Cavazza W, Robertson A H F, et al. Peri-tethys Memoir 6: Peri-tethyan Rift/Wrench Basins and Passive Margins. Mémoires du Muséum national d’Histoire Naturelle. 51-108.

    Google Scholar

    Stampfli G M, Mosar J, Marquer D, et al., 1998. Subduction and obduction processes in the Swiss Alps[J]. Tectonophysics, 296(1-2): 159-204.

    Google Scholar

    Stampfli G, Marcoux J, Baud A, 1991. Tethyan margins in space and time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 87(1-4): 373-409.

    Google Scholar

    Stampfli G M, Vavassis I, De Bono A, et al., 2003. Remnants of the Paleotethys oceanic suture-zone in the western Tethyan area[M]//Stratigraphic and Structural Evolution on the Late Carboniferous to Triassic Continental and Marine Successions in Tuscany (Italy): Regional Reports and General Correlation. Bolletino della Societa Geologica Italiana. 1-24.

    Google Scholar

    Stampfii G M, von Raumer J F, Borel G D, 2002. Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision[J]. Geological Society of America Special Paper, 364: 263-280.

    Google Scholar

    Storck J-C, Brack P, Wotzlaw J-F, et al., 2019. Timing and evolution of Middle Triassic magmatism in the Southern Alps (northern Italy)[J]. Journal of the Geological Society, 176(2): 253-268.

    Google Scholar

    Tilitǎ M, Matenco L, Dinu C, et al., 2013. Understanding the kinematic evolution and genesis of a back-arc continental “sag” basin: The Neogene evolution of the Transylvanian Basin[J]. Tectonophysics, 602: 237-258.

    Google Scholar

    Toljić M, Matenco L, Stojadinović U, et al., 2018. Understanding fossil fore-arc basins: inferences from the Cretaceous Adria-Europe convergence in the NE Dinarides[J]. Global and Planetary Change, 171: 167-184.

    Google Scholar

    Turpaud P, Reischmann T, 2010. Characterisation of igneous terranes by zircon dating: implications for UHP occurrences and suture identification in the Central Rhodope, northern Greece[J]. International Journal of Earth Sciences, 99(3): 567-591.

    Google Scholar

    Ustaömer T, Robertson A H F, 1993. A Late Palaeozoic-Early Mesozoic marginal basin along the actives sourthern continental margin of Eurasia: Evidence from the central Pontides (Turkey) and adjacent regions[J]. Geological Journal, 28(3-4): 219-238.

    Google Scholar

    Ustaömer T, Robertson A H F, 1994. Late Palaeozoic marginal basin and subduction-accretion: the Palaeotethyan Küre Complex, Central Pontides, northern Turkey[J]. Journal of the Geological Society, 151(2): 291-305.

    Google Scholar

    Ustaömer T, Robertson A H F, 1999. Geochemical evidence used to test alternative plate tectonic models for pre-Upper Jurassic (Palaeotethyan) units in the Central Pontides, N Turkey[J]. Geological Journal, 34(1-2): 25-53.

    Google Scholar

    Ustaszewski K, Kounov A, Schmid S M, et al., 2010. Evolution of the Adria-Europe plate boundary in the northern Dinarides: from continent-continent collision to back-arc extension[J]. Tectonics, 29(6): TC6017.

    Google Scholar

    Ustaszewski K, Schmid S M, Lugović B, et al., 2009. Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): implications for the collision of the Adriatic and European plates[J]. Lithos, 108(1-4): 106-125.

    Google Scholar

    van Hinsbergen D J J, Torsvik T H, Schmid S M, et al., 2020. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic[J]. Gondwana Research, 81: 79-229.

    Google Scholar

    van Hinsbergen D J J, Vissers R L M, Spakman W, 2014. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation[J]. Tectonics, 33(4): 393-419.

    Google Scholar

    van Hinsbergen D J J, Zachariasse W J, Wortel M J R, et al., 2005. Underthrusting and exhumation: a comparison between the External Hellenides and the “hot” Cycladic and “cold” South Aegean core complexes (Greece)[J]. Tectonics, 24(2): TC2011.

    Google Scholar

    Vishnevskaya V S, Djeric N, Zakariadze G S, 2009. New data on Mesozoic Radiolaria of Serbia and Bosnia, and implications for the age and evolution of oceanic volcanic rocks in the Central and Northern Balkans[J]. Lithos, 108(1-4): 72-105.

    Google Scholar

    Vissers R L M, van Hinsbergen D J J, Meijer P T, et al., 2013. Kinematics of Jurassic ultra-slow spreading in the Piemonte Ligurian ocean[J]. Earth and Planetary Science Letters, 380: 138-150.

    Google Scholar

    von Quadt A, Driesner T, Heinrich C A, 2004. Geodynamics and ore deposit evolution of the alpine-carpathian-balkan-dinaride orogenic system[J]. Swiss Bulletin of Mineralogy and Petrology, 84(1): 1-2.

    Google Scholar

    von Raumer J F, Bussy F, Schaltegger U, et al., 2013. Pre-Mesozoic Alpine basements—Their place in the European Paleozoic framework[J]. Geological Society of America Bulletin, 125(1-2): 89-108.

    Google Scholar

    Windley B F, Alexeiev D, Xiao W J, et al., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31-47.

    Google Scholar

    Wölfler A, Kurz W, Fritz H, et al., 2011. Lateral extrusion in the Eastern Alps revisited: refining the model by thermochronological, sedimentary, and seismic data[J]. Tectonics, 30(4): TC4006.

    Google Scholar

    Xiao W, Windley B F, Badarch G, et al., 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia[J]. Journal of the Geological Society, 161(1): 339-342.

    Google Scholar

    Xiao W J, Windley B F, Sun S, et al., 2015. A tale of amalgamation of three permo-triassic collage systems in central asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43: 477-507.

    Google Scholar

    Xypolias P, Dörr W, Zulauf G, 2006. Late Carboniferous plutonism within the pre-Alpine basement of the External Hellenides (Kithira, Greece): evidence from U-Pb zircon dating[J]. Journal of the Geological Society, 163(3): 539-547.

    Google Scholar

    Yuan S H, Neubauer F, Liu Y J, et al., 2020. Widespread Permian granite magmatism in Lower Austroalpine units: significance for Permian rifting in the Eastern Alps[J]. Swiss Journal of Geosciences, 113: 18.

    Google Scholar

    Zelić M, D’Orazio M, Malasoma A, et al., 2005. The metabasites from the Kopaonik metamorphic complex, Vardar Zone, southern Serbia: remnants of the rifting-related magmatism of the mesotethyan domain or evidence for Paleotethys closure in the Dinaric-Hellenic belt?[J]. Ofioliti, 30(2): 91-101.

    Google Scholar

    Zelic M, Levi N, Malasoma A, et al., 2010. Alpine tectono-metamorphic history of the continental units from Vardar zone: the Kopaonik Metamorphic Complex (Dinaric-Hellenic belt, Serbia)[J]. Geological Journal, 45(1): 59-77.

    Google Scholar

    Zhai Q-G, Chung S-L, Tang Y, et al., 2019. Late Carboniferous ophiolites from the southern Lancangjiang belt, SW China: implication for the arc-back-arc system in the eastern Paleo-Tethys[J]. Lithos, 344-345: 134-146.

    Google Scholar

    Zhao G C, Wang Y J, Huang B C, et al., 2018. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 186: 262-286.

    Google Scholar

    Zulauf G, Dörr W, Fisher-Spurlock S C, et al., 2015. Closure of the Paleotethys in the External Hellenides: constraints from U-Pb ages of magmatic and detrital zircons (Crete)[J]. Gondwana Research, 28(2): 642-667.

    Google Scholar

    Zulauf G, Dörr W, Marko L, et al., 2018. The late Eo-Cimmerian evolution of the external Hellenides: constraints from microfabrics and U-Pb detrital zircon ages of Upper Triassic (meta)sediments (Crete, Greece)[J]. International Journal of Earth Sciences, 107(8): 2859-2894.

    Google Scholar

    Zulauf G, Dörr W, Xypolias P, et al., 2019. Triassic evolution of the western Neotethys: constraints from microfabrics and U-Pb detrital zircon ages of the Plattenkalk Unit (External Hellenides, Greece)[J]. International Journal of Earth Sciences, 108(8): 2493-2529.

    Google Scholar

    陈智梁, 1994. 特提斯地质一百年[J]. 特提斯地质, 18: 1-22.

    Google Scholar

    耿全如,李文昌,王立全,等,2021. 特提斯中西段古生代洋陆格局与构造演化[J/OL].沉积与特提斯地质.https://doi.org/10.19826/j.cnki.1009-3850.2021.02012.

    Google Scholar

    李才, 2008. 青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J]. 地质论评, 54(1): 105-119.

    Google Scholar

    李春昱, 王荃, 刘雪亚, 等, 1982. 亚洲大地构造图(1∶800万)及说明书[M]. 北京: 地图出版社. 45.

    Google Scholar

    李三忠, 赵淑娟, 李玺瑶, 等, 2016. 东亚原特提斯洋(Ⅰ): 南北边界和俯冲极性[J]. 岩石学报, 32(9): 2609-2627.

    Google Scholar

    潘桂棠, 1994. 全球洋-陆转换中的特提斯演化[J]. 特提斯地质, 18: 23-40.

    Google Scholar

    潘桂棠, 陈智梁, 李兴振, 等, 1997. 东特提斯地质构造形成演化[M]. 北京: 地质出版社. 191.

    Google Scholar

    潘桂棠, 王立全, 尹福光, 等, 2004. 从多岛弧盆系研究实践看板块构造登陆的魅力[J]. 地质通报, 23(9-10): 933-939.

    Google Scholar

    潘桂棠, 李兴振, 王立全, 等, 2002. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 21(11): 701-707.

    Google Scholar

    潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1-28.

    Google Scholar

    潘桂棠, 王立全, 李荣社, 等, 2012. 多岛弧盆系构造模式: 认识大陆地质的关键[J]. 沉积与特提斯地质, 32(3): 1-20.

    Google Scholar

    潘桂棠, 王立全, 耿全如, 等, 2021. 班公湖-双湖-怒江-昌宁-孟连对接带时空结构——特提斯大洋地质及演化问题[J]. 沉积与特提斯地质, 40(3): 1-19.

    Google Scholar

    吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627-1674.

    Google Scholar

    袁四化, 潘桂棠, 王立全, 等, 2009a. 大陆边缘增生造山作用[J]. 地学前缘, 16(3): 31-48.

    Google Scholar

    袁四化, 王立全, 江新胜, 等, 2009b. 多岛海(洋)及多岛弧盆系造山模式解析造山带演化的研究进展[J]. 地质科技情报, 28(5): 1-11.

    Google Scholar

    袁四化, 刘永江, Neubauer F, 等, 2020. 东阿尔卑斯原-古特提斯构造演化[J]. 岩石学报, 36(8): 2357-2382.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1299) PDF downloads(60) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint