2022 Vol. 55, No. 4
Article Contents

LI Yuhong, ZHANG Wen, ZHOU Junlin, LI Jiyuan, ZHANG Yunpeng. 2022. Dual Contribution of Granites in Helium Accumulation: Source and Reservoir. Northwestern Geology, 55(4): 95-102. doi: 10.19751/j.cnki.61-1149/p.2022.04.008
Citation: LI Yuhong, ZHANG Wen, ZHOU Junlin, LI Jiyuan, ZHANG Yunpeng. 2022. Dual Contribution of Granites in Helium Accumulation: Source and Reservoir. Northwestern Geology, 55(4): 95-102. doi: 10.19751/j.cnki.61-1149/p.2022.04.008

Dual Contribution of Granites in Helium Accumulation: Source and Reservoir

More Information
  • As a strategically important noble gas resource, the exploration of helium in natural gas reservoirs is the key to solving the shortage of helium resources. Industrial use of helium resources is currently dominated by crust-derived helium. Effective helium source rocks are the foundation for the generation of helium-rich natural gas reservoirs, whereas reservoirs are necessary for the accumulation of helium. Previous researches have shown that the known helium-rich natural gas reservoirs are strongly associated with granites. To understand the helium generation, release and storage capacity in granites, this research analyzes the concentration and occurrence states of uranium(U) and thorium(Th), stepwise heating, argon ion polishing technique and scanning electron microscope, combined with previous results, it has been shown that:①The granites in the southern margin of the Weihe basin(North Qinling) and from the Meng'erdi 1 well in the Yingen-Ejinaqi basin are both abundant in uranium and thorium, resulting in good helium production capacity. ②U and Th in granites have two states of occurrence, including, U-Th independent minerals and U-Th isomorphic minerals. ③Temperature is the primary factor controlling the release of helium from granites. The closure temperature for helium differs widely among minerals. Uraninite has the lowest closure temperature for 4He at 27℃~76℃, while magnetite has the highest temperature and reaches 250℃. In other words, granite cannot block 4He inside above 250℃, 27℃~250℃ suggests a partial closure range, and below 27℃ has complete closure capacity. ④ Granite has better nanoscale pore size than shale(shale gas reservoirs), and develops microfractures, therefore it has a good helium transport and storage capacity. In summary, granites are not only effective helium source rocks, but can also be helium reservoirs. Just like exploring shale gas in hydrocarbon source rocks, it is also possible to find helium accumulations in helium source rocks such as granites.
  • 加载中
  • 付锁堂,马达德,陈琰,等.柴达木盆地阿尔金山前东段天然气勘探[J].中国石油勘探, 2015,20(06):1-13.

    Google Scholar

    FU Suotang, MA Dade, CHEN Yan, et al. Natural Gas Exploration in Eastern Segment of Alkin Piedmont, Northern Qaidam Basin[J]. China Petroleum Exploration, 2015,20(06):1-13.

    Google Scholar

    韩伟,刘文进,李玉宏,等.柴达木盆地北缘稀有气体同位素特征及氦气富集主控因素[J].天然气地球科学, 2020,31(3):385-392.

    Google Scholar

    HAN Wei, LIU Wenjin, LI Yuhong, et al. Characteristics of Rare Gas Isotopes and Main Controlling Factors of Radon Enrichment in the Northern Margin of Qaidam Basin[J]. Natural Gas Geoscience, 2020, 31(03): 385-392.

    Google Scholar

    李玉宏,卢进才,李金超,等.渭河盆地富氦天然气井分布特征与氦气成因[J].吉林大学学报(地球科学版), 2011,(S1):47-53.

    Google Scholar

    LI Yuhong, LU Jincai, LI Jinchao, et al. Distribution of the Helium-Rich Wells and Helium Derivation in Weihe Basin[J]. Journal of Jilin University(Earth Science Edition). 2011,41(S1):47-53.

    Google Scholar

    李玉宏, 周俊林, 张文, 等. 渭河盆地氦气成藏条件及资源前景(修订版)[M].北京:地质出版社, 2022b.

    Google Scholar

    LI Yuhong, ZHOU Junlin, ZHANG Wen, et al. Helium Accumulation Conditions and Resource Prospects in the Weihe Basin(Revised) [M]. Beijing: Geological Publishing House, 2022b.

    Google Scholar

    李玉宏,李济远,周俊林,等.国内外氦气资源勘探开发现状及其对中国的启示[J].西北地质,2022a,55(3):233-240.

    Google Scholar

    LI Yuhong, LI Jiyuan, ZHOU Junlin, et al. Exploration and Development Status of Helium Resources and its Implications for China[J]. Northwestern Geology, 2022a,55(3):233-240.

    Google Scholar

    李红哲,马峰,谢梅,等.柴达木盆地阿尔金东段基岩气藏盖层特征及控藏机制[J].天然气地球科学, 2018,29(08):1102-1110.

    Google Scholar

    LI Hongzhe, MA Feng, XIE Me, et al. Caprocks characteristics and their control on hydrocarbon accumulation of bedrock gas reservoirs in eastern segment of Alkin Piedmont, Qaidam Basin[J]. Natural Gas Geoscience, 2018,29(08):1102-1110.

    Google Scholar

    张健,杨威,易海永,等四川盆地前震旦系勘探高含氦天然气藏的可行性[J].天然气工业, 2015,35(01):45-52.

    Google Scholar

    ZHANG Jian,YANG Wei,YI Haiyong, et al. Feasibility of high-helium natural gas exploration in the presinian strata of the Shichuan Basin[J]. Natural Gas Industry, 2015,35(01):45-52.

    Google Scholar

    张乔, 周俊林, 李玉宏, 等. 渭河盆地南缘花岗岩中生氦元素(U、Th)赋存状态及制约因素研究——以华山复式岩体为例 [J]. 西北地质, 2022, 55(3): 241-256.

    Google Scholar

    ZHANG Qiao, ZHOU Junlin, LI Yuhong, et al. The Occurrence State and Restraint Factors of Helium-produced Elements(U, Th) in the Granites from the Southern Margin of Weihe Basin: Evidences from Huashan Complex [J]. Northwestern Geology, 2022, 55(3): 241-256.

    Google Scholar

    张文.关中和柴北缘地区战略性氦气资源成藏机理研究[D].北京:中国矿业大学(北京),2019.

    Google Scholar

    ZHANG Wen. Accumulation mechanism ofhelium,a strategic resource,in Guanzhong and North Qaidam Basin[D].Beijing: China University of Mining and Technology(Beijing),2019.

    Google Scholar

    张晓宝,周飞,曹占元,等.柴达木盆地东坪氦工业气田发现及氦气来源和勘探前景[J].天然气地球科学, 2020,31(11):1585-1592.

    Google Scholar

    ZHANG Xiaobao, ZHOU Fei, CAO Zhanyuan. et al. Finding of the Dongping Economic Helium Gas Field in the Qaidam Basin, Helium Source and Exploration Prospect[J]. Natural Gas Geoscience,2020,31:1585-1592.

    Google Scholar

    周伟.柴达木盆地西缘基岩风化壳与油气运聚关系研究[D].北京:中国石油大学(北京),2016.

    Google Scholar

    ZHOU Wei. Relationship between the basement rock weathering crust and the hydrocarbon migration and accumulation in the west margin of the Qaidam Basin[D]. Beijing: China University of Petroleum(Beijing), 2016.

    Google Scholar

    Ballentine C J, Sherwood L B. Regional Groundwater Focusing of Nitrogen and Noble Gases into the Hugoton-Panhandle Giant Gas Field, USA[J].Geochimica et Cosmochimica Acta, 2002, 66(14):2483-2497.

    Google Scholar

    Blackburn T J, Stockli D F, Walker J D. Magnetite(U-Th)/He Dating and Its Application to the Geochronology of Intermediate to Mafic Volcanic Rocks[J].Earth And Planetary Science Letters, 2007, 259(3):360-371.

    Google Scholar

    Boyce J W, Hodges K V, Olszewski W J,et al. He Diffusion in Monazite: Implications for(U-Th)/He Thermochronometry[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(12): Q12004.

    Google Scholar

    Broadhead R F. Helium in New Mexico-Geologic Distribution, Resource Demand, and Exploration Possibilities[J]. New Mexico Geology, 2005, 27(4):93-101.

    Google Scholar

    Copeland P,Watson E B, Urizar S C, et al. Alpha Thermochronology of Carbonates[J]. Geochimica et Cosmochimica Acta, 2007, 71(18): 4488-4511.

    Google Scholar

    Dodson M H. Closure Temperature in Cooling Geochronological and Petrological Systems[J]. Contributions to Mineralogy and Petrology, 1973,40(3):259-274.

    Google Scholar

    Johnson G E. Helium in Northeastern British Columbia[R].Geoscience Reports 2013: British Columbia Ministry of Natural Gas Development, 2013: 45-52.

    Google Scholar

    Katz D L. Source of Helium in Natural Gases[R].USBM Information Circular 8417, 1969: 242-255.

    Google Scholar

    Pierce A P, Gott G B.Mytton J W. Uranium and Helium in the Panhandle Gas Field, Texas, and Adjacent Areas[R].U.S. Geological Survey Professional Paper 454-G,1964: 57.

    Google Scholar

    Reiners P W, Farley K A. Helium Diffusion and (U-Th)/He Thermochronometry of Titanite[J].Geochimica et Cosmochimica Acta, 1999, 63(22):3845-3859.

    Google Scholar

    Reiners P W, Farley K A, Hickes H J. He Diffusion and (U-Th)/He Thermochronometry of Zircon: Initial Results from Fish Canyon Tuff and Gold Butte[J]. Tectonophysics, 2002, 349(1-4):297-308.

    Google Scholar

    Roudil D, Bonhoure J, Pik R, et al. Diffusion of Radiogenic Helium in Natural Uranium Oxides[J]. Journal of Nuclear Materials, 2008, 378(1):70-78.

    Google Scholar

    Ruedemann P, Oles L M. Helium: Its Probable Origin and Concentration in the Amarillo Fold, Texas[J].American Association of Petroleum Geologists Bulletin, 1929,(7): 799-810.

    Google Scholar

    Sabaou N, Ait-Salem H, Zazoun R S. Chemostratigraphy, Tectonic Setting and Provenance of the Cambro-Ordovician Clastic Deposits of the Subsurface Algerian Sahara[J].Journal of African Earth Sciences, 2009, 55(3):158-174.

    Google Scholar

    Tian J, Li J, Pan C,et al. Geochemical Characteristics and Factors Controlling Natural Gas Accumulation in the Northern Margin of the Qaidam Basin[J].Journal of Petroleum Science and Engineering, 2018, 160:219-228.

    Google Scholar

    Wang X, Wang T, Zhang C. Granitoid Magmatism in the Qinling Orogen, Central China andits Bearing on Orogenic Evolution[J].Science China Earth Sciences, 2015, 58(9):1497-1512.

    Google Scholar

    Wernicke R S, Lippolt H J.(U+Th)–He Evidence of Jurassic Continuous Hydrothermal Activity in the Schwarzwald Basement, Germany[J].Chemical Geology, 1997, 138(3):273-285.

    Google Scholar

    Wolf R A, Farley K A, Silver L T. Helium Diffusion and Low-temperature Thermochronometry of Apatite[J].Geochimica et Cosmochimica Acta, 1996, 60(21):4231-4240.

    Google Scholar

    Wolff R, Dunkl I, Kempe U, et al. Variable Helium Diffusion Characteristics in Fluorite[J]. Geochimica et Cosmochimica Acta, 2016,188: 21-34.

    Google Scholar

    Zhang W, Li Y, Zhao F, et al. Granite is an Effective Helium Source Rock: Insights from the Helium Generation and Release Characteristics in Granites from the North Qinling Orogen, China[J]. Acta Geologica Sinica-English Edition, 2020, 94(1):114-125.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(744) PDF downloads(54) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint