陈衍景, 薛莅治, 王孝磊, 等.世界伟晶岩型锂矿床地质研究进展[J].地质学报, 2021, 95(10):2971-2995.
Google Scholar
|
CHEN Yanjing, XUE Lizhi, WANG Xiaolei, et al. Progress in geological study of pegmatite-typelithium deposits in the world[J]. Acta Geological Sinica, 2021, 95(10):2971-2995.
Google Scholar
|
胡晓君, 李欢. 花岗伟晶岩型锂矿床研究进展及展望[J].中国有色金属学报, 2021, 31(11):3468-3488.
Google Scholar
|
HU Xiaojun, LI huan. Research progress and prospect of granitic pegmatite-typelithium deposit[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(11):3468-3488.
Google Scholar
|
李福春, 朱金初, 张林松, 等.富氟花岗质熔体形成和演化的实验研究[J].岩石学报, 2003, 19(1):125-130.
Google Scholar
|
LI Fuchun, ZHU Jinchu, ZHANG Linsong, et al. Experimental study on formation and evolution of F-rich granitic melt[J]. Acta Petrologica Sinica, 2003, 19(1):125-130.
Google Scholar
|
李建康, 李鹏, 严清高, 等.中国花岗伟晶岩的研究历程及发展态势[J].地质学报, 2021, 95(10):2996-3016.
Google Scholar
|
LI Jiankang, LI Peng, YAN Qinggao, et al. History of granitic pegmatite research in China[J]. Acta Geologica Sinica, 2021, 95(10):2996-3016.
Google Scholar
|
李建康, 张德会, 王登红, 等.富氟花岗岩浆液态不混溶作用及其成岩成矿效应[J]. 地质论评, 2008, 54(2):175-183.
Google Scholar
|
LI Jiankang, ZHANG Dehui, WANG Denghong, et al. Liquid immiscibility of fluorine-rich granite magma and its diagenesis and metallogeny[J]. Geological Review, 2008, 54(2):175-183.
Google Scholar
|
刘丽君, 王登红, 侯可军, 等.锂同位素在四川甲基卡新三号矿脉研究中的应用[J].地学前缘, 2017, 24(5):167-171.
Google Scholar
|
LIU Lijun, WANG Denghong, HOU Kejun, et al. Application of lithium isotope to Jiajika new No.3 pegmatite lithium polymetallic vein in Siichuan[J]. Earth Science Frontiers, 2017, 24(5):167-171.
Google Scholar
|
卢焕章, 王中刚, 李院生. 岩浆-流体过渡和阿尔泰三号伟晶岩脉之成因[J].矿物学报, 1996, 16(1):1-7.
Google Scholar
|
LU Huanzhang, WANG Zhonggang, LI Yuansheng. Magma-fluid transition and genesis of pegmatite dike No.3 at Altay, Xinjiang[J]. Acta Mineralogica Sinica, 1996, 16(1):1-7.
Google Scholar
|
栾世伟. 秦东稀有元素花岗伟晶岩某些地球化学特征[J]. 地球化学, 1979, 4:322-330.
Google Scholar
|
LUAN Shiwei. Some geochemical features of a rare element bearing granite-pegmatite in the eastern Qinling range[J]. Geochemica, 1979, 4:322-330.
Google Scholar
|
秦克章, 赵俊兴, 何畅通, 等.喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J].岩石学报, 2021, 37(11):3277-3286.
Google Scholar
|
QIN Kezhang, ZHAO Junxing, HE Changtong, et al. Discovery of the Qongjiagang giantlithium pegmatite deposit in Himalaya, Tibet, China[J]. Acta Petrologica Sinica, 2021, 37(11):3277-3286.
Google Scholar
|
苏嫒娜, 田世洪, 侯增谦, 等.锂同位素及其在四川甲基卡伟晶岩型锂多金属矿床研究中的应用[J]. 现代地质, 2011, 25(2):236-242.
Google Scholar
|
SU Aina, TIAN Shihong, HOU Zengqian, et al. Lithium isotope and its application to Jiajika pegmatite typelithium polymetallic deposit in Sichuan[J]. Geoscience, 2011, 25(2):236-242.
Google Scholar
|
孙文礼, 马叶情, 宋庆伟. 中国花岗伟晶岩型锂矿特征和研究进展[J].地质与勘探, 2021, 57(3):478-496.
Google Scholar
|
SUN Wenli, MA Yeqing, SONG Qingwei. Characteristics and research progress of granitic pegmatite typelithium deposits in China[J]. Geology and Exploration, 2021, 57(3):478-496.
Google Scholar
|
王联魁, 王慧芬, 黄智龙. Li-F花岗岩液态分离的同位素地球化学标志[J]. 地质与勘探, 2002, 38(5):38-43.
Google Scholar
|
WANG Liankui, WANG Huifeng, HUANG Zhilong. Geochemical indicators of isotopes in Li-F granitic liquid segregation[J]. Geology and Exploration, 2002, 38(5):38-43.
Google Scholar
|
王汝成, 邬斌, 谢磊, 等.稀有金属成矿全球时空分布与大陆演化[J].地质学报, 2021, 95(1):182-193.
Google Scholar
|
WANG Rucheng, WU Bin, XIE Lei, et al. Global tempo-spatial distribution of rare-metal mineralization and continental evolution[J]. Acta Geologica Sinica, 2021, 95(1):182-193.
Google Scholar
|
熊欣, 李建康, 王登红, 等. 川西甲基卡花岗伟晶岩型锂矿床中熔体、流体包裹体固相物质研究[J]. 岩石矿物学杂志, 2019, 38(2):241-253.
Google Scholar
|
XIONG Xin, LI Jiankang, WANG Denghong, et al. A study of solid minerals in melt inclusions and fluid inclusions from the Jiajika pegmatite-type lithium deposit[J]. Acta Petrologica et Mineralogica, 2019, 38(2):241-253.
Google Scholar
|
薛颖瑜, 刘海洋, 孙卫东. 锂的地球化学性质与富集机理[J]. 大地构造与成矿学, 2021, 45(6):1202-1215.
Google Scholar
|
XUE Yinyu, LIU Haiyang, SUN Weidong. The geochemical properties and enrichment mechanism of lithium[J]. Geotectonica et Metallogenia, 2021, 45(6):1202-1215.
Google Scholar
|
徐兴旺, 洪涛, 李杭, 等.初论高温花岗岩-伟晶岩锂铍成矿系统:以阿尔金中段地区为例[J].岩石学报, 2020, 36(12):3572-3592.
Google Scholar
|
XU Xingwang, HONG Tao, LI Hang, et al. Concept of high-temperature granite-pegmatite Li-Be metallogenic system with a primary study in the middle Altyn-Tagh[J]. Acta Petrologica Sinica, 2020, 36(12):3572-3592.
Google Scholar
|
徐耀鉴, 徐汉南, 任锡钢. 岩石学[M]. 北京:地质出版社, 2007:86-87.
Google Scholar
|
XU Yaojian, XU Hannan, REN Xigang. Petrology[M]. Beijing:Geological Publishing House, 2007:86-87.
Google Scholar
|
许志琴, 朱文斌, 郑碧海, 等.新能源锂矿战略与大陆动力学研究-纪念南京大学地球科学与工程学院100周年华诞[J]. 地质学报, 2021, 95(10):2937-2954.
Google Scholar
|
XU Zhiqing, ZHU Wenbin, ZHENG Bihai, et al. New energy strategy forlithium resource and the continental dynamics research-celebrating the centenary of the School of Earth Sciences and Engineering, Nanjing University[J]. Acta Geologica Sinica, 2021, 95(10):2937-2954.
Google Scholar
|
赵俊兴, 何畅通, 秦克章, 等. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代, 源区特征及分异特征[J]. 岩石学报, 2021, 37(11):3325-3347.
Google Scholar
|
ZHAO Junxing, HE Changtong, QIN Kezhang, et al. Geochronology, source features and the characteristics of fractional crystallization in pegmatite at the Qongjiagang giant pegmatite-type lithium deposit, Himalaya, Tibet[J]. Acta Petrologica Sinica, 2021, 37(11):3325-3347.
Google Scholar
|
翟明国, 胡波.矿产资源国家安全、国际争夺与国家战略之思考[J]. 地球科学与环境学报, 2021, 43(1):1-11.
Google Scholar
|
ZHAI Mingguo, HU Bo. Thinking to state security, international competition and national strategy of mineral resources[J]. Journal of Earth Science and Environment, 2021, 43(1):1-11.
Google Scholar
|
张辉, 吕正航, 唐勇. LCT型伟晶岩及其锂矿床成因概述[J]. 地质学报, 2021, 95(10):2955-2970.
Google Scholar
|
ZHANG Hui, LÜ Zhenghang, TANG Yong. A review of LCT pegmatite and its lithium ore genesis[J]. Acta Geological Sinica, 2021, 95(10):2955-2970.
Google Scholar
|
赵振华, 陈华勇, 韩金生. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用[J].中山大学学报(自然科学版), 2022, 1:1-26.
Google Scholar
|
ZHAO Zhenghua, CHEN Huayong, HAN Jinsheng. Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang[J]. Acta Scientiarum Naturalium University Sunyatseni, 2022, 1:1-26.
Google Scholar
|
邹天人, 李庆昌.中国新疆稀有及稀土金属矿床[M]. 北京:地质出版社, 2006:1-284.
Google Scholar
|
ZOU Tianren, LI Qingchang. Rare and rare earth metallic deposits in Xinjiang, China[M]. Beijing:Geological Publishing House, 2006:1-284.
Google Scholar
|
Annikova I Y, Vladimirov A G, Smirnov S Z, et al. Geology and mineralogy of the Alakha spodumene granite porphyry deposit, Gorny Altai, Russia[J]. Geology of Ore Deposits, 2016, 58(5):404-426.
Google Scholar
|
Aurisicchio C, De Vito C, Ferrini V, et al. Nb and Ta oxide minerals in the Fonte del Prete granitic pegmatite dike, Island of Elba, Italy[J]. The Canadian Mineralogist, 2002, 40(3):799-814.
Google Scholar
|
Bachmann O, Dungan M A, Bussy F. Insights into shallow magmatic processes in large silicic magma bodies:the trace element record in the Fish Canyon magma body, Colorado[J]. Contributions to Mineralogy and Petrology, 2005, 149(3):338-349.
Google Scholar
|
Ballouard C, Poujol M, Boulvais P, et al. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition[J]. Geology, 2016, 44(3):231-234.
Google Scholar
|
Barnes E M, Weis D, Groat L A. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada[J]. Lithos, 2012, 132:21-36.
Google Scholar
|
Barnes E M. The rare element Little Nahanni Pegmatite Group, NWT:studies of emplacement, and magmatic evolution from geochemical and Li isotopic evidence[D]. University of British Columbia, 2010.
Google Scholar
|
Bradley D, Shea E, Buchwaldt R, et al. Geochronology and tectonic context of lithium-cesium-tantalum pegmatites in the Appalachians[J]. The Canadian Mineralogist, 2016, 54(4):945-969.
Google Scholar
|
Breaks F W, Moore J M. The Ghost Lake Batholith, Superior Province of northwestern Ontario; a fertile, S-type, peraluminous granite-rare-element pegmatite system[J]. The Canadian Mineralogist, 1992, 30(3):835-875.
Google Scholar
|
Breiter K, Ďuřisová J, Hrstka T, et al. The transition from granite to banded aplite-pegmatite sheet complexes:An example from Megiliggar Rocks, Tregonning topaz granite, Cornwall[J]. Lithos, 2018, 302:370-388.
Google Scholar
|
Breiter K, Müller A, Leichmann J, et al. Textural and chemical evolution of a fractionated granitic system:the Podlesí stock, Czech Republic[J]. Lithos, 2005, 80(1-4):323-345.
Google Scholar
|
Burnham C W, Nekvasil H. Equilibrium properties of granite pegmatite magmas[J]. American Mineralogist, 1986, 71(3):239-263.
Google Scholar
|
Cameron E N.Internal structure of granitic pegmatites[J]. Econ. Geol.Monograph, 1949, 2:115.
Google Scholar
|
Cao M J, Zhou Q F, Qin K Z, et al. The tetrad effect and geochemistry of apatite from the Altay Koktokay No. 3 pegmatite, Xinjiang, China:implications for pegmatite petrogenesis[J]. Mineralogy and Petrology, 2013, 107(6):985-1005.
Google Scholar
|
Černý P, Ercit T S.The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6):2005-2026.
Google Scholar
|
Černý P, London D, Novák M.Granitic pegmatites as reflections of their sources[J]. Elements, 2012, 8(4):289-294.
Google Scholar
|
Černý P. Rare-element granite pegmatites. Part I:anatomy and internal evolution of pegmatite deposits[J]. Geoscience Canada Reprint Series, 1991a, 18(2):49-67.
Google Scholar
|
Černý P. Fertile granites of Precambrian rare-element pegmatite fields:is geochemistry controlled by tectonic setting or source lithologies?[J]. Precambrian Research, 1991b, 51(1-4):429-468.
Google Scholar
|
Černý P. Rare-element granitic pegmatites. Part II:Regional to global environments and petrogenesis[J]. Geoscience Canada, 1991c, 18:68-81.
Google Scholar
|
Černý P. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research[J]. Applied geochemistry, 1992, 7(5):393-416.
Google Scholar
|
Chakoumakos B C, Lumpkin G R. Pressture constraints on the crystal AlLi2TiON op:Te Harding Pegmatite, Taos County, New Mexico[J]. The Canadian Mineralogist, 1990, 28(2):287-298.
Google Scholar
|
Chen B, Huang C, Zhao H. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization[J]. Chemical Geology, 2020, 551:119769.
Google Scholar
|
Dill H G. Pegmatites and aplites:Their genetic and applied ore geology[J]. Ore Geology Reviews, 2015, 69:417-561.
Google Scholar
|
Ding K, Liang T, Yang X, et al. Petrogenesis of Dahongliutan Granite in West Kunlun:Evidence from Zircon U-Pb age and Li-Sr-Nd-Hf Isotope[J]. Acta Geological Sinica (English Edition), 2019, 93(S2):166.
Google Scholar
|
Faria P. The mineralogy and chemistry of the Spro pegmatite mine, Nesodden, and their genetic implications[D].Oslo:University of Oslo:2019, 1-94.
Google Scholar
|
Garate-Olave I, Roda-Robles E, Gil-Crespo P P, et al. Mica and feldspar as indicators of the evolution of a highly evolved granite-pegmatite system in the Tres Arroyos area (Central Iberian Zone, Spain)[J]. Journal of Iberian Geology, 2018, 44(3):375-403.
Google Scholar
|
Ginsburg A I, Timofeyev I N, Feldman L G. Principles of geology of the granitic pegmatites[M]. Nedra, Moscow:1979, 1-296.
Google Scholar
|
Icenhower J, London D. An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O)[J]. American Mineralogist, 1995, 80(11-12):1229-1251.
Google Scholar
|
Jahns R H, Burnham C W. Experimental studies of pegmatite genesis; l, A model for the derivation and crystallization of granitic pegmatites[J]. Economic Geology, 1969, 64(8):843-864.
Google Scholar
|
Jolliff B L, Papike J J, Shearer C K. Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones, Black Hills, South Dakota, USA[J]. Geochimica et Cosmochimica Acta, 1992, 56(5):1915-1939.
Google Scholar
|
Kontak D J, Dostal J, Kyser T K, et al. A petrological, geochemical, isotopic and fluid-inclusion study of 370 Ma pegmatite-aplite sheets, Peggys Cove, Nova Scotia, Canada[J]. The Canadian Mineralogist, 2002, 40(5):1249-1286.
Google Scholar
|
Li J K, Zou T R, Liu X F, Wang D H, Ding X.The metallogenetic regularities of lithium deposits in China[J]. Acta Geologica Sinica-english Edition, 2015, 89(2):652-670.
Google Scholar
|
Li J, Chou I M. An occurrence of metastable cristobalite in spodumene-hosted crystal-rich inclusions from Jiajika pegmatite deposit, China[J]. Journal of Geochemical Exploration, 2016, 171:29-36.
Google Scholar
|
Linnen R L, Van Lichtervelde M, Černý P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4):275-280.
Google Scholar
|
Liu L, Wang D, Hou J, et al.New data on lithium isotopic geochemistry of No.X03 lithium vein in the Jiajiaka super-large lithium deposit, Sichuan, China[J]. Acta Geologica Sinica-English Edition, 2019, 93(6):1983-1984.
Google Scholar
|
London D, Hervig R L, Morgan G B. Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems:experimental results with Macusani glass at 200 MPa[J]. Contributions to Mineralogy and Petrology, 1988, 99(3):360-373.
Google Scholar
|
London D, Hunt L E, Schwing C R, et al. Feldspar thermometry in pegmatites:truth and consequences[J]. Contributions to Mineralogy and Petrology, 2020, 175(1):1-21.
Google Scholar
|
London D, Morgan G B, Hervig R L. Vapor-undersaturated experiments with Macusani glass+H2O at 200 MPa, and the internal differentiation of granitic pegmatites[J]. Contributions to Mineralogy and Petrology, 1989, 102(1):1-17.
Google Scholar
|
London D, Morgan G B, Paul K A, et al. Internal evolution of miarolitic granitic pegmatites at the Little Three mine, Ramona, California, USA[J]. The Canadian Mineralogist, 2012, 50(4):1025-1054.
Google Scholar
|
London D. A petrologic assessment of internal zonation in granitic pegmatites[J]. Lithos, 2014, 184:74-104.
Google Scholar
|
London D. Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O:a petrogenetic grid for lithiumx-rich pegmatites[J]. American Mineralogist, 1984, 69(11-12):995-1004.
Google Scholar
|
London D. Granitic pegmatites:an assessment of current concepts and directions for the future[J]. Lithos, 2005, 80(1-4):281-303.
Google Scholar
|
London D. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite:Evidence from fluid inclusions and phase-equilibrium experiments[J]. American Mineralogist, 1986, 71(3-4):376-395.
Google Scholar
|
London D. Melt boundary-layers and the growth of pegmatitic textures[J]. Canadian Mineralogist, 1999, 37:826-827.
Google Scholar
|
London D. Ore-forming processes within granitic pegmatites.Ore Geology Reviews[J], 2018, 101:349-383.
Google Scholar
|
London D. Reply to Thomas and Davidson on "A petrologic assessment of internal zonation in granitic pegmatites"(London, 2014a)[J]. Lithos, 2015, 212:469-484.
Google Scholar
|
Lv Z H, Zhang H, Tang Y. Anatexis origin of rare metal/earth pegmatites:Evidences from the Permian pegmatites in the Chinese Altai[J]. Lithos, 2021, 380:105865.
Google Scholar
|
Magna T, Novák M, Cempírek J, et al. Crystallographic control on lithium isotope fractionation in Archean to Cenozoic lithium-cesium-tantalum pegmatites[J]. Geology, 2016, 44(8):655-658.
Google Scholar
|
Maneta V, Baker D R, Minarik W. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts[J]. Contributions to Mineralogy and Petrology, 2015, 170(1):4.
Google Scholar
|
Maneta V, Baker D R. The potential of lithium in alkali feldspars, quartz, and muscovite as a geochemical indicator in the exploration for lithium-rich granitic pegmatites:A case study from the spodumene-rich Moblan pegmatite, Quebec, Canada[J]. Journal of Geochemical Exploration, 2019, 205:106336.
Google Scholar
|
McCauley A, Bradley D C. The global age distribution of granitic pegmatites[J]. The Canadian Mineralogist, 2014, 52(2):183-190.
Google Scholar
|
Melleton J, Gloaguen E, Frei D, et al. How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic?[J]. The Canadian Mineralogist, 2012, 50(6):1751-1773.
Google Scholar
|
Michaud J A S, Pichavant M, Villaros A. Rare elements enrichment in crustal peraluminous magmas:insights from partial melting experiments[J]. Contributions to Mineralogy and Petrology, 2021, 176(11):1-33.
Google Scholar
|
Morgan VI, G.B., London, D.Crystallization ofthe Little Three layered pegmatite-aplite dike, Ramona District, California[J]. Contributions to Mineralogy and Petrology, 1999, 136, 310-330.
Google Scholar
|
Müller A, Romer R L, Pedersen R B. The Sveconorwegian pegmatite province-thousands of pegmatites without parental granites[J]. The Canadian Mineralogist, 2017, 55(2):283-315.
Google Scholar
|
Norton J J. Sequence of mineral assemblages in differentiated granitic pegmatites[J]. Economic Geology, 1983, 78(5):854-874.
Google Scholar
|
Padilla A J, Gualda G A R. Crystal-melt elemental partitioning in silicic magmatic systems:An example from the Peach Spring Tuff high-silica rhyolite, Southwest USA[J]. Chemical Geology, 2016, 440:326-344.
Google Scholar
|
Parsons I, Magee C W, Allen C M, et al. Mutual replacement reactions in alkali feldspars II:trace element partitioning and geothermometry[J]. Contributions to Mineralogy and Petrology, 2009, 157(5):663-687.
Google Scholar
|
Partington G A, McNaughton N J, Williams I S. A review of the geology, mineralization, and geochronology of the Greenbushes pegmatite, Western Australia[J]. Economic Geology, 1995, 90(3):616-635.
Google Scholar
|
Patino Douce A E, Harris N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39(4):689-710.
Google Scholar
|
Pichavant M, Villaros A, Deveaud S, et al. The influence of redox state on mica crystallization in leucogranitic and pegmatitic liquids[J]. The Canadian Mineralogist, 2016, 54(3):559-581.
Google Scholar
|
Roda-Robles E, Pesquera A, Gil-Crespo P, Torres-Ruiz J. From granite to highly evolved pegmatite:a case study of the Pinilla de Fermoselle granite-pegmatite system (Zamora, Spain)[J]. Lithos, 2012, 153:192-207.
Google Scholar
|
Rudnick R L, Gao S, Holland H D, et al. Composition of the continental crust[J]. The Crust, 2003, 3:1-64.
Google Scholar
|
Selway J B, Breaks F W, Tindle A G. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology, 2005, 14(1-4):1-30.
Google Scholar
|
Shaw R A, Goodenough K M, Roberts N M W, et al. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes:A case study from the Lewisian Gneiss Complex of north-west Scotland[J]. Precambrian Research, 2016, 281:338-362.
Google Scholar
|
Shearer C K, Papike J J, Jolliff B L. Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite-pegmatite system, Black Hills, South Dakota[J]. The Canadian Mineralogist, 1992, 30(3):785-809.
Google Scholar
|
Sirbescu M L C, Schmidt C, Veksler I V, et al. Experimental crystallization of undercooled felsic liquids:Generation of pegmatitic texture[J]. Journal of Petrology, 2017, 58(3):539-568.
Google Scholar
|
Stewart D B.Petrogenesis of lithium-rich pegmatites[J].American Mineralogist, 1978, 63(9-10):970-980.
Google Scholar
|
Stilling A, Černý P, Vanstone P J. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance[J]. The Canadian Mineralogist, 2006, 44(3):599-623.
Google Scholar
|
Teng F Z, McDonough W F, Rudnick R L, et al. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite[J]. Earth and Planetary Science Letters, 2006, 243(3-4):701-710.
Google Scholar
|
Thomas R, Davidson P. The application of Raman spectroscopy in the study of fluid and melt inclusions[J]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 2012a, 163(2):113-126.
Google Scholar
|
Thomas R, Davidson P. Water in granite and pegmatite-forming melts[J]. Ore Geology Reviews, 2012b, 46:32-46.
Google Scholar
|
Thomas R, Davidson P, Beurlen H. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research[J]. Mineralogy and Petrology, 2012c, 106(1):55-73.
Google Scholar
|
Thomas R, Davidson P. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state-consequences for the formation of pegmatites and ore deposits[J]. Ore Geology Reviews, 2016, 72:1088-1101.
Google Scholar
|
Tomkinson M J, Harris P O, Robb L J. The nature and structural setting of rare-element pegmatites along the northern flank of the Barberton greenstone belt, South Africa[J]. South African Journal of Geology, 1995, 98(1):82-94.
Google Scholar
|
Trumbull R B. A petrological and Rb-Sr isotopic study of an early Archean fertile granite-pegmatite system:The Sinceni Pluton in Swaziland[J]. Precambrian Research, 1993, 61(1-2):89-116.
Google Scholar
|
Villaros A, Pichavant M. Mica-liquid trace elements partitioning and the granite-pegmatite connection:The St-Sylvestre complex (Western French Massif Central)[J]. Chemical Geology, 2019, 528:119265.
Google Scholar
|
Walker R J, Hanson G N, Papike J J. Trace element constraints on pegmatite genesis:tin mountain pegmatite, Black Hills, South Dakota[J]. Contributions to Mineralogy and Petrology, 1989, 101(3):290-300.
Google Scholar
|
Webber K L, Simmons W B, Falster A U, et al. Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County, California[J]. American Mineralogist, 1999, 84(5-6):708-717.
Google Scholar
|
Xing C M, Wang C Y, Wang H. Magmatic-hydrothermal processes recorded by muscovite andcolumbite-group minerals from the Bailongshan rare-element pegmatites in the West Kunlun-Karakorum orogenic belt, NW China[J]. Lithos, 2020, 364:105507.
Google Scholar
|
Xiong X, Li J, Wang D, et al. Fluid Characteristics and Evolution of the Zhawulong Granitic Pegmatite Lithium Deposit in the Ganzi-Songpan Region, Southwestern China[J]. Acta Geologica Sinica-English Edition, 2019, 93(4):943-954.
Google Scholar
|
Yan Q H., Wang H, Chi G X, et al. Recognition of a 600-km-long late Trasssic rare metal (Li-Be-Nb-Ta) pegmatite belt in the western Kunlun orogenic belt, western China[J]. Economic Geology, 2022, 17(01):213-236.
Google Scholar
|
Zhang H, Tian S, Wang D, et al. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite-pegmatite deposit, Sichuan, China[J]. Ore Geology Reviews, 2021, 134:104139.
Google Scholar
|
Zhao H, Chen B, Huang C, et al. Geochemical and Sr-Nd-Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau:implications for Li mineralization[J]. Contributions to Mineralogy and Petrology, 2022, 177(1):1-16.
Google Scholar
|
Zhou J S, Wang Q, Xu Y G, et al. Geochronology, petrology, and lithium isotope geochemistry of the Bailongshan granite-pegmatite system, northern Tibet:Implications for the ore-forming potential of pegmatites[J]. Chemical Geology, 2021, 584:120484.
Google Scholar
|
Zhu Y F, Zeng Y, Gu L. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China[J]. Journal of Asian Earth Sciences, 2006, 27(1):61-77.
Google Scholar
|