2020 Vol. 53, No. 1
Article Contents

GAO Yongbao, ZHAO Xinmin, ZHAO Xiaojian, LI Kan, TENG Jiaxin, YAN Zhouquan, JIN Moushun, ZHAO Huibo. 2020. Mineralogy, Geochemistry and Genesis of Duobaoshan Zn-Pb Deposit, in Karakoram, Xinjiang. Northwestern Geology, 53(1): 122-137. doi: 10.19751/j.cnki.61-1149/p.2020.01.011
Citation: GAO Yongbao, ZHAO Xinmin, ZHAO Xiaojian, LI Kan, TENG Jiaxin, YAN Zhouquan, JIN Moushun, ZHAO Huibo. 2020. Mineralogy, Geochemistry and Genesis of Duobaoshan Zn-Pb Deposit, in Karakoram, Xinjiang. Northwestern Geology, 53(1): 122-137. doi: 10.19751/j.cnki.61-1149/p.2020.01.011

Mineralogy, Geochemistry and Genesis of Duobaoshan Zn-Pb Deposit, in Karakoram, Xinjiang

More Information
  • Located in Karakoram of Xinjiang, the Duobaoshan lead-zinc deposit was formed in the limestones of the Cretaceous Tielongtan Formation, and was obviously controlled by structural fracture zones. The ore bodies are irregularly sac-like, vein-like, and lenticular-shape-like. It can be divided into three metallogenic stages:the early sulfide mineralization stage, the intermediate replacement mineralization stage and the late oxidation stage. The first stage is characterized by galena, sphalerite and calcite; the second stage is represented by smithsonite, iron oxide, cerussite, and gypsum; the last stage is characterized by hydrozincite. The δ34S values of the galena in the first stage range from -14‰ to -0.6‰, which shows a feature of reduced sulfur source. The lead isotope compositions are concentrated and show a crustal source feature, and the Permian-Cretaceous sedimentary rocks may be the sources of metals. The δ18CPDB values of calcite are from 3.5‰ to 5.7‰ and the δ18OSMOW, from 22.1‰ to 27.1‰ are which indicate the dissolution of carbonate. The δ18CPDB and δ18OSMOW values of the smithsonite are from 2.9‰ to 3.8‰ and 16.9‰ to 20.3‰, respectively. The δ18CPDB and δ18OSMOW values of the cerussite are from 2.7‰ to 4.4‰ and 15.8‰ to 20.3‰, respectively. All these values indicate the mixing of atmospheric precipitation. The 3He/4He and 40Ar/36Ar ratios of the fluid inclusions in the calcite are from 0.72 R/Ra to 0.93 R/Ra and 302.1 to 350.7, respectively; and the 3He/4He and 40Ar/36Ar ratios of the fluid inclusions in the galena are 1.17 R/Ra and 298.1, respectively. The 3He/4He and 40Ar/36Ar ratios of fluid inclusions in the smithsonite are from 0.22R/Ra to 0.46R/Ra and 292.6 to 295.8, respectively; the 3He/4He and 40Ar/36Ar ratios of fluid inclusions in cerussite are from 0.40R/Ra to 0.59R/Ra and 292.9 to 295.4, respectively. Thus, the ore-forming fluid may be the crustal fluid mixed with atmospheric precipitation. In summary, the Duobaoshan zinc-lead deposit is the product of fold thrust in the edge of the basin, structural fluids and secondary replacement system. The sulfides are formed of structural fluids, and the nonsulfides are the result of direct replacement, with oxidation occurring and hydrozincites formed at the last stage.
  • 加载中
  • 董连慧, 徐兴旺, 范廷宾, 等. 喀喇昆仑火烧云超大型喷流-沉积成因碳酸盐型Pb-Zn矿的发现及区域成矿学意义[J]. 新疆地质, 2015, 33(1):41-50.

    Google Scholar

    DONG Lianhui, XU Xingwang, FAN Tingbin, et al. Discovery of the Huoshaoyun Super-Large Exhalative-Sedimentary Carbonate Pb-Zn Deposit in the Western Kunlun Area and its Great significance for Regional Metallogeny[J].Xinjiang Geology, 2015, 33(1):41-50.

    Google Scholar

    杜红星, 魏永峰, 薛春纪, 等. 多宝山铅锌矿床地质特征及地球化学研究[J]. 新疆地质, 2012, 30(01):52-57.

    Google Scholar

    DU Hongxing, WEI Yongfeng, XUE Chunji, et al, Geological and Geochemiscal characteristics of Duobaoshan Pb-Zn Deposit in Hetian, Xinjiang[J].Xinjiang Geology,2012, 30(01):52-57.

    Google Scholar

    范廷宾, 余元军, 夏明毅, 等. 新疆和田县火烧云铅锌矿地质特征及其找矿[J]. 四川地质学报,2017, 37(4):578-582.

    Google Scholar

    FAN Tingbin,YU Yuanjun,XIA Mingyi, et al.Geological Features and Prospecting for the Huoshaoyun Pb-Zn Deposit in Hotan, Xinjiang[J]. Acta Geologica Sichuan, 2017,37(4):578-582.

    Google Scholar

    范廷宾, 李昊, 徐兴旺, 等.非硫化物型锌-铅矿床研究现状及其进展[J]. 西北地质, 2018, 51(2):147-159.

    Google Scholar

    FAN Tingbin, LI Hao, XU Xingwang, et al. Research Status and Progress of Nosulfide Zinc-Lead Deposit[J]. Northwestern Geology, 2018, 51(2):147-159.

    Google Scholar

    高永宝, 滕家欣, 李侃. 喀喇昆仑火烧云超大型铅锌矿床成矿特征与成因[J]. 矿物学报, 2017, (增刊):561-562.

    Google Scholar

    GAO Yongbao, TENG Jiaxin, LI Kan. Metallogenic Characteristics and Genesis of Huoshaoyun Super-Large Lead-Zinc Deposit inKarakorum[J]. Journal of Minerals, 2017, (suppl.):561-562.

    Google Scholar

    高永宝, 李侃, 滕家欣, 等. 新疆喀喇昆仑火烧云超大型铅锌矿床矿物学、地球化学及成因[J]. 西北地质, 2019, 52(4):168-185.

    Google Scholar

    GAO Yongbao, LI Kan, TENG Jiaxin, et al. Mineralogy, Geochemistry and Genesis of Giant Huoshaoyun Zn-Pb Deposit, Karakoram, Xinjiang Province, NW China[J]. Northwestern Geology, 2019, 52(4):168-185.

    Google Scholar

    胡瑞忠, 毕献武, TURNER G, 等. 哀牢山金矿带成矿流体He和Ar同位素地球化学[J].中国科学D辑:地球科学, 1999, 29:321-330.

    Google Scholar

    HU Ruizhong, BI Xianwu, TUMER G, et al. Geochemistry of He and Ar isotopes of Gold-Forming fluids in Ailaoshan Gold Belt[J]. Science in China (Series D):Geosciences, 1999, 29:321-330.

    Google Scholar

    黄智龙,李文博,陈进,等.云南会泽超大型铅锌矿床C、O同位素地球化学[J].大地构造与成矿学,2004,(01):53-59.

    Google Scholar

    HUANG Zhilong, LI Wenbo, CHEN Jin, et al. Carbon and Oxygen isotope geochemistry of the Huize super large Pb-Zn ore deposits in Yunnanprovince[J]. Geotectonica et Metallogenia, 2004,(01):53-59.

    Google Scholar

    晋红展, 万建领, 李晓磊. 新疆和田县多宝山铅锌矿地质特征及找矿思路[J]. 新疆有色金属, 2012, 35(S2):71-73.

    Google Scholar

    JIN Hongzhan, WAN jianling, LI Xiaolei. Geological characteristics and prospecting ideas of Duobaoshan lead-zinc deposit in Hetian County,Xinjiang[J]. Xinjiang Non-ferrous Metal, 2012, 35(S2):71-73.

    Google Scholar

    彭建堂, 胡瑞忠, 漆亮, 等. 锡矿山热液方解石的REE分配模式及其制约因素[J]. 地质论评, 2004, 50(1):25-32.

    Google Scholar

    PENG Jiantang, HU Ruizhong, QI Liang, et al. REE Distribution Pattern far the Hydrothermal Calcites from the Xikuangshan Antimony Deposit and Its ConstrainingFactors[J]. Geological Review, 2004, 50(1):25-32.

    Google Scholar

    彭玉旋, 岳蕴辉, 况守英, 等. 新疆火烧云铅锌矿矿石特征研究[J]. 新疆地质, 2018, 36(03):353-356.

    Google Scholar

    PENG Yuxuan, YUE Yunhui, KUANG Shouying,et al. Study on the Mineral Characteristics of Huoshaoyun Pb-Zn Deposit in Xinjiang[J]. Xinjiang Geology, 2018, 36(03):353-356.

    Google Scholar

    任广利, 杨敏, 杨军录. 喀喇昆仑甜水海-火烧云一带铅锌矿成矿系列研究[J]. 矿物学报, 2017, (增刊):337-338.

    Google Scholar

    REN Guangli, YANG Min, YANG Junlu. Series of lead-zinc deposits in the Tianshuihai-Huoshaoyun area of Karakoram[J]. Acta Mineralogica Sinica, 2017, (suppl.):337-338.

    Google Scholar

    沈能平, 彭建堂, 袁顺达, 等. 湖北徐家山锑矿床方解石C、O、Sr同位素地球化学[J]. 地球化学, 2007, 36(5):479-485.

    Google Scholar

    SHEN Nengping, PENG Jiantang, YUAN Shunda, et al. Carbon, oxygen and strontium isotope geochemistry of calcites from Xujiashan antimony deposit, Hubei Province[J]. Geochimica, 2007, 36(5):479-485.

    Google Scholar

    王松, 丰成友, 佘宏全, 等. 粤东麻坑非硫化物型锌矿锌的赋存状态及成因讨论[J]. 地质学报, 2008, 82(11):1547-1554.

    Google Scholar

    WANG Song, FENG Chengyou, SHE Hongquan, et al. Zinc Occurrence and Genesis of Makeng Nonsulfide Zinc Deposits in the Eastern Guangdong Province[J]. Acta Geologica Sinica, 2008, 82(11):1547-1554.

    Google Scholar

    王旭东, 倪培, 蒋少涌, 等. 江西漂塘钨矿成矿流体来源的He和Ar同位素证据[J]. 科学通报, 2009, 54(21):3338-3344.

    Google Scholar

    WANG Xudong, NI Pei, JIANG Shaoyong, et al. Origin of ore-forming fluid in the Piaotang tungsten deposit in Jiangxi Province:Evidence from Helium and argon isotopes[J]. Chinese Science Bulletin, 2009, 54(21):3338-3344.

    Google Scholar

    新疆地质矿产勘查开发局第八地质大队. 新疆和田县火烧云矿区铅锌矿勘探报告[R]. 乌鲁木齐:新疆维吾尔自治区地质勘查基金项目管理中心, 2016.

    Google Scholar

    杨永强, 李丽. 非硫化物型锌矿床的地质特征和成因机制[J]. 世界地质, 2010, 29(1):56-59.

    Google Scholar

    YANG Yongqiang, LI Li. Geological characteristics and formation mechanism of nonsulfide zinc deposit[J]. Global Geology, 2010, 29(1):56-59.

    Google Scholar

    郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京:科学出版社, 2000.

    Google Scholar

    ZHENG Yongfei, CHEN Jiangfeng. Geochemistry of Stable isotope[M]. Beijing:Science Press, 2000.

    Google Scholar

    周家喜, 黄智龙, 周国富, 等. 黔西北天桥铅锌矿床热液方解石C、O同位素和REE地球化学[J]. 大地构造与成矿学, 2012, 36(1):93-101.

    Google Scholar

    ZHOU Jiaxi, HUANG Zhilong, ZHOU Guofu, et al. C, O Isotope and REE Geochemistry of the Hydrothermal Calcites from the Tianqiao Pb-Zn Ore Deposit in NW Guizhou Province, China[J]. Geotectonica et Metallogenia, 2012, 36(1):93-101.

    Google Scholar

    朱炳泉, 李献华. 地球科学中同位素体系理论与应用:兼论中国大陆壳幔演化[M]. 北京:科学出版社, 1998.

    Google Scholar

    ZHU Bingquan, LI Xianhua. Isotopic systematic theory and application in Earth sciences:concurrently discussing crust-mantle evolution of Chinese continent[M]. Beijing:Science Press, 1998.

    Google Scholar

    赵晓健, 伍跃中, 王泰山, 等. 西昆仑乔尔天山-岔路口地区铅锌矿成矿特征及找矿标志[J]. 西北地质, 2014, 47(4):245-255.

    Google Scholar

    ZHAO Xiaojian, WU Yuezhong, WANG Taishan, et al. Metallogenic characteristics and Prospecting Criteria of Lead-zinc Deposits in Qiao'er Tianshan-Chalukou Region of west Kunlun[J]. Northwestern Geology, 2014, 47(4):245-255.

    Google Scholar

    赵振华. 微量元素地球化学原理[M]. 北京:科学出版社, 1997.

    Google Scholar

    ZHAO Zhenhua. Principles of Micro-element Geochemistry[M]. Beijing:Science Press, 1997.

    Google Scholar

    BURNARD PG, HU R, TURNER G, et al. Mantle,crustal and atmospheric noble gases in Ailaoshan gold deposits, Yunnan Province, China[J]. Geochimica et Cosmochimica Acta, 1999, 63:1595-1604.

    Google Scholar

    BONI M and MONDILLO N. The "Calamines" and the "Others":The Great Family of Supergene Nonsulfide Zinc Ores[J]. Ore Geology Reviews, 2015, 67:208-233.

    Google Scholar

    GONFIANTINI R, STICHLER W, ROZANSKI K. Standards and Intercomparison Materials Distributed by the International Atomic Energy Agency for Stable Isotope Measurements. In Reference and Intercomparison Materials for Stable Isotopes of Light elements[M]. IAEA, Vienna, Austria:the Isotope Hydrology Section of the International Atomic Energy Agency. 1995, 13-29.

    Google Scholar

    GAO Yongbao. The Giant HuoshaoyunNonsulfide Zinc Deposit in Karakorum, North Margin of Tibet Plateau[A]. In:Abstract Volume to the Thematic Session at the 52nd CCOP Annual Session[C]. 2016, 104.

    Google Scholar

    HOEFS J. Stable Isotope Geochemistry[M]. 3rd Edition. Berlin:Springer-Verlag. 1987, 241.

    Google Scholar

    LEACH D L, SANGSTER D F, KELLEY K D, et al. Sediment-hosted lead-Zink deposit:A global perspective[M]. Economic Geology, 100th Anniversary Volume, 2005, 561-607.

    Google Scholar

    OHMOTO H, RYE RO. Isotopes of sulfur and carbon. In:Barnes HL(ed.). Geochemistry of Hydrothermal Ore Deposits[M]. 2nd Edition. New York:J.Wiley and Sons, Inc. 1979, 798.

    Google Scholar

    OHMOTO H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 1972, 67(5):551-578.

    Google Scholar

    STUART FM, BURNARD PG, TAYLOR RP, et al. Resolving mantle and crustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclusions from DaeHwa W-Mo mineralization, S. Korea[J]. Geochimica et Cosmochimica Acta, 1995, 59:4663-4673.

    Google Scholar

    SANGSTER D F. Mississippi Valley-type and Sedex Lead-zinc Deposits:a Comparative Examination[J]. Transaction-Instiution of Mining and Metallurgy (Sect. B:Applied Earth Sciences), 1990, 99:21-42.

    Google Scholar

    TAYLOR HP. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology, 1986, 69:843-883.

    Google Scholar

    TAYLOR SR and MCLENNAN SM. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33:241-265.

    Google Scholar

    TRULL TW, KURZ MD, JENKINS W J. Diffusion of cosmogenic3He in olivine and quartz:Implications for surface exposure dating[J]. Earth and Planetary Science Letters, 1991, 103:241-256.

    Google Scholar

    VEIZER J and HOEFS J. The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonaterocks[J]. Geochimica et Cosmochimica Acta, 1976, 40:1387-1395.

    Google Scholar

    ZARTMAN R E and DOE B R. Plumbotectonics-The model[J]. Tectonophysics, 1981, 75:135-162.

    Google Scholar

    ZHOU Jiaxi,WANG Jingsong,YANG Dezhi,LIU Jinhai.H-O-S-Cu-Pb Isotopic Constraints on theOrigin of the Nage Cu-Pb Deposit, Southeast Guizhou Province, SW China[J]. Acta Geologica Sinica (English Edition), 2013, 87(05):1334-1343.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1224) PDF downloads(655) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint