2022 Vol. 55, No. 2
Article Contents

SUN Wenli, LIU Yi, ZHANG Zhaowei. 2022. Research Progresson Petrogenesis of LCT-type Granitic Pegmatite and Lithium Enrichment Mechanism. Northwestern Geology, 55(2): 35-55. doi: 10.19751/j.cnki.61-1149/p.2022.02.003
Citation: SUN Wenli, LIU Yi, ZHANG Zhaowei. 2022. Research Progresson Petrogenesis of LCT-type Granitic Pegmatite and Lithium Enrichment Mechanism. Northwestern Geology, 55(2): 35-55. doi: 10.19751/j.cnki.61-1149/p.2022.02.003

Research Progresson Petrogenesis of LCT-type Granitic Pegmatite and Lithium Enrichment Mechanism

  • LCT-type granitic pegmatite is one of the important host rocks of lithium resources in the world. Based on research results of geochronology, geochemistry, inclusion, numerical simulation and petrological experiments on LCT-type pegmatite in the past 40 years, this paper summarizes its the temporal-spatial distribution characteristics, temperature-pressure conditions, magma origin and evolution process and lithium enrichment mechanism, which is aim to provide theoretical reference for future prospecting work. Studys show that the global LCT-type granitic pegmatite was formed at 3040~7Ma, showing a good coupling between the peak of diagenesis and the supercontinent existence. The pressure of pegmatite emplacement is 250~350 MPa, and its liquidus temperature (650~750℃) is related to the abundance of fluxing-element while solidus temperature is about 425℃. Compared with the average composition of continental crust, LCT-type granitic pegmatite is characterized by enrichment of SiO2, Na2O, K2O, Li, Cs, Ta, Nb and depletion of Fe2O3, CaO, MgO, TiO2, Zr, Lower Nb/Ta and Zr/Hf ratios. LCT-type granitic pegmatite-froming magma is derived from granitic magma with high degree crystallization differentiation (>90%), from partial melting of crustal material with low degree (5%~20%), from immiscibility of F-Li-rich granitic magma and from a supercritical fluid(T≈731±21℃). It cooled and consolidated in a short time after emplacement, howere, its evolution process is debatable, including dynamic crystallization and melt-melt immiscibility. Both origin and evolution of pegmatite-forming melt can cause lithium enrichment. The crystallization differentiation origin modle proposes that the supernormal lithium enrichment (Li ≥ 10 000×10-6) is controlled by the total distribution coefficient (DLi<0.5), degree of crystallization differentiation (>99%) and initial lithium concentration (>100×10-6) in deep magma chamber; however, the partial melting origin modle suggests that the lithium abundance in LCT type pegmatite is related to the abundance of lithium in its source component and the proportion of biotite in the residual phase. The immisible origin modle point out that lithium enrichment is affected by the ability of lithium complexes/compounds entering the volatile-rich and silicion-poor melt phase. The enrichment of lithium during the dynamic crystallization evolution of pegmatite-forming magma is related to constitunent zoning-refining process, however, the lithium abundacne is associated with the temperature and water content of volatile-rich melt in the immiscible evolution model.
  • 加载中
  • 陈衍景, 薛莅治, 王孝磊, 等.世界伟晶岩型锂矿床地质研究进展[J].地质学报, 2021, 95(10):2971-2995.

    Google Scholar

    CHEN Yanjing, XUE Lizhi, WANG Xiaolei, et al. Progress in geological study of pegmatite-typelithium deposits in the world[J]. Acta Geological Sinica, 2021, 95(10):2971-2995.

    Google Scholar

    胡晓君, 李欢. 花岗伟晶岩型锂矿床研究进展及展望[J].中国有色金属学报, 2021, 31(11):3468-3488.

    Google Scholar

    HU Xiaojun, LI huan. Research progress and prospect of granitic pegmatite-typelithium deposit[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(11):3468-3488.

    Google Scholar

    李福春, 朱金初, 张林松, 等.富氟花岗质熔体形成和演化的实验研究[J].岩石学报, 2003, 19(1):125-130.

    Google Scholar

    LI Fuchun, ZHU Jinchu, ZHANG Linsong, et al. Experimental study on formation and evolution of F-rich granitic melt[J]. Acta Petrologica Sinica, 2003, 19(1):125-130.

    Google Scholar

    李建康, 李鹏, 严清高, 等.中国花岗伟晶岩的研究历程及发展态势[J].地质学报, 2021, 95(10):2996-3016.

    Google Scholar

    LI Jiankang, LI Peng, YAN Qinggao, et al. History of granitic pegmatite research in China[J]. Acta Geologica Sinica, 2021, 95(10):2996-3016.

    Google Scholar

    李建康, 张德会, 王登红, 等.富氟花岗岩浆液态不混溶作用及其成岩成矿效应[J]. 地质论评, 2008, 54(2):175-183.

    Google Scholar

    LI Jiankang, ZHANG Dehui, WANG Denghong, et al. Liquid immiscibility of fluorine-rich granite magma and its diagenesis and metallogeny[J]. Geological Review, 2008, 54(2):175-183.

    Google Scholar

    刘丽君, 王登红, 侯可军, 等.锂同位素在四川甲基卡新三号矿脉研究中的应用[J].地学前缘, 2017, 24(5):167-171.

    Google Scholar

    LIU Lijun, WANG Denghong, HOU Kejun, et al. Application of lithium isotope to Jiajika new No.3 pegmatite lithium polymetallic vein in Siichuan[J]. Earth Science Frontiers, 2017, 24(5):167-171.

    Google Scholar

    卢焕章, 王中刚, 李院生. 岩浆-流体过渡和阿尔泰三号伟晶岩脉之成因[J].矿物学报, 1996, 16(1):1-7.

    Google Scholar

    LU Huanzhang, WANG Zhonggang, LI Yuansheng. Magma-fluid transition and genesis of pegmatite dike No.3 at Altay, Xinjiang[J]. Acta Mineralogica Sinica, 1996, 16(1):1-7.

    Google Scholar

    栾世伟. 秦东稀有元素花岗伟晶岩某些地球化学特征[J]. 地球化学, 1979, 4:322-330.

    Google Scholar

    LUAN Shiwei. Some geochemical features of a rare element bearing granite-pegmatite in the eastern Qinling range[J]. Geochemica, 1979, 4:322-330.

    Google Scholar

    秦克章, 赵俊兴, 何畅通, 等.喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J].岩石学报, 2021, 37(11):3277-3286.

    Google Scholar

    QIN Kezhang, ZHAO Junxing, HE Changtong, et al. Discovery of the Qongjiagang giantlithium pegmatite deposit in Himalaya, Tibet, China[J]. Acta Petrologica Sinica, 2021, 37(11):3277-3286.

    Google Scholar

    苏嫒娜, 田世洪, 侯增谦, 等.锂同位素及其在四川甲基卡伟晶岩型锂多金属矿床研究中的应用[J]. 现代地质, 2011, 25(2):236-242.

    Google Scholar

    SU Aina, TIAN Shihong, HOU Zengqian, et al. Lithium isotope and its application to Jiajika pegmatite typelithium polymetallic deposit in Sichuan[J]. Geoscience, 2011, 25(2):236-242.

    Google Scholar

    孙文礼, 马叶情, 宋庆伟. 中国花岗伟晶岩型锂矿特征和研究进展[J].地质与勘探, 2021, 57(3):478-496.

    Google Scholar

    SUN Wenli, MA Yeqing, SONG Qingwei. Characteristics and research progress of granitic pegmatite typelithium deposits in China[J]. Geology and Exploration, 2021, 57(3):478-496.

    Google Scholar

    王联魁, 王慧芬, 黄智龙. Li-F花岗岩液态分离的同位素地球化学标志[J]. 地质与勘探, 2002, 38(5):38-43.

    Google Scholar

    WANG Liankui, WANG Huifeng, HUANG Zhilong. Geochemical indicators of isotopes in Li-F granitic liquid segregation[J]. Geology and Exploration, 2002, 38(5):38-43.

    Google Scholar

    王汝成, 邬斌, 谢磊, 等.稀有金属成矿全球时空分布与大陆演化[J].地质学报, 2021, 95(1):182-193.

    Google Scholar

    WANG Rucheng, WU Bin, XIE Lei, et al. Global tempo-spatial distribution of rare-metal mineralization and continental evolution[J]. Acta Geologica Sinica, 2021, 95(1):182-193.

    Google Scholar

    熊欣, 李建康, 王登红, 等. 川西甲基卡花岗伟晶岩型锂矿床中熔体、流体包裹体固相物质研究[J]. 岩石矿物学杂志, 2019, 38(2):241-253.

    Google Scholar

    XIONG Xin, LI Jiankang, WANG Denghong, et al. A study of solid minerals in melt inclusions and fluid inclusions from the Jiajika pegmatite-type lithium deposit[J]. Acta Petrologica et Mineralogica, 2019, 38(2):241-253.

    Google Scholar

    薛颖瑜, 刘海洋, 孙卫东. 锂的地球化学性质与富集机理[J]. 大地构造与成矿学, 2021, 45(6):1202-1215.

    Google Scholar

    XUE Yinyu, LIU Haiyang, SUN Weidong. The geochemical properties and enrichment mechanism of lithium[J]. Geotectonica et Metallogenia, 2021, 45(6):1202-1215.

    Google Scholar

    徐兴旺, 洪涛, 李杭, 等.初论高温花岗岩-伟晶岩锂铍成矿系统:以阿尔金中段地区为例[J].岩石学报, 2020, 36(12):3572-3592.

    Google Scholar

    XU Xingwang, HONG Tao, LI Hang, et al. Concept of high-temperature granite-pegmatite Li-Be metallogenic system with a primary study in the middle Altyn-Tagh[J]. Acta Petrologica Sinica, 2020, 36(12):3572-3592.

    Google Scholar

    徐耀鉴, 徐汉南, 任锡钢. 岩石学[M]. 北京:地质出版社, 2007:86-87.

    Google Scholar

    XU Yaojian, XU Hannan, REN Xigang. Petrology[M]. Beijing:Geological Publishing House, 2007:86-87.

    Google Scholar

    许志琴, 朱文斌, 郑碧海, 等.新能源锂矿战略与大陆动力学研究-纪念南京大学地球科学与工程学院100周年华诞[J]. 地质学报, 2021, 95(10):2937-2954.

    Google Scholar

    XU Zhiqing, ZHU Wenbin, ZHENG Bihai, et al. New energy strategy forlithium resource and the continental dynamics research-celebrating the centenary of the School of Earth Sciences and Engineering, Nanjing University[J]. Acta Geologica Sinica, 2021, 95(10):2937-2954.

    Google Scholar

    赵俊兴, 何畅通, 秦克章, 等. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代, 源区特征及分异特征[J]. 岩石学报, 2021, 37(11):3325-3347.

    Google Scholar

    ZHAO Junxing, HE Changtong, QIN Kezhang, et al. Geochronology, source features and the characteristics of fractional crystallization in pegmatite at the Qongjiagang giant pegmatite-type lithium deposit, Himalaya, Tibet[J]. Acta Petrologica Sinica, 2021, 37(11):3325-3347.

    Google Scholar

    翟明国, 胡波.矿产资源国家安全、国际争夺与国家战略之思考[J]. 地球科学与环境学报, 2021, 43(1):1-11.

    Google Scholar

    ZHAI Mingguo, HU Bo. Thinking to state security, international competition and national strategy of mineral resources[J]. Journal of Earth Science and Environment, 2021, 43(1):1-11.

    Google Scholar

    张辉, 吕正航, 唐勇. LCT型伟晶岩及其锂矿床成因概述[J]. 地质学报, 2021, 95(10):2955-2970.

    Google Scholar

    ZHANG Hui, LÜ Zhenghang, TANG Yong. A review of LCT pegmatite and its lithium ore genesis[J]. Acta Geological Sinica, 2021, 95(10):2955-2970.

    Google Scholar

    赵振华, 陈华勇, 韩金生. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用[J].中山大学学报(自然科学版), 2022, 1:1-26.

    Google Scholar

    ZHAO Zhenghua, CHEN Huayong, HAN Jinsheng. Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang[J]. Acta Scientiarum Naturalium University Sunyatseni, 2022, 1:1-26.

    Google Scholar

    邹天人, 李庆昌.中国新疆稀有及稀土金属矿床[M]. 北京:地质出版社, 2006:1-284.

    Google Scholar

    ZOU Tianren, LI Qingchang. Rare and rare earth metallic deposits in Xinjiang, China[M]. Beijing:Geological Publishing House, 2006:1-284.

    Google Scholar

    Annikova I Y, Vladimirov A G, Smirnov S Z, et al. Geology and mineralogy of the Alakha spodumene granite porphyry deposit, Gorny Altai, Russia[J]. Geology of Ore Deposits, 2016, 58(5):404-426.

    Google Scholar

    Aurisicchio C, De Vito C, Ferrini V, et al. Nb and Ta oxide minerals in the Fonte del Prete granitic pegmatite dike, Island of Elba, Italy[J]. The Canadian Mineralogist, 2002, 40(3):799-814.

    Google Scholar

    Bachmann O, Dungan M A, Bussy F. Insights into shallow magmatic processes in large silicic magma bodies:the trace element record in the Fish Canyon magma body, Colorado[J]. Contributions to Mineralogy and Petrology, 2005, 149(3):338-349.

    Google Scholar

    Ballouard C, Poujol M, Boulvais P, et al. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition[J]. Geology, 2016, 44(3):231-234.

    Google Scholar

    Barnes E M, Weis D, Groat L A. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada[J]. Lithos, 2012, 132:21-36.

    Google Scholar

    Barnes E M. The rare element Little Nahanni Pegmatite Group, NWT:studies of emplacement, and magmatic evolution from geochemical and Li isotopic evidence[D]. University of British Columbia, 2010.

    Google Scholar

    Bradley D, Shea E, Buchwaldt R, et al. Geochronology and tectonic context of lithium-cesium-tantalum pegmatites in the Appalachians[J]. The Canadian Mineralogist, 2016, 54(4):945-969.

    Google Scholar

    Breaks F W, Moore J M. The Ghost Lake Batholith, Superior Province of northwestern Ontario; a fertile, S-type, peraluminous granite-rare-element pegmatite system[J]. The Canadian Mineralogist, 1992, 30(3):835-875.

    Google Scholar

    Breiter K, Ďuřisová J, Hrstka T, et al. The transition from granite to banded aplite-pegmatite sheet complexes:An example from Megiliggar Rocks, Tregonning topaz granite, Cornwall[J]. Lithos, 2018, 302:370-388.

    Google Scholar

    Breiter K, Müller A, Leichmann J, et al. Textural and chemical evolution of a fractionated granitic system:the Podlesí stock, Czech Republic[J]. Lithos, 2005, 80(1-4):323-345.

    Google Scholar

    Burnham C W, Nekvasil H. Equilibrium properties of granite pegmatite magmas[J]. American Mineralogist, 1986, 71(3):239-263.

    Google Scholar

    Cameron E N.Internal structure of granitic pegmatites[J]. Econ. Geol.Monograph, 1949, 2:115.

    Google Scholar

    Cao M J, Zhou Q F, Qin K Z, et al. The tetrad effect and geochemistry of apatite from the Altay Koktokay No. 3 pegmatite, Xinjiang, China:implications for pegmatite petrogenesis[J]. Mineralogy and Petrology, 2013, 107(6):985-1005.

    Google Scholar

    Černý P, Ercit T S.The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6):2005-2026.

    Google Scholar

    Černý P, London D, Novák M.Granitic pegmatites as reflections of their sources[J]. Elements, 2012, 8(4):289-294.

    Google Scholar

    Černý P. Rare-element granite pegmatites. Part I:anatomy and internal evolution of pegmatite deposits[J]. Geoscience Canada Reprint Series, 1991a, 18(2):49-67.

    Google Scholar

    Černý P. Fertile granites of Precambrian rare-element pegmatite fields:is geochemistry controlled by tectonic setting or source lithologies?[J]. Precambrian Research, 1991b, 51(1-4):429-468.

    Google Scholar

    Černý P. Rare-element granitic pegmatites. Part II:Regional to global environments and petrogenesis[J]. Geoscience Canada, 1991c, 18:68-81.

    Google Scholar

    Černý P. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research[J]. Applied geochemistry, 1992, 7(5):393-416.

    Google Scholar

    Chakoumakos B C, Lumpkin G R. Pressture constraints on the crystal AlLi2TiON op:Te Harding Pegmatite, Taos County, New Mexico[J]. The Canadian Mineralogist, 1990, 28(2):287-298.

    Google Scholar

    Chen B, Huang C, Zhao H. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization[J]. Chemical Geology, 2020, 551:119769.

    Google Scholar

    Dill H G. Pegmatites and aplites:Their genetic and applied ore geology[J]. Ore Geology Reviews, 2015, 69:417-561.

    Google Scholar

    Ding K, Liang T, Yang X, et al. Petrogenesis of Dahongliutan Granite in West Kunlun:Evidence from Zircon U-Pb age and Li-Sr-Nd-Hf Isotope[J]. Acta Geological Sinica (English Edition), 2019, 93(S2):166.

    Google Scholar

    Faria P. The mineralogy and chemistry of the Spro pegmatite mine, Nesodden, and their genetic implications[D].Oslo:University of Oslo:2019, 1-94.

    Google Scholar

    Garate-Olave I, Roda-Robles E, Gil-Crespo P P, et al. Mica and feldspar as indicators of the evolution of a highly evolved granite-pegmatite system in the Tres Arroyos area (Central Iberian Zone, Spain)[J]. Journal of Iberian Geology, 2018, 44(3):375-403.

    Google Scholar

    Ginsburg A I, Timofeyev I N, Feldman L G. Principles of geology of the granitic pegmatites[M]. Nedra, Moscow:1979, 1-296.

    Google Scholar

    Icenhower J, London D. An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O)[J]. American Mineralogist, 1995, 80(11-12):1229-1251.

    Google Scholar

    Jahns R H, Burnham C W. Experimental studies of pegmatite genesis; l, A model for the derivation and crystallization of granitic pegmatites[J]. Economic Geology, 1969, 64(8):843-864.

    Google Scholar

    Jolliff B L, Papike J J, Shearer C K. Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones, Black Hills, South Dakota, USA[J]. Geochimica et Cosmochimica Acta, 1992, 56(5):1915-1939.

    Google Scholar

    Kontak D J, Dostal J, Kyser T K, et al. A petrological, geochemical, isotopic and fluid-inclusion study of 370 Ma pegmatite-aplite sheets, Peggys Cove, Nova Scotia, Canada[J]. The Canadian Mineralogist, 2002, 40(5):1249-1286.

    Google Scholar

    Li J K, Zou T R, Liu X F, Wang D H, Ding X.The metallogenetic regularities of lithium deposits in China[J]. Acta Geologica Sinica-english Edition, 2015, 89(2):652-670.

    Google Scholar

    Li J, Chou I M. An occurrence of metastable cristobalite in spodumene-hosted crystal-rich inclusions from Jiajika pegmatite deposit, China[J]. Journal of Geochemical Exploration, 2016, 171:29-36.

    Google Scholar

    Linnen R L, Van Lichtervelde M, Černý P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4):275-280.

    Google Scholar

    Liu L, Wang D, Hou J, et al.New data on lithium isotopic geochemistry of No.X03 lithium vein in the Jiajiaka super-large lithium deposit, Sichuan, China[J]. Acta Geologica Sinica-English Edition, 2019, 93(6):1983-1984.

    Google Scholar

    London D, Hervig R L, Morgan G B. Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems:experimental results with Macusani glass at 200 MPa[J]. Contributions to Mineralogy and Petrology, 1988, 99(3):360-373.

    Google Scholar

    London D, Hunt L E, Schwing C R, et al. Feldspar thermometry in pegmatites:truth and consequences[J]. Contributions to Mineralogy and Petrology, 2020, 175(1):1-21.

    Google Scholar

    London D, Morgan G B, Hervig R L. Vapor-undersaturated experiments with Macusani glass+H2O at 200 MPa, and the internal differentiation of granitic pegmatites[J]. Contributions to Mineralogy and Petrology, 1989, 102(1):1-17.

    Google Scholar

    London D, Morgan G B, Paul K A, et al. Internal evolution of miarolitic granitic pegmatites at the Little Three mine, Ramona, California, USA[J]. The Canadian Mineralogist, 2012, 50(4):1025-1054.

    Google Scholar

    London D. A petrologic assessment of internal zonation in granitic pegmatites[J]. Lithos, 2014, 184:74-104.

    Google Scholar

    London D. Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O:a petrogenetic grid for lithiumx-rich pegmatites[J]. American Mineralogist, 1984, 69(11-12):995-1004.

    Google Scholar

    London D. Granitic pegmatites:an assessment of current concepts and directions for the future[J]. Lithos, 2005, 80(1-4):281-303.

    Google Scholar

    London D. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite:Evidence from fluid inclusions and phase-equilibrium experiments[J]. American Mineralogist, 1986, 71(3-4):376-395.

    Google Scholar

    London D. Melt boundary-layers and the growth of pegmatitic textures[J]. Canadian Mineralogist, 1999, 37:826-827.

    Google Scholar

    London D. Ore-forming processes within granitic pegmatites.Ore Geology Reviews[J], 2018, 101:349-383.

    Google Scholar

    London D. Reply to Thomas and Davidson on "A petrologic assessment of internal zonation in granitic pegmatites"(London, 2014a)[J]. Lithos, 2015, 212:469-484.

    Google Scholar

    Lv Z H, Zhang H, Tang Y. Anatexis origin of rare metal/earth pegmatites:Evidences from the Permian pegmatites in the Chinese Altai[J]. Lithos, 2021, 380:105865.

    Google Scholar

    Magna T, Novák M, Cempírek J, et al. Crystallographic control on lithium isotope fractionation in Archean to Cenozoic lithium-cesium-tantalum pegmatites[J]. Geology, 2016, 44(8):655-658.

    Google Scholar

    Maneta V, Baker D R, Minarik W. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts[J]. Contributions to Mineralogy and Petrology, 2015, 170(1):4.

    Google Scholar

    Maneta V, Baker D R. The potential of lithium in alkali feldspars, quartz, and muscovite as a geochemical indicator in the exploration for lithium-rich granitic pegmatites:A case study from the spodumene-rich Moblan pegmatite, Quebec, Canada[J]. Journal of Geochemical Exploration, 2019, 205:106336.

    Google Scholar

    McCauley A, Bradley D C. The global age distribution of granitic pegmatites[J]. The Canadian Mineralogist, 2014, 52(2):183-190.

    Google Scholar

    Melleton J, Gloaguen E, Frei D, et al. How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic?[J]. The Canadian Mineralogist, 2012, 50(6):1751-1773.

    Google Scholar

    Michaud J A S, Pichavant M, Villaros A. Rare elements enrichment in crustal peraluminous magmas:insights from partial melting experiments[J]. Contributions to Mineralogy and Petrology, 2021, 176(11):1-33.

    Google Scholar

    Morgan VI, G.B., London, D.Crystallization ofthe Little Three layered pegmatite-aplite dike, Ramona District, California[J]. Contributions to Mineralogy and Petrology, 1999, 136, 310-330.

    Google Scholar

    Müller A, Romer R L, Pedersen R B. The Sveconorwegian pegmatite province-thousands of pegmatites without parental granites[J]. The Canadian Mineralogist, 2017, 55(2):283-315.

    Google Scholar

    Norton J J. Sequence of mineral assemblages in differentiated granitic pegmatites[J]. Economic Geology, 1983, 78(5):854-874.

    Google Scholar

    Padilla A J, Gualda G A R. Crystal-melt elemental partitioning in silicic magmatic systems:An example from the Peach Spring Tuff high-silica rhyolite, Southwest USA[J]. Chemical Geology, 2016, 440:326-344.

    Google Scholar

    Parsons I, Magee C W, Allen C M, et al. Mutual replacement reactions in alkali feldspars II:trace element partitioning and geothermometry[J]. Contributions to Mineralogy and Petrology, 2009, 157(5):663-687.

    Google Scholar

    Partington G A, McNaughton N J, Williams I S. A review of the geology, mineralization, and geochronology of the Greenbushes pegmatite, Western Australia[J]. Economic Geology, 1995, 90(3):616-635.

    Google Scholar

    Patino Douce A E, Harris N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39(4):689-710.

    Google Scholar

    Pichavant M, Villaros A, Deveaud S, et al. The influence of redox state on mica crystallization in leucogranitic and pegmatitic liquids[J]. The Canadian Mineralogist, 2016, 54(3):559-581.

    Google Scholar

    Roda-Robles E, Pesquera A, Gil-Crespo P, Torres-Ruiz J. From granite to highly evolved pegmatite:a case study of the Pinilla de Fermoselle granite-pegmatite system (Zamora, Spain)[J]. Lithos, 2012, 153:192-207.

    Google Scholar

    Rudnick R L, Gao S, Holland H D, et al. Composition of the continental crust[J]. The Crust, 2003, 3:1-64.

    Google Scholar

    Selway J B, Breaks F W, Tindle A G. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits[J]. Exploration and Mining Geology, 2005, 14(1-4):1-30.

    Google Scholar

    Shaw R A, Goodenough K M, Roberts N M W, et al. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes:A case study from the Lewisian Gneiss Complex of north-west Scotland[J]. Precambrian Research, 2016, 281:338-362.

    Google Scholar

    Shearer C K, Papike J J, Jolliff B L. Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite-pegmatite system, Black Hills, South Dakota[J]. The Canadian Mineralogist, 1992, 30(3):785-809.

    Google Scholar

    Sirbescu M L C, Schmidt C, Veksler I V, et al. Experimental crystallization of undercooled felsic liquids:Generation of pegmatitic texture[J]. Journal of Petrology, 2017, 58(3):539-568.

    Google Scholar

    Stewart D B.Petrogenesis of lithium-rich pegmatites[J].American Mineralogist, 1978, 63(9-10):970-980.

    Google Scholar

    Stilling A, Černý P, Vanstone P J. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance[J]. The Canadian Mineralogist, 2006, 44(3):599-623.

    Google Scholar

    Teng F Z, McDonough W F, Rudnick R L, et al. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite[J]. Earth and Planetary Science Letters, 2006, 243(3-4):701-710.

    Google Scholar

    Thomas R, Davidson P. The application of Raman spectroscopy in the study of fluid and melt inclusions[J]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 2012a, 163(2):113-126.

    Google Scholar

    Thomas R, Davidson P. Water in granite and pegmatite-forming melts[J]. Ore Geology Reviews, 2012b, 46:32-46.

    Google Scholar

    Thomas R, Davidson P, Beurlen H. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research[J]. Mineralogy and Petrology, 2012c, 106(1):55-73.

    Google Scholar

    Thomas R, Davidson P. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state-consequences for the formation of pegmatites and ore deposits[J]. Ore Geology Reviews, 2016, 72:1088-1101.

    Google Scholar

    Tomkinson M J, Harris P O, Robb L J. The nature and structural setting of rare-element pegmatites along the northern flank of the Barberton greenstone belt, South Africa[J]. South African Journal of Geology, 1995, 98(1):82-94.

    Google Scholar

    Trumbull R B. A petrological and Rb-Sr isotopic study of an early Archean fertile granite-pegmatite system:The Sinceni Pluton in Swaziland[J]. Precambrian Research, 1993, 61(1-2):89-116.

    Google Scholar

    Villaros A, Pichavant M. Mica-liquid trace elements partitioning and the granite-pegmatite connection:The St-Sylvestre complex (Western French Massif Central)[J]. Chemical Geology, 2019, 528:119265.

    Google Scholar

    Walker R J, Hanson G N, Papike J J. Trace element constraints on pegmatite genesis:tin mountain pegmatite, Black Hills, South Dakota[J]. Contributions to Mineralogy and Petrology, 1989, 101(3):290-300.

    Google Scholar

    Webber K L, Simmons W B, Falster A U, et al. Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County, California[J]. American Mineralogist, 1999, 84(5-6):708-717.

    Google Scholar

    Xing C M, Wang C Y, Wang H. Magmatic-hydrothermal processes recorded by muscovite andcolumbite-group minerals from the Bailongshan rare-element pegmatites in the West Kunlun-Karakorum orogenic belt, NW China[J]. Lithos, 2020, 364:105507.

    Google Scholar

    Xiong X, Li J, Wang D, et al. Fluid Characteristics and Evolution of the Zhawulong Granitic Pegmatite Lithium Deposit in the Ganzi-Songpan Region, Southwestern China[J]. Acta Geologica Sinica-English Edition, 2019, 93(4):943-954.

    Google Scholar

    Yan Q H., Wang H, Chi G X, et al. Recognition of a 600-km-long late Trasssic rare metal (Li-Be-Nb-Ta) pegmatite belt in the western Kunlun orogenic belt, western China[J]. Economic Geology, 2022, 17(01):213-236.

    Google Scholar

    Zhang H, Tian S, Wang D, et al. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite-pegmatite deposit, Sichuan, China[J]. Ore Geology Reviews, 2021, 134:104139.

    Google Scholar

    Zhao H, Chen B, Huang C, et al. Geochemical and Sr-Nd-Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau:implications for Li mineralization[J]. Contributions to Mineralogy and Petrology, 2022, 177(1):1-16.

    Google Scholar

    Zhou J S, Wang Q, Xu Y G, et al. Geochronology, petrology, and lithium isotope geochemistry of the Bailongshan granite-pegmatite system, northern Tibet:Implications for the ore-forming potential of pegmatites[J]. Chemical Geology, 2021, 584:120484.

    Google Scholar

    Zhu Y F, Zeng Y, Gu L. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China[J]. Journal of Asian Earth Sciences, 2006, 27(1):61-77.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(3435) PDF downloads(432) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint