Citation: | SHEN Rujia, HUANG Haibo, XIE Enping, CHENG Tingting, LI Hualing, LIU Jiankun. 2024. A review of the application of stabilization remediation in heavy metal contaminated soil. East China Geology, 45(3): 281-301. doi: 10.16788/j.hddz.32-1865/P.2023.12.013 |
Heavy metals discharged into the environment by natural and human activities may have harmful consequences on human health, ecological environment, economy and society, so the remediation of the soil contaminated with heavy metal has attracted much attention in recent years. Among several techniques for remediation of heavy metal-contaminated soil (physical remediation, chemical remediation and biological remediation), the metal stabilization technology using soil improvers has received considerable attention and is a promising method for soil remediation. In this paper, the research progress of soil improvers in remediation of heavy metal-contaminated soil in recent years was reviewed, including inorganic materials such as clay minerals, phosphorus-containing materials, metals and metal oxides, organic materials such as organic matter, municipal solid waste and biochar, and some combined application of organic and inorganic materials in remediation of heavy metal- contaminated soil. These improvers effectively reduce the bioavailability of heavy metals in soil through various repair processes such as adsorption, complexation, precipitation and REDOX. Finally, the prospect of future research is put forward, and the basic theoretical research should be strengthened to clarify the chemical stabilization process and heavy metal repair mechanism, so as to broaden the development of this field. It provides a valuable reference for the study and practice of the stability of heavy metals in polluted soil.
[1] | MInistry of Environmental Protection, Ministry of Land and Resources. 2014. National soil pollution survey Bulletin[J]. China Environmental Protection Industry, (5): 10-11 (in Chinese) |
[2] | AHMAD M, OK Y S, KIM B Y, AHN J H, LEE Y H, ZHANG M, MOON D H, AL-WABEL M I, LEE S S. 2016. Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil[J]. Journal of Environmental Management,166:131-139. |
[3] | ALMAROAI Y A, VITHANAGE M, RAJAPAKSHA A U, LEE S S, DOU X M, LEE Y H, SUNG J K, OK Y S. 2014. Natural and synthesised iron-rich amendments for As and Pb immobilisation in agricultural soil[J]. Chemistry and Ecology,30(3):267-279. doi: 10.1080/02757540.2013.861826 |
[4] | ALPASLAN B, YUKSELEN M A. 2002. Remediation of lead contaminated soils by stabilization/solidification[J]. Water, Air, and Soil Pollution, 133(1): 253-263. |
[5] | BASHIR S, HUSSAIN Q, AKMAL M, RIAZ M, HU H Q, IJAZ S S, IQBAL M, ABRO S, MEHMOOD S, AHMAD M. 2018. Sugarcane bagasse-derived biochar reduces the cadmium and chromium bioavailability to mash bean and enhances the microbial activity in contaminated soil[J]. Journal of Soils and Sediments,18(3):874-886. doi: 10.1007/s11368-017-1796-z |
[6] | BIAN G G. 2023. Current status and prospects of environmental supervision technical specifications for soil pollution remediation[J]. Journal of Qinghai Environment,33(3):110-115 (in Chinese with English abstract). |
[7] | BOOSTANI H R, NAJAFI-GHIRI M, HARDIE A G, KHALILI D. 2019. Comparison of Pb stabilization in a contaminated calcareous soil by application of vermicompost and sheep manure and their biochars produced at two temperatures[J]. Applied Geochemistry,102:121-128. doi: 10.1016/j.apgeochem.2019.01.013 |
[8] | CALGARO L, CONTESSI S, BONETTO A, BADETTI E, FERRARI G, ARTIOLI G, MARCOMINI A. 2021. Calcium aluminate cement as an alternative to ordinary Portland cement for the remediation of heavy metals contaminated soil: mechanisms and performance[J]. Journal of Soils and Sediments,21(4):1755-1768. doi: 10.1007/s11368-020-02859-x |
[9] | CAMPOS P, KNICKER H, LÓPEZ R, De la ROSA J M. 2021. Application of biochar produced from crop residues on trace elements contaminated soils: effects on soil properties, enzymatic activities and brassica rapa growth[J]. Agronomy,11(7):1394. doi: 10.3390/agronomy11071394 |
[10] | CAO X D, WAHBI A, MA L N, LI B, YANG Y L. 2009. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid[J]. Journal of Hazardous Materials,164(2-3):555-564. doi: 10.1016/j.jhazmat.2008.08.034 |
[11] | CHEN D, GUO H, LI R Y, LI L Q, PAN G X, CHANG A, JOSEPH S. 2016. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice - A field study over four rice seasons in Hunan, China[J]. Science of the Total Environment,541:1489-1498. doi: 10.1016/j.scitotenv.2015.10.052 |
[12] | CHEN Y Q, SHU H S, HONG H F, REN D T, WANG J. 2023. Study on the influence of lead-zinc tailings on farmland pollution in downstream areas[J]. Journal of Agricultural Catastrophology,13(8):289-291 (in Chinese with English abstract). |
[13] | CHEN Z, ZENG C Y, ZHANG Y H. 2023. Application of humic acid in soil pollution prevention and remediation technology[J]. Humic Acid,(4):1-6,57 (in Chinese with English abstract). |
[14] | CHEN Z X, ZHANG Z C, WANG P, LIU T Y. 2022. Pivotal roles of nanoscale zerovalent iron supported on metal-organic framework material in cadmium (II) migration and transformation in soil[J]. Journal of Environmental Science and Health, Part B, 57(5): 430-440. |
[15] | CHIRENJE T, MA L Q. 1999. Effects of acidification on metal mobility in a papermill-ash amended soil[J]. Journal of Environmental Quality,28(3):760-766. |
[16] | CHON C M, CHO D W, NAM I H, KIM J G, SONG H. 2018. Fabrication of Fe/Mn oxide composite adsorbents for adsorptive removal of zinc and phosphate[J]. Journal of Soils and Sediments,18(3):946-956. doi: 10.1007/s11368-017-1784-3 |
[17] | CLEMENTE R, BERNAL M P. 2006. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids[J]. Chemosphere,64(8):1264-1273. doi: 10.1016/j.chemosphere.2005.12.058 |
[18] | CUI L Q, PAN G X, LI L Q, BIAN R J, LIU X Y, YAN J L, QUAN G X, DING C, CHEN T M, LIU Y, LIU Y M, YIN C T, WEI C P, YANG Y G, HUSSAIN Q. 2016. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment[J]. Ecological Engineering,93:1-8. doi: 10.1016/j.ecoleng.2016.05.007 |
[19] | CUI H B, SHENG X, HU S J, LI S, ZHANG S W, ZHOU J. 2023. Impacts of modified fly ash on soil available lead and copper and their accumulation by ryegrass[J]. Agronomy,13(9):2194. doi: 10.3390/agronomy13092194 |
[20] | DARMAWAN, WADA S I. 2002. Effect of clay mineralogy on the feasibility of electrokinetic soil decontamination technology[J]. Applied Clay Science,20(6):283-293. doi: 10.1016/S0169-1317(01)00080-1 |
[21] | DERMATAS D, MENG X G. 2003. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils[J]. Engineering Geology,70(3-4):377-394. doi: 10.1016/S0013-7952(03)00105-4 |
[22] | DI PALMA L, GUEYE M T, PETRUCCI E. 2015. Hexavalent chromium reduction in contaminated soil: a comparison between ferrous sulphate and nanoscale zero-valent iron[J]. Journal of Hazardous Materials,281:70-76. doi: 10.1016/j.jhazmat.2014.07.058 |
[23] | DU Y, ZHANG Y Y, ZHANG J F, YANG Q, LIU B Y. 2023. Study on the stakeholder issues in the treatment and restoration of polluted sites[J]. China Resources Comprehensive Utilization,41(8):123-129 (in Chinese with English abstract). |
[24] | EGENE C E, VAN POUCKE R, OK Y S, MEERS E, TACK F M G. 2018. Impact of organic amendments (biochar, compost and peat) on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years[J]. Science of the Total Environment,626:195-202. doi: 10.1016/j.scitotenv.2018.01.054 |
[25] | EGERIĆ M, SMIČIKLAS I, DOJČINOVIĆ B, SIKIRIĆ B, JOVIĆ M, ŠLJIVIĆ-IVANOVIĆ M, ČAKMAK D. 2019. Interactions of acidic soil near copper mining and smelting complex and waste-derived alkaline additives[J]. Geoderma,352:241-250. doi: 10.1016/j.geoderma.2019.06.015 |
[26] | FANG Z, GAO Y R, BOLAN N, SHAHEEN S M, XU S, WU X L, XU X Y, HU H Y, LIN J H, ZHANG F B, LI J H, RINKLEBE J, WANG H L. 2020. Conversion of biological solid waste to graphene-containing biochar for water remediation: a critical review[J]. Chemical Engineering Journal,390:124611. doi: 10.1016/j.cej.2020.124611 |
[27] | FANG B, LI S F, LIU J K, XUE E J, MA J, LU M. 2023. In-situ immobilization remediation effect of biochar and bentonite on Cr-polluted soil[J]. Recyclable Resources and Circular Economy,16(11):40-42 (in Chinese with English abstract). |
[28] | FIJALKOWSKA G, WIŚNIEWSKA M, SZEWCZUK-KARPISZ K. 2019. The structure of electrical double layer formed on the kaolinite surface in the mixed system of cationic polyacrylamide and lead(II) ions[J]. Physicochemical Problems of Mineral Processing,55(6):1339-1349. |
[29] | GAO X, PENG Y T, ZHOU Y Y, ADEEL M, CHEN Q. 2019. Effects of magnesium ferrite biochar on the cadmium passivation in acidic soil and bioavailability for packoi (Brassica chinensis L. )[J]. Journal of Environmental Management,251:109610. doi: 10.1016/j.jenvman.2019.109610 |
[30] | GASPARATOS D. 2013. Sequestration of heavy metals from soil with Fe-Mn concretions and nodules[J]. Environmental Chemistry Letters,11(1):1-9. doi: 10.1007/s10311-012-0386-y |
[31] | GONZAGA M I S, DE ALMEIDA SILVA MATIAS M I, ANDRADE K R, DE JESUS A N, DA COSTA CUNHA G, DE ANDRADE R S, DE JESUS SANTOS J C. 2020. Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper-contaminated soil[J]. Chemosphere,240:124828. doi: 10.1016/j.chemosphere.2019.124828 |
[32] | GONZAGA M I S, MACKOWIAK C, DE ALMEIDA A Q, WISNIEWSKI A, DE SOUZA D F, DA SILVA LIMA I, DE JESUS A N. 2018. Assessing biochar applications and repeated Brassica juncea L. production cycles to remediate Cu contaminated soil[J]. Chemosphere,201:278-285. doi: 10.1016/j.chemosphere.2018.03.038 |
[33] | GU H H, QIU H, TIAN T, ZHAN S S, DENG T H B, CHANEY R L, WANG S Z, TANG Y T, MOREL J L, QIU R L. 2011. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L. ) planted on multi-metal contaminated acidic soil[J]. Chemosphere,83(9):1234-1240. doi: 10.1016/j.chemosphere.2011.03.014 |
[34] | HAFSTEINSDÓTTIR E G, FRYIRS K A, STARK S C, GORE D B. 2014. Remediation of metal-contaminated soil in polar environments: phosphate fixation at casey station, East Antarctica[J]. Applied Geochemistry,51:33-43. doi: 10.1016/j.apgeochem.2014.08.011 |
[35] | HAN L F, SUN K, YANG Y, XIA X H, LI F B, YANG Z F, XING B S. 2020. Biochar's stability and effect on the content, composition and turnover of soil organic carbon[J]. Geoderma,364:114184. doi: 10.1016/j.geoderma.2020.114184 |
[36] | HASHIMOTO Y, SATO T. 2007. Removal of aqueous lead by poorly-crystalline hydroxyapatites[J]. Chemosphere,69(11):1775-1782. doi: 10.1016/j.chemosphere.2007.05.055 |
[37] | HASSAN M, LIU Y J, NAIDU R, DU J H, QI F J, DONNE S W, ISLAM M M. 2021. Mesoporous biopolymer architecture enhanced the adsorption and selectivity of aqueous heavy-metal ions[J]. Acs Omega,6(23):15316-15331. doi: 10.1021/acsomega.1c01642 |
[38] | HE T Y, MENG J, CHEN W F, LIU Z Q, CAO T, CHENG X Y, HUANG Y W, YANG X. 2017. Effects of biochar on cadmium accumulation in rice and cadmium fractions of soil: a three-year pot experiment[J]. BioResources,12(1):622-642. |
[39] | HE E K, YANG Y X, XU Z B, QIU H, YANG F, PEIJNENBURG W J G M, ZHANG W H, QIU R L, WANG S Z. 2019. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars[J]. Science of the Total Environment,673:245-253. doi: 10.1016/j.scitotenv.2019.04.037 |
[40] | HE L Z, ZHONG H, LIU G X, DAI Z M, BROOKES P C, XU J M. 2019. Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China[J]. Environmental Pollution,252:846-855. doi: 10.1016/j.envpol.2019.05.151 |
[41] | HSU J H, LO S L. 2000. Characterization and extractability of copper, manganese, and zinc in swine manure composts[J]. Journal of Environmental Quality,29(2):447-453. |
[42] | HUANG G Y, SU X J, RIZWAN M S, ZHU Y F, HU H Q. 2016. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils[J]. Environmental Science and Pollution Research,23(16):16845-16856. doi: 10.1007/s11356-016-6885-9 |
[43] | HUANG D L, XUE W J, ZENG G M, WAN J, CHEN G M, HUANG C, ZHANG C, CHENG M, XU P. 2016. Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity[J]. Water Research,106:15-25. doi: 10.1016/j.watres.2016.09.050 |
[44] | HWANG A, JI W, KWEON B, KHIM J. 2008. The physico-chemical properties and leaching behaviors of phosphatic clay for immobilizing heavy metals[J]. Chemosphere,70(6):1141-1145. doi: 10.1016/j.chemosphere.2007.07.082 |
[45] | IGALAVITHANA A D, KWON E E, VITHANAGE M, RINKLEBE J, MOON D H, MEERS E, TSANG D C W, OK Y S. 2019. Soil lead immobilization by biochars in short-term laboratory incubation studies[J]. Environment International,127:190-198. doi: 10.1016/j.envint.2019.03.031 |
[46] | JIANG T Y, JIANG J, XU R K, LI Z. 2012. Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar[J]. Chemosphere,89(3):249-256. doi: 10.1016/j.chemosphere.2012.04.028 |
[47] | JING F, CHEN X M, WEN X, LIU W, HU S M, YANG Z J, GUO B L, LUO Y, YU Q X, XU Y L. 2020. Biochar effects on soil chemical properties and mobilization of cadmium (Cd) and lead (Pb) in paddy soil[J]. Soil Use and Management,36(2):320-327. doi: 10.1111/sum.12557 |
[48] | KARER J, ZEHETNER F, DUNST G, FESSL J, WAGNER M, PUSCHENREITER M, STAPKĒVIČA M, FRIESL-HANL W, SOJA G. 2018. Immobilisation of metals in a contaminated soil with biochar-compost mixtures and inorganic additives: 2-year greenhouse and field experiments[J]. Environmental Science and Pollution Research,25(3):2506-2516. doi: 10.1007/s11356-017-0670-2 |
[49] | KO I, CHANG Y Y, LEE C H, KIM K W. 2005. Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction[J]. Journal of Hazardous Materials,127(1/3):1-13. doi: 10.1016/j.jhazmat.2005.06.041 |
[50] | KYPRITIDOU Z, ARGYRAKI A. 2021. Geochemical interactions in the trace element-soil-clay system of treated contaminated soils by Fe-rich clays[J]. Environmental Geochemistry and Health,43(7):2483-2503. doi: 10.1007/s10653-020-00542-1 |
[51] | LEBRUN M, MIARD F, NANDILLON R, MORABITO D, BOURGERIE S. 2021. Biochar application rate: improving soil fertility and Linum usitatissimum growth on an arsenic and lead contaminated technosol[J]. International Journal of Environmental Research,15(1):125-134. doi: 10.1007/s41742-020-00302-0 |
[52] | LI Y F, HU S D, CHEN J H, MÜLLER K, LI Y C, FU W J, LIN Z W, WANG H L. 2018. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review[J]. Journal of Soils and Sediments,18(2):546-563. doi: 10.1007/s11368-017-1906-y |
[53] | LI G, KHAN S, IBRAHIM M, SUN T R, TANG J F, COTNER J B, XU Y Y. 2018. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium[J]. Journal of Hazardous Materials,348:100-108. doi: 10.1016/j.jhazmat.2018.01.031 |
[54] | LI B, LI M, ZHANG P P, PAN Y F, HUANG Z H, XIAO H N. 2022. Remediation of Cd (II) ions in aqueous and soil phases using novel porous cellulose/chitosan composite spheres loaded with zero-valent iron nanoparticles[J]. Reactive and Functional Polymers,173:105210. doi: 10.1016/j.reactfunctpolym.2022.105210 |
[55] | LI Q, YIN J, WU L L, LI S L, CHEN L. 2023. Effects of biochar and zero valent iron on the bioavailability and potential toxicity of heavy metals in contaminated soil at the field scale[J]. Science of the Total Environment,897:165386. doi: 10.1016/j.scitotenv.2023.165386 |
[56] | LIANG X, SU Y L, WANG X N, LIANG C T, TANG C J, WEI J Y, LIU K H, MA J M, YU F M, LI Y. 2023. Insights into the heavy metal adsorption and immobilization mechanisms of CaFe-layered double hydroxide corn straw biochar: synthesis and application in a combined heavy metal-contaminated environment[J]. Chemosphere,313:137467. doi: 10.1016/j.chemosphere.2022.137467 |
[57] | LIMA J Z, DA SILVA E F, PATINHA C, RODRIGUES V G S. 2022. Sorption and post-sorption performances of Cd, Pb and Zn onto peat, compost and biochar[J]. Journal of Environmental Management,321:115968. doi: 10.1016/j.jenvman.2022.115968 |
[58] | LIN P C, LIU H, YIN H, ZHU M H, LUO H Y, DANG Z. 2023. Remediation performance and mechanisms of Cu and Cd contaminated water and soil using Mn/Al-layered double oxide-loaded biochar[J]. Journal of Environmental Sciences,125:593-602. doi: 10.1016/j.jes.2022.03.023 |
[59] | LING W T, SHEN Q, GAO Y Z, GU X H, YANG Z P. 2007. Use of bentonite to control the release of copper from contaminated soils[J]. Australian Journal of Soil Research,45(8):618-623. doi: 10.1071/SR07079 |
[60] | LIU Y Z, LU Y, LIU S Y. 2023. Study on chemical compatibility of amended cement-soil vertical cutoff wall permeated with heavy metal solutions[J]. Rock and Soil Mechanics,44(2):497-506. (in Chinese with English abstract |
[61] | LIU Q J, LUO J Y, TANG J P, CHEN Z L, CHEN Z W, LIN Q T. 2022. Remediation of cadmium and lead contaminated soils using Fe-OM based materials[J]. Chemosphere,307:135853. doi: 10.1016/j.chemosphere.2022.135853 |
[62] | LIU Y K, MOLINARI S, DALCONI M C, VALENTINI L, BELLOTTO M P, FERRARI G, PELLAY R, RILIEVO G, VIANELLO F, SALVIULO G, CHEN Q S, ARTIOLI G. 2023. Mechanistic insights into Pb and sulfates retention in ordinary portland cement and aluminous cement: assessing the contributions from binders and solid waste[J]. Journal of Hazardous Materials,458:131849. doi: 10.1016/j.jhazmat.2023.131849 |
[63] | LIU J J, ZHA F S, XU L, DENG Y F, CHU C F. 2018. Engineering properties of heavy metal contaminated soil solidified/stabilized with high calcium fly ash and soda residue[C]//Proceedings of GeoShanghai 2018 International Conference: Geoenvironment and Geohazard. GSIC 2018. Springer, Singapore, 442-449. |
[64] | LIU R Q, ZHAO D Y. 2013. Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil[J]. Chemosphere,91(5):594-601. doi: 10.1016/j.chemosphere.2012.12.034 |
[65] | MA M Y, XU X Q, HA Z H, SU Q M K, LV C Y, LI J, DU D Y, CHI R. 2023. Deep insight on mechanism and contribution of arsenic removal and heavy metals remediation by mechanical activation phosphogypsum[J]. Environmental Pollution,336:122258. doi: 10.1016/j.envpol.2023.122258 |
[66] | MCBRIDE M B, MARTÍNEZ C E. 2000. Copper phytotoxicity in a contaminated soil: remediation tests with adsorptive materials[J]. Environmental Science & Technology,34(20):4386-4391. |
[67] | MEIER S, CURAQUEO G, KHAN N, BOLAN N, CEA M, EUGENIA G M, CORNEJO P, OK Y S, BORIE F. 2017. Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil[J]. Journal of Soils and Sediments,17(3):741-750. doi: 10.1007/s11368-015-1256-6 |
[68] | MÉNDEZ A, PAZ-FERREIRO J, ARAUJO F, GASCÓ G. 2014. Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil[J]. Journal of Analytical and Applied Pyrolysis,107:46-52. doi: 10.1016/j.jaap.2014.02.001 |
[69] | MENG F D, HUANG Q X, CAI Y B, XIAO L, WANG T, LI X L, WU W G, YUAN G D. 2023. A comparative assessment of humic acid and biochar altering cadmium and arsenic fractions in a paddy soil[J]. Journal of Soils and Sediments,23(2):845-855. doi: 10.1007/s11368-022-03385-8 |
[70] | MICHÁLKOVÁ Z, KOMÁREK M, VÍTKOVÁ M, ŘEČÍNSKÁ M, ETTLER V. 2016. Stability, transformations and stabilizing potential of an amorphous manganese oxide and its surface-modified form in contaminated soils[J]. Applied Geochemistry,75:125-136. doi: 10.1016/j.apgeochem.2016.10.020 |
[71] | MIN T, LUO T, CHEN L L, LU W D, WANG Y, CHENG L Y, RU S B, LI J H. 2021. Effect of dissolved organic matter on the phytoremediation of Cd-contaminated soil by cotton[J]. Ecotoxicology and Environmental Safety,226:112842. doi: 10.1016/j.ecoenv.2021.112842 |
[72] | MOORE F, GONZÁLEZ M E, KHAN N, CURAQUEO G, SANCHEZ-MONEDERO M, RILLING J, MORALES E, PANICHINI M, MUTIS A, JORQUERA M, MEJIAS J, HIRZEL J, MEIER S. 2018. Copper immobilization by biochar and microbial community abundance in metal-contaminated soils[J]. Science of the Total Environment,616-617:960-969. doi: 10.1016/j.scitotenv.2017.10.223 |
[73] | NAZEER M, KHAN M J, MUHAMMAD D, KHAN A. 2023. Biochar application stabilized the heavy metals in coal mined soil[J]. Canadian Journal of Soil Science,103(2):297-304. doi: 10.1139/cjss-2022-0073 |
[74] | NING D F, LIANG Y C, SONG A L, DUAN A W, LIU Z D. 2016. In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer[J]. Environmental Science and Pollution Research,23(23):23638-23647. doi: 10.1007/s11356-016-7588-y |
[75] | O'CONNOR D, PENG T Y, ZHANG J L, TSANG D C W, ALESSI D S, SHEN Z T, BOLAN N S, HOU D Y. 2018. Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials[J]. Science of the Total Environment,619-620:815-826. doi: 10.1016/j.scitotenv.2017.11.132 |
[76] | OUYANG J D, LUO G F, HAN Z W, XIAO H, YANG M. 2023. Release mechanism and stabilization effect of Sb and As: A case study of the antimony mine in karst area, southwestern China[J]. Polish Journal of Environmental Studies,32(2):1743-1754. doi: 10.15244/pjoes/157574 |
[77] | PARK J H, CHOPPALA G K, BOLAN N S, CHUNG J W, CHUASAVATHI T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals[J]. Plant and Soil,348(1-2):439-451. doi: 10.1007/s11104-011-0948-y |
[78] | PEI G P, ZHU Y E, WEN J G, PEI Y X, LI H. 2020. Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil[J]. Environmental Pollution,256:113407. doi: 10.1016/j.envpol.2019.113407 |
[79] | PENG Y X, ZHANG S R, ZHONG Q M, WANG G Y, FENG C, XU X X, PU Y L, GUO X. 2021. Removal of heavy metals from abandoned smelter contaminated soil with poly-phosphonic acid: two-objective optimization based on washing efficiency and risk assessment[J]. Chemical Engineering Journal,421:129882. doi: 10.1016/j.cej.2021.129882 |
[80] | PIATAK N M, PARSONS M B, SEAL R R. 2015. Characteristics and environmental aspects of slag: a review[J]. Applied Geochemistry,57:236-266. doi: 10.1016/j.apgeochem.2014.04.009 |
[81] | QIAN W, LIANG J Y, ZHANG W X, HUANG S T, DIAO Z H. 2022. A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil[J]. Journal of Environmental Sciences,113:231-241. doi: 10.1016/j.jes.2021.06.014 |
[82] | QIAN S X, ZHOU X R, FU Y K, SONG B, YAN H C, CHEN Z X, SUN Q, YE H Y, QIN L, LAI C. 2023. Biochar-compost as a new option for soil improvement: application in various problem soils[J]. Science of the Total Environment,870:162024. doi: 10.1016/j.scitotenv.2023.162024 |
[83] | RAN H Z, GUO Z H, SHI L, FENG W L, XIAO X Y. 2023. Cadmium bioavailability in agricultural soil after mixed amendments combined with rice-rape cropping: a five-season field experiment[J]. Journal of Soils and Sediments,23(11):3879-3890. doi: 10.1007/s11368-023-03575-y |
[84] | RASHEED T, ADEEL M, NABEEL F, BILAL M, IQBAL H M N. 2019. TiO2/SiO2 decorated carbon nanostructured materials as a multifunctional platform for emerging pollutants removal[J]. Science of the Total Environment,688:299-311. doi: 10.1016/j.scitotenv.2019.06.200 |
[85] | REDDY A S, CHAVALI R V P. 2023. Solidification/stabilization of copper-contaminated soil using magnesia-activated blast furnace slag[J]. Innovative Infrastructure Solutions,8(2):79. doi: 10.1007/s41062-023-01036-6 |
[86] | REDDY V A, SOLANKI C H, KUMAR S, REDDY K R, DU Y J. 2020. Pb-Zn smelter residue (LZSR) stabilized using low-carbon, low-cost limestone-calcined clay cement: leachability, chemical speciation, strength, and microstructure[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 24(4): 4020054. |
[87] | SHANABLEH A, ABU-ZER M O. 2001. Lime-based immobilization and leaching of Cr, Cd, Pb, and Ni as soil contaminants[J]. Arabian Journal for Science and Engineering, 26: 69-79. |
[88] | SHAO X, YU J, CHANG J H, HUANG Z, JIANG Y Y, DENG S W. 2023. Effect of vermiculite modified with nano-iron-based material on stabilization of lead in lead contaminated soil[J]. Environmental Science and Pollution Research,30(35):83821-83833. doi: 10.1007/s11356-023-28205-5 |
[89] | SHARIATMADARI N, WENG C H, DARYAEE H. 2009. Enhancement of hexavalent chromium [Cr(VI)] remediation from clayey soils by electrokinetics coupled with a nano-sized zero-valent iron barrier[J]. Environmental Engineering Science,26(6):1071-1079. doi: 10.1089/ees.2008.0257 |
[90] | SHI W Y, LI H, DU S, WANG K B, SHAO H B. 2013. Immobilization of lead by application of zeolite: Leaching column and rhizobox incubation studies[J]. Applied Clay Science,85:103-108. doi: 10.1016/j.clay.2013.08.022 |
[91] | SHIN W, KIM Y K. 2016. Stabilization of heavy metal contaminated marine sediments with red mud and apatite composite[J]. Journal of Soils and Sediments,16(2):726-735. doi: 10.1007/s11368-015-1279-z |
[92] | SINGH J, KALAMDHAD A S. 2013. Reduction of bioavailability and leachability of heavy metals during vermicomposting of water hyacinth[J]. Environmental Science and Pollution Research,20(12):8974-8985. doi: 10.1007/s11356-013-1848-x |
[93] | SIVARANJANEE R, KUMAR P S, RANGASAMY G. 2023. A critical review on biochar for environmental applications[J]. Carbon Letters,33(5):1407-1432. doi: 10.1007/s42823-023-00527-x |
[94] | SONG H H, LIANG W Y, LUO K L, WANG G H, LI Q N, JI X W, WAN J, SHAO X C, GONG K L, ZHANG W, PENG C. 2023. Simultaneous stabilization of Pb, Cd, and As in soil by rhamnolipid coated sulfidated nano zero-valent iron: effects and mechanisms[J]. Journal of Hazardous Materials,443:130259. doi: 10.1016/j.jhazmat.2022.130259 |
[95] | SUI F F, WANG J B, ZUO J, JOSEPH S, MUNROE P, DROSOS M, LI L Q, PAN G X. 2020. Effect of amendment of biochar supplemented with Si on Cd mobility and rice uptake over three rice growing seasons in an acidic Cd-tainted paddy from central South China[J]. Science of the Total Environment,709:136101. doi: 10.1016/j.scitotenv.2019.136101 |
[96] | SUI F F, ZUO J, CHEN D, LI L Q, PAN G X, CROWLEY D E. 2018. Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study[J]. Environmental Science and Pollution Research,25(4):3368-3377. doi: 10.1007/s11356-017-0652-4 |
[97] | SUN Y B, LI Y, XU Y M, LIANG X F, WANG L. 2015. In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite[J]. Applied Clay Science,105-106:200-206. doi: 10.1016/j.clay.2014.12.031 |
[98] | SUN Y B, ZHAO D, XU Y M, WANG L, LIANG X F, SHEN Y. 2016. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation[J]. Frontiers of Environmental Science & Engineering,10(1):85-92. |
[99] | SUN L G, ZHOU G Z, YANG R C, LI Y M, TENG S C, ZHANG L Y, YU P P. 2022. Synthesis of novel magnesium-doped hydroxyapatite/chitosan nanomaterial and mechanisms for enhanced stabilization of heavy metals in soil[J]. Journal of Inorganic and Organometallic Polymers and Materials,32(9):3601-3620. doi: 10.1007/s10904-022-02391-0 |
[100] | TANG H, CHEN M, WU P, FAHEEM M, FENG Q W, LEE X Q, WANG S S, WANG B. 2023. Engineered biochar effects on soil physicochemical properties and biota communities: a critical review[J]. Chemosphere,311:137025. doi: 10.1016/j.chemosphere.2022.137025 |
[101] | TANG Y Q, WANG C, HOLM P E, HANSEN H C B, BRANDT K K. 2023. Impacts of biochar materials on copper speciation, bioavailability, and toxicity in chromated copper arsenate polluted soil[J]. Journal of Hazardous Materials,459:132067. doi: 10.1016/j.jhazmat.2023.132067 |
[102] | TAO C J, LI M H, MA M H, ZHANG X R, DU G Q, LIANG H X. 2023. Ecological risk assessment of heavy metals in soil-rice in a typical selenium-rich area of southern Anhui province[J]. East China Geology,44(2):160-171 (in Chinese with English abstract). |
[103] | TONG F, HUANG Q, LIU L Z, FAN G P, SHI G L, LU X, GAO Y. 2023. Interactive effects of inorganic-organic compounds on passivation of cadmium in weakly alkaline soil[J]. Agronomy,13(10):2647. doi: 10.3390/agronomy13102647 |
[104] | TRAN H T, BOLAN N S, LIN C, BINH Q A, NGUYEN M K, LUU T A, LE V G, PHAM C Q, HOANG H G, VO D V N. 2023. Succession of biochar addition for soil amendment and contaminants remediation during co-composting: a state of art review[J]. Journal of Environmental Management,342:118191. doi: 10.1016/j.jenvman.2023.118191 |
[105] | TRIPTI, KUMAR A, MALEVA M, BORISOVA G, RAJKUMAR M. 2023. Amaranthus biochar-based microbial cell composites for alleviation of drought and cadmium stress: A novel bioremediation approach[J]. Plants,12(10):1973. doi: 10.3390/plants12101973 |
[106] | VAN POUCKE R, AINSWORTH J, MAESEELE M, OK Y S, MEERS E, TACK F M G. 2018. Chemical stabilization of Cd-contaminated soil using biochar[J]. Applied Geochemistry,88:122-130. doi: 10.1016/j.apgeochem.2017.09.001 |
[107] | VANDYCK M M, ARTHUR E K, GIKUNOO E, AGYEMANG F O, KOOMSON B, FOLI G, BAAH D S. 2023. Use of limekiln dust in the stabilization of heavy metals in Ghanaian gold oxide ore mine tailings[J]. Environmental Monitoring and Assessment,195(6):711-719. doi: 10.1007/s10661-023-11306-6 |
[108] | VEJVODOVÁ K, DRÁBEK O, ASH C, TEJNECKÝ V, NĚMEČEK K, BORŮVKA L. 2020. Effect of clay on the fractions of potentially toxic elements in contaminated soil[J]. Soil and Water Research,16(1):1-10. doi: 10.17221/13/2020-SWR |
[109] | WAN J P, ZENG Y F, WANG M, DONG B, XU Z X. 2022. New mechanism of FA in composted sludge inducing Cu fixation on Albite in open-pit mine soil[J]. Journal of Environmental Sciences,116:142-150. doi: 10.1016/j.jes.2021.08.029 |
[110] | WANG G F, CAO W S, LIANG G C, XIANG J, CHEN Y L, LIU H Y. 2023. Leaching behavior of heavy metals from Pb-Zn tailings and remediation by Ca- or Na-montmorillonite[J]. Water, Air, & Soil Pollution, 234(2): 101. |
[111] | WANG J X, FU H Y, XU D M, MU Z Q, FU R B. 2022. The remediation mechanisms and effects of chemical amendments for heavy metals in contaminated soils: a review of literature[J]. Polish Journal of Environmental Studies,31(5):4511-4522. doi: 10.15244/pjoes/146705 |
[112] | WANG H Y, GAO Z, LI X, DUAN Z Q. 2023. Cadmium accumulation and immobilization by Artemisia selengensis under different compound amendments in cadmium-contaminated soil[J]. Agronomy,13(4):1011. doi: 10.3390/agronomy13041011 |
[113] | WANG F, MIAO L J, WANG Y F, ZHANG M Y, ZHANG H J, DING Y, ZHU W Q. 2022. Using cow dung and mineral vermireactors to produce vermicompost for use as a soil amendment to slow Pb2+ migration[J]. Applied Soil Ecology,170:104299. doi: 10.1016/j.apsoil.2021.104299 |
[114] | WANG Q, SHAHEEN S M, JIANG Y H, LI R H, SLANÝ M, ABDELRAHMAN H, KWON E, BOLAN N, RINKLEBE J, ZHANG Z Q. 2021. Fe/Mn- and P-modified drinking water treatment residuals reduced Cu and Pb phytoavailability and uptake in a mining soil[J]. Journal of Hazardous Materials,403:123628. doi: 10.1016/j.jhazmat.2020.123628 |
[115] | WANG L N, WEI J, YANG L, CHEN Y, WANG M J, XIAO L, YUAN G D. 2023. Enhancing soil remediation of copper-contaminated soil through washing with a soluble humic substance and chemical reductant[J]. Agronomy,13(7):1754. doi: 10.3390/agronomy13071754 |
[116] | WANG Q, WEN J, YANG L S, CUI H S, ZENG T J, HUANG J. 2023. Exploration on the role of different iron species in the remediation of As and Cd co-contamination by sewage sludge biochar[J]. Environmental Science and Pollution Research,30(13):39154-39168. doi: 10.1007/s11356-022-24952-z |
[117] | WANG H, XIA W, LU P. 2017. Study on adsorption characteristics of biochar on heavy metals in soil[J]. Korean Journal of Chemical Engineering,34(6):1867-1873. doi: 10.1007/s11814-017-0048-7 |
[118] | WANG Y, XU Y A, LI D, TANG B C, MAN S L, JIA Y F, XU H. 2018. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress[J]. Science of the Total Environment,621:1057-1065. doi: 10.1016/j.scitotenv.2017.10.121 |
[119] | WANG N, XUE X M, JUHASZ A L, CHANG Z Z, LI H B. 2017. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic[J]. Environmental Pollution,220:514-522. doi: 10.1016/j.envpol.2016.09.095 |
[120] | WU Y F, CHEN G G. 2022. Assessment on soil conservation service based on InVEST model——a case study of Yindingge mining area[J]. East China Geology,43(2):184-195 (in Chinese with English abstract). |
[121] | WU H L, SONG H, SUN X P, BI Y Z, FU S J, YANG N. 2023. Geo-environmental properties and microstructural characteristics of sustainable limestone calcined clay cement (LC3) binder treated Zn-contaminated soils[J]. Journal of Zhejiang University-SCIENCE A,24(10):898-911. doi: 10.1631/jzus.A2200531 |
[122] | XING Y, WANG J X, XIA J C, LIU Z M, ZHANG Y H, DU Y, WEI W L. 2019. A pilot study on using biochars as sustainable amendments to inhibit rice uptake of Hg from a historically polluted soil in a Karst region of China[J]. Ecotoxicology and Environmental Safety,170:18-24. doi: 10.1016/j.ecoenv.2018.11.111 |
[123] | XU Z L, NIE N, LIU K Y, LI Q, CUI H J, DU H H. 2023. Analog soil organo-ferrihydrite composites as suitable amendments for cadmium and arsenic stabilization in co-contaminated soils[J]. Science of the Total Environment,877:162929. doi: 10.1016/j.scitotenv.2023.162929 |
[124] | XUE W J, WEN S Q, ZHU Y L, GAO Y, WANG R Z, XU Y Q. 2023. Immobilization of cadmium in river sediments using sulfidized nanoscale zero-valent iron synthesized with different iron precursors: performance and mechanism[J]. Journal of Soils and Sediments,23(9):3550-3566. doi: 10.1007/s11368-023-03606-8 |
[125] | YANG S X, CAO J B, HU W Y, ZHANG X J, DUAN C. 2013. An evaluation of the effectiveness of novel industrial by-products and organic wastes on heavy metal immobilization in Pb-Zn mine tailings[J]. Environmental Science: Processes & Impacts, 15(11): 2059-2067. |
[126] | YANG J, JIN C H, LI J, GAO X H, WANG Y L, WANG J S, TENG Y G. 2023 Remediation of vanadium contaminated soils in a waste smelter by eco-friendly chitosan@mineral composites[J]. Environmental Technology & Innovation, 32: 103291. |
[127] | YANG Z P, ZHANG K S, LI X Y, REN S P, LI P. 2023. The effects of long-term freezing-thawing on the strength properties and the chemical stability of compound solidified/stabilized lead-contaminated soil[J]. Environmental Science and Pollution Research,30(13):38185-38201. |
[128] | YAO S X, ZHOU B B, DUAN M L, CAO T, WEN Z Q, CHEN X P, WANG H, WANG M, CHENG W, ZHU H Y, YANG Q, LI Y J. 2023. Combination of biochar and trichoderma harzianum can improve the phytoremediation efficiency of Brassica juncea and the rhizosphere micro-ecology in cadmium and arsenic contaminated soil[J]. Plants,12(16):2939. doi: 10.3390/plants12162939 |
[129] | YIN D X, WANG X, PENG B, TAN C Y, MA L Q. 2017. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system[J]. Chemosphere,186:928-937. doi: 10.1016/j.chemosphere.2017.07.126 |
[130] | YUAN Z M, ZHAO Y, GUO Z W, YAO J. 2016. Chemical and ecotoxicological assessment of multiple heavy metal-contaminated soil treated by phosphate addition[J]. Water, Air, & Soil Pollution, 227(11): 403. |
[131] | ZENG G M, HE Y, WANG F, LUO H, LIANG D, WANG J, HUANG J S, YU C Y, JIN L B, SUN D. 2023. Toxicity of nanoscale zero-valent iron to soil microorganisms and related defense mechanisms: a review[J]. Toxics,11(6):514. doi: 10.3390/toxics11060514 |
[132] | ZENG Z L, YU C, LIAO R P, CAI X Q, CHEN Z H, YU Z K, WU Z X. 2023. Preparation and characterization of sodium polyacrylate grafted montmorillonite nanocomposite for the adsorption of cadmium ions form aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,656:130389. doi: 10.1016/j.colsurfa.2022.130389 |
[133] | ZHANG H J, DONG X B, YANG H M. 2023. Montmorillonite-mediated electron distribution of zirconium phosphate for accelerating remediation of cadmium-contaminated water and soil[J]. Applied Clay Science,236:106883. doi: 10.1016/j.clay.2023.106883 |
[134] | ZHANG H M, LARSON S, BALLARD J, NIE J, ZHANG Q Q, KAZERY J A, DASARI S, PRADHAN N, DAI Q L, OLAFUYI O M, ZHU X C, MA Y H, HAN F X. 2023. Interaction of exopolysaccharide with clay minerals and their effects on U(VI) adsorption[J]. Journal of Soils and Sediments,23(11):4002-4016. doi: 10.1007/s11368-023-03589-6 |
[135] | ZHANG T, LI Q, YANG X, ZHENG D M, DENG H L, ZENG Z J, YU J H, WANG Q Z, SHI Y F, WANG S L, PI K W, GERSON A R. 2023. Pb contaminated soil from a lead-acid battery plant immobilized by municipal sludge and raw clay[J]. Environmental Technology,45(14):2796-2808. doi: 10.1080/09593330.2023.2187319 |
[136] | ZHANG M, SHAN S D, CHEN Y G, WANG F, YANG D Y, REN J K, LU H Y, PING L F, CHAI Y J. 2019. Biochar reduces cadmium accumulation in rice grains in a tungsten mining area-field experiment: effects of biochar type and dosage, rice variety, and pollution level[J]. Environmental Geochemistry and Health,41(1):43-52. doi: 10.1007/s10653-018-0120-1 |
[137] | ZHANG J Q, WANG Z, LUO Y, JIA W J, WANG Z Y, CHENG Q Q, ZHANG Z L, FENG X Y, ZENG Q P. 2023. A preparation method of Fe(II/III)loaded attapulgite-biochar to passivate Cd(II) in soil[J]. Soil and Sediment Contamination: An International Journal,32(8):1012-1032. doi: 10.1080/15320383.2022.2161471 |
[138] | ZHANG J, CHEN G G, WANG S X, NIU X N, SHUAI S , CHEN S , YU J J, CAO X Q. 2022. Distribution status and restoration suggestions on shelter forests in sandy shoreline of Fujian Province[J]. East China Geology,43(1):72-78. (in Chinese with English abstract). |
[139] | ZHANG D D, XU Y Q, LI X F, WANG L N, HE X W, MA Y, ZOU D X. 2020. The immobilization effect of natural mineral materials on Cr(VI) remediation in water and soil[J]. International Journal of Environmental Research and Public Health,17(8):2832. doi: 10.3390/ijerph17082832 |
[140] | ZHANG Y, XU Y M, LIANG X F, WANG L, SUN Y B, HUANG Q Q, QIN X. 2023. Ionomic analysis reveals the mechanism of mercaptosilane-modified palygorskite on reducing Cd transport from soil to wheat[J]. Environmental Science and Pollution Research,30(43):98091-98105. doi: 10.1007/s11356-023-29376-x |
[141] | ZHENG X J, CHEN M, WANG J F, LIU Y, LIAO Y Q, LIU Y C. 2020. Assessment of zeolite, biochar, and their combination for stabilization of multimetal-contaminated soil[J]. ACS Omega,5(42):27374-27382. doi: 10.1021/acsomega.0c03710 |
[142] | ZHOU P F, ADEEL M, GUO M L, GE L, SHAKOOR N, LI M S, LI Y B, WANG G Y, RUI Y K. 2023. Characterisation of biochar produced from two types of chestnut shells for use in remediation of cadmium- and lead-contaminated soil[J]. Crop & Pasture Science,74(1-2):147-156. |
[143] | ZHOU J M, CHEN H L, TAO Y L, THRING R W, MAO J L. 2019. Biochar amendment of chromium-polluted paddy soil suppresses greenhouse gas emissions and decreases chromium uptake by rice grain[J]. Journal of Soils and Sediments,19(4):1756-1766. doi: 10.1007/s11368-018-2170-5 |
[144] | ZHOU C Z, WANG J H, WANG Q, LENG Z, GENG Y, SUN S R, HOU H. 2023. Simultaneous adsorption of Cd and As by a novel coal gasification slag based composite: characterization and application in soil remediation[J]. Science of the Total Environment,882:163374. doi: 10.1016/j.scitotenv.2023.163374 |
[145] | ZHOU Y C, ZHAO X Q, JIANG Y, DING C C, LIU J G, ZHU C. 2023. Synergistic remediation of lead pollution by biochar combined with phosphate solubilizing bacteria[J]. Science of the Total Environment,861:160469. |
[146] | ZHOU Y, ZOU Z K, WANG M F, WANG Y Q, LI J L, QIU L Z, CHENG Y X, DAI Z Y. 2023. Biochar and nano-ferric oxide synergistically alleviate cadmium toxicity of muskmelon[J]. Environmental Science and Pollution Research,30(20):57945-57959. doi: 10.1007/s11356-023-26369-8 |
[147] | ZUO W G, WANG S J, ZHOU Y X, MA S, YIN W Q, SHAN Y H, WANG X Z. 2023. Conditional remediation performance of wheat straw biochar on three typical Cd-contaminated soils[J]. Science of the Total Environment,863:160998. doi: 10.1016/j.scitotenv.2022.160998 |
[148] | 环境保护部, 国土资源部. 2014. 全国土壤污染状况调查公报[J]. 中国环保产业, (5): 10-11. |
[149] | 边归国. 2023. 土壤污染修复环境监理技术规范的现状与展望[J]. 青海环境,33(3):110-115. doi: 10.3969/j.issn.1007-2454.2023.03.002 |
[150] | 陈毓遒, 舒红锁, 洪荷芳, 任典挺, 王江. 2023. 铅锌尾矿对下游区域农田污染的影响研究[J]. 农业灾害研究,13(8):289-291. doi: 10.3969/j.issn.2095-3305.2023.08.095 |
[151] | 陈臻, 曾翠云, 张永合. 2023. 腐植酸在土壤污染防治修复技术中的应用[J]. 腐植酸,(4):1-6,57. |
[152] | 杜芸, 张岩岩, 张家峰, 杨青, 刘碧云. 2023. 污染场地治理修复中的利益主体问题研究[J]. 中国资源综合利用,41(8):123-129. doi: 10.3969/j.issn.1008-9500.2023.08.035 |
[153] | 房彬, 李书锋, 刘建阔, 薛二军, 马劲, 路明. 2023. 生物炭组配膨润土对铬污染土壤原位钝化修复效果[J]. 再生资源与循环经济,16(11):40-42. doi: 10.3969/j.issn.1674-0912.2023.11.014 |
[154] | 刘宜昭, 陆阳, 刘松玉. 2023. 重金属作用下改性水泥系隔离墙化学相容性研究[J]. 岩土力学,44(2):497-506. |
[155] | 陶春军, 李明辉, 马明海, 张笑蓉, 杜国强, 梁红霞. 2023. 皖南某典型富硒区土壤-水稻重金属生态风险评估[J]. 华东地质,44(2):160-171. |
[156] | 武翼飞, 陈国光. 2022. 基于InVEST模型的矿区土壤保持功能评估——以银顶格矿区为例[J]. 华东地质,43(2):184-195. |
[157] | 张洁, 陈国光, 王尚晓, 牛晓楠, 帅爽, 陈思, 于俊杰, 曹新晴. 2022. 福建省沿海砂质岸线防护林分布特征及生态修复探讨[J]. 华东地质,43(1):72-78. |