2024 Vol. 45, No. 3
Article Contents

SHEN Rujia, HUANG Haibo, XIE Enping, CHENG Tingting, LI Hualing, LIU Jiankun. 2024. A review of the application of stabilization remediation in heavy metal contaminated soil. East China Geology, 45(3): 281-301. doi: 10.16788/j.hddz.32-1865/P.2023.12.013
Citation: SHEN Rujia, HUANG Haibo, XIE Enping, CHENG Tingting, LI Hualing, LIU Jiankun. 2024. A review of the application of stabilization remediation in heavy metal contaminated soil. East China Geology, 45(3): 281-301. doi: 10.16788/j.hddz.32-1865/P.2023.12.013

A review of the application of stabilization remediation in heavy metal contaminated soil

More Information
  • Heavy metals discharged into the environment by natural and human activities may have harmful consequences on human health, ecological environment, economy and society, so the remediation of the soil contaminated with heavy metal has attracted much attention in recent years. Among several techniques for remediation of heavy metal-contaminated soil (physical remediation, chemical remediation and biological remediation), the metal stabilization technology using soil improvers has received considerable attention and is a promising method for soil remediation. In this paper, the research progress of soil improvers in remediation of heavy metal-contaminated soil in recent years was reviewed, including inorganic materials such as clay minerals, phosphorus-containing materials, metals and metal oxides, organic materials such as organic matter, municipal solid waste and biochar, and some combined application of organic and inorganic materials in remediation of heavy metal- contaminated soil. These improvers effectively reduce the bioavailability of heavy metals in soil through various repair processes such as adsorption, complexation, precipitation and REDOX. Finally, the prospect of future research is put forward, and the basic theoretical research should be strengthened to clarify the chemical stabilization process and heavy metal repair mechanism, so as to broaden the development of this field. It provides a valuable reference for the study and practice of the stability of heavy metals in polluted soil.

  • 加载中
  • [1] MInistry of Environmental Protection, Ministry of Land and Resources. 2014. National soil pollution survey Bulletin[J]. China Environmental Protection Industry, (5): 10-11 (in Chinese)

    Google Scholar

    [2] AHMAD M, OK Y S, KIM B Y, AHN J H, LEE Y H, ZHANG M, MOON D H, AL-WABEL M I, LEE S S. 2016. Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil[J]. Journal of Environmental Management,166:131-139.

    Google Scholar

    [3] ALMAROAI Y A, VITHANAGE M, RAJAPAKSHA A U, LEE S S, DOU X M, LEE Y H, SUNG J K, OK Y S. 2014. Natural and synthesised iron-rich amendments for As and Pb immobilisation in agricultural soil[J]. Chemistry and Ecology,30(3):267-279. doi: 10.1080/02757540.2013.861826

    CrossRef Google Scholar

    [4] ALPASLAN B, YUKSELEN M A. 2002. Remediation of lead contaminated soils by stabilization/solidification[J]. Water, Air, and Soil Pollution, 133(1): 253-263.

    Google Scholar

    [5] BASHIR S, HUSSAIN Q, AKMAL M, RIAZ M, HU H Q, IJAZ S S, IQBAL M, ABRO S, MEHMOOD S, AHMAD M. 2018. Sugarcane bagasse-derived biochar reduces the cadmium and chromium bioavailability to mash bean and enhances the microbial activity in contaminated soil[J]. Journal of Soils and Sediments,18(3):874-886. doi: 10.1007/s11368-017-1796-z

    CrossRef Google Scholar

    [6] BIAN G G. 2023. Current status and prospects of environmental supervision technical specifications for soil pollution remediation[J]. Journal of Qinghai Environment,33(3):110-115 (in Chinese with English abstract).

    Google Scholar

    [7] BOOSTANI H R, NAJAFI-GHIRI M, HARDIE A G, KHALILI D. 2019. Comparison of Pb stabilization in a contaminated calcareous soil by application of vermicompost and sheep manure and their biochars produced at two temperatures[J]. Applied Geochemistry,102:121-128. doi: 10.1016/j.apgeochem.2019.01.013

    CrossRef Google Scholar

    [8] CALGARO L, CONTESSI S, BONETTO A, BADETTI E, FERRARI G, ARTIOLI G, MARCOMINI A. 2021. Calcium aluminate cement as an alternative to ordinary Portland cement for the remediation of heavy metals contaminated soil: mechanisms and performance[J]. Journal of Soils and Sediments,21(4):1755-1768. doi: 10.1007/s11368-020-02859-x

    CrossRef Google Scholar

    [9] CAMPOS P, KNICKER H, LÓPEZ R, De la ROSA J M. 2021. Application of biochar produced from crop residues on trace elements contaminated soils: effects on soil properties, enzymatic activities and brassica rapa growth[J]. Agronomy,11(7):1394. doi: 10.3390/agronomy11071394

    CrossRef Google Scholar

    [10] CAO X D, WAHBI A, MA L N, LI B, YANG Y L. 2009. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid[J]. Journal of Hazardous Materials,164(2-3):555-564. doi: 10.1016/j.jhazmat.2008.08.034

    CrossRef Google Scholar

    [11] CHEN D, GUO H, LI R Y, LI L Q, PAN G X, CHANG A, JOSEPH S. 2016. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice - A field study over four rice seasons in Hunan, China[J]. Science of the Total Environment,541:1489-1498. doi: 10.1016/j.scitotenv.2015.10.052

    CrossRef Google Scholar

    [12] CHEN Y Q, SHU H S, HONG H F, REN D T, WANG J. 2023. Study on the influence of lead-zinc tailings on farmland pollution in downstream areas[J]. Journal of Agricultural Catastrophology,13(8):289-291 (in Chinese with English abstract).

    Google Scholar

    [13] CHEN Z, ZENG C Y, ZHANG Y H. 2023. Application of humic acid in soil pollution prevention and remediation technology[J]. Humic Acid,(4):1-6,57 (in Chinese with English abstract).

    Google Scholar

    [14] CHEN Z X, ZHANG Z C, WANG P, LIU T Y. 2022. Pivotal roles of nanoscale zerovalent iron supported on metal-organic framework material in cadmium (II) migration and transformation in soil[J]. Journal of Environmental Science and Health, Part B, 57(5): 430-440.

    Google Scholar

    [15] CHIRENJE T, MA L Q. 1999. Effects of acidification on metal mobility in a papermill-ash amended soil[J]. Journal of Environmental Quality,28(3):760-766.

    Google Scholar

    [16] CHON C M, CHO D W, NAM I H, KIM J G, SONG H. 2018. Fabrication of Fe/Mn oxide composite adsorbents for adsorptive removal of zinc and phosphate[J]. Journal of Soils and Sediments,18(3):946-956. doi: 10.1007/s11368-017-1784-3

    CrossRef Google Scholar

    [17] CLEMENTE R, BERNAL M P. 2006. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids[J]. Chemosphere,64(8):1264-1273. doi: 10.1016/j.chemosphere.2005.12.058

    CrossRef Google Scholar

    [18] CUI L Q, PAN G X, LI L Q, BIAN R J, LIU X Y, YAN J L, QUAN G X, DING C, CHEN T M, LIU Y, LIU Y M, YIN C T, WEI C P, YANG Y G, HUSSAIN Q. 2016. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment[J]. Ecological Engineering,93:1-8. doi: 10.1016/j.ecoleng.2016.05.007

    CrossRef Google Scholar

    [19] CUI H B, SHENG X, HU S J, LI S, ZHANG S W, ZHOU J. 2023. Impacts of modified fly ash on soil available lead and copper and their accumulation by ryegrass[J]. Agronomy,13(9):2194. doi: 10.3390/agronomy13092194

    CrossRef Google Scholar

    [20] DARMAWAN, WADA S I. 2002. Effect of clay mineralogy on the feasibility of electrokinetic soil decontamination technology[J]. Applied Clay Science,20(6):283-293. doi: 10.1016/S0169-1317(01)00080-1

    CrossRef Google Scholar

    [21] DERMATAS D, MENG X G. 2003. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils[J]. Engineering Geology,70(3-4):377-394. doi: 10.1016/S0013-7952(03)00105-4

    CrossRef Google Scholar

    [22] DI PALMA L, GUEYE M T, PETRUCCI E. 2015. Hexavalent chromium reduction in contaminated soil: a comparison between ferrous sulphate and nanoscale zero-valent iron[J]. Journal of Hazardous Materials,281:70-76. doi: 10.1016/j.jhazmat.2014.07.058

    CrossRef Google Scholar

    [23] DU Y, ZHANG Y Y, ZHANG J F, YANG Q, LIU B Y. 2023. Study on the stakeholder issues in the treatment and restoration of polluted sites[J]. China Resources Comprehensive Utilization,41(8):123-129 (in Chinese with English abstract).

    Google Scholar

    [24] EGENE C E, VAN POUCKE R, OK Y S, MEERS E, TACK F M G. 2018. Impact of organic amendments (biochar, compost and peat) on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years[J]. Science of the Total Environment,626:195-202. doi: 10.1016/j.scitotenv.2018.01.054

    CrossRef Google Scholar

    [25] EGERIĆ M, SMIČIKLAS I, DOJČINOVIĆ B, SIKIRIĆ B, JOVIĆ M, ŠLJIVIĆ-IVANOVIĆ M, ČAKMAK D. 2019. Interactions of acidic soil near copper mining and smelting complex and waste-derived alkaline additives[J]. Geoderma,352:241-250. doi: 10.1016/j.geoderma.2019.06.015

    CrossRef Google Scholar

    [26] FANG Z, GAO Y R, BOLAN N, SHAHEEN S M, XU S, WU X L, XU X Y, HU H Y, LIN J H, ZHANG F B, LI J H, RINKLEBE J, WANG H L. 2020. Conversion of biological solid waste to graphene-containing biochar for water remediation: a critical review[J]. Chemical Engineering Journal,390:124611. doi: 10.1016/j.cej.2020.124611

    CrossRef Google Scholar

    [27] FANG B, LI S F, LIU J K, XUE E J, MA J, LU M. 2023. In-situ immobilization remediation effect of biochar and bentonite on Cr-polluted soil[J]. Recyclable Resources and Circular Economy,16(11):40-42 (in Chinese with English abstract).

    Google Scholar

    [28] FIJALKOWSKA G, WIŚNIEWSKA M, SZEWCZUK-KARPISZ K. 2019. The structure of electrical double layer formed on the kaolinite surface in the mixed system of cationic polyacrylamide and lead(II) ions[J]. Physicochemical Problems of Mineral Processing,55(6):1339-1349.

    Google Scholar

    [29] GAO X, PENG Y T, ZHOU Y Y, ADEEL M, CHEN Q. 2019. Effects of magnesium ferrite biochar on the cadmium passivation in acidic soil and bioavailability for packoi (Brassica chinensis L. )[J]. Journal of Environmental Management,251:109610. doi: 10.1016/j.jenvman.2019.109610

    CrossRef Google Scholar

    [30] GASPARATOS D. 2013. Sequestration of heavy metals from soil with Fe-Mn concretions and nodules[J]. Environmental Chemistry Letters,11(1):1-9. doi: 10.1007/s10311-012-0386-y

    CrossRef Google Scholar

    [31] GONZAGA M I S, DE ALMEIDA SILVA MATIAS M I, ANDRADE K R, DE JESUS A N, DA COSTA CUNHA G, DE ANDRADE R S, DE JESUS SANTOS J C. 2020. Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper-contaminated soil[J]. Chemosphere,240:124828. doi: 10.1016/j.chemosphere.2019.124828

    CrossRef Google Scholar

    [32] GONZAGA M I S, MACKOWIAK C, DE ALMEIDA A Q, WISNIEWSKI A, DE SOUZA D F, DA SILVA LIMA I, DE JESUS A N. 2018. Assessing biochar applications and repeated Brassica juncea L. production cycles to remediate Cu contaminated soil[J]. Chemosphere,201:278-285. doi: 10.1016/j.chemosphere.2018.03.038

    CrossRef Google Scholar

    [33] GU H H, QIU H, TIAN T, ZHAN S S, DENG T H B, CHANEY R L, WANG S Z, TANG Y T, MOREL J L, QIU R L. 2011. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L. ) planted on multi-metal contaminated acidic soil[J]. Chemosphere,83(9):1234-1240. doi: 10.1016/j.chemosphere.2011.03.014

    CrossRef Google Scholar

    [34] HAFSTEINSDÓTTIR E G, FRYIRS K A, STARK S C, GORE D B. 2014. Remediation of metal-contaminated soil in polar environments: phosphate fixation at casey station, East Antarctica[J]. Applied Geochemistry,51:33-43. doi: 10.1016/j.apgeochem.2014.08.011

    CrossRef Google Scholar

    [35] HAN L F, SUN K, YANG Y, XIA X H, LI F B, YANG Z F, XING B S. 2020. Biochar's stability and effect on the content, composition and turnover of soil organic carbon[J]. Geoderma,364:114184. doi: 10.1016/j.geoderma.2020.114184

    CrossRef Google Scholar

    [36] HASHIMOTO Y, SATO T. 2007. Removal of aqueous lead by poorly-crystalline hydroxyapatites[J]. Chemosphere,69(11):1775-1782. doi: 10.1016/j.chemosphere.2007.05.055

    CrossRef Google Scholar

    [37] HASSAN M, LIU Y J, NAIDU R, DU J H, QI F J, DONNE S W, ISLAM M M. 2021. Mesoporous biopolymer architecture enhanced the adsorption and selectivity of aqueous heavy-metal ions[J]. Acs Omega,6(23):15316-15331. doi: 10.1021/acsomega.1c01642

    CrossRef Google Scholar

    [38] HE T Y, MENG J, CHEN W F, LIU Z Q, CAO T, CHENG X Y, HUANG Y W, YANG X. 2017. Effects of biochar on cadmium accumulation in rice and cadmium fractions of soil: a three-year pot experiment[J]. BioResources,12(1):622-642.

    Google Scholar

    [39] HE E K, YANG Y X, XU Z B, QIU H, YANG F, PEIJNENBURG W J G M, ZHANG W H, QIU R L, WANG S Z. 2019. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars[J]. Science of the Total Environment,673:245-253. doi: 10.1016/j.scitotenv.2019.04.037

    CrossRef Google Scholar

    [40] HE L Z, ZHONG H, LIU G X, DAI Z M, BROOKES P C, XU J M. 2019. Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China[J]. Environmental Pollution,252:846-855. doi: 10.1016/j.envpol.2019.05.151

    CrossRef Google Scholar

    [41] HSU J H, LO S L. 2000. Characterization and extractability of copper, manganese, and zinc in swine manure composts[J]. Journal of Environmental Quality,29(2):447-453.

    Google Scholar

    [42] HUANG G Y, SU X J, RIZWAN M S, ZHU Y F, HU H Q. 2016. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils[J]. Environmental Science and Pollution Research,23(16):16845-16856. doi: 10.1007/s11356-016-6885-9

    CrossRef Google Scholar

    [43] HUANG D L, XUE W J, ZENG G M, WAN J, CHEN G M, HUANG C, ZHANG C, CHENG M, XU P. 2016. Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity[J]. Water Research,106:15-25. doi: 10.1016/j.watres.2016.09.050

    CrossRef Google Scholar

    [44] HWANG A, JI W, KWEON B, KHIM J. 2008. The physico-chemical properties and leaching behaviors of phosphatic clay for immobilizing heavy metals[J]. Chemosphere,70(6):1141-1145. doi: 10.1016/j.chemosphere.2007.07.082

    CrossRef Google Scholar

    [45] IGALAVITHANA A D, KWON E E, VITHANAGE M, RINKLEBE J, MOON D H, MEERS E, TSANG D C W, OK Y S. 2019. Soil lead immobilization by biochars in short-term laboratory incubation studies[J]. Environment International,127:190-198. doi: 10.1016/j.envint.2019.03.031

    CrossRef Google Scholar

    [46] JIANG T Y, JIANG J, XU R K, LI Z. 2012. Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar[J]. Chemosphere,89(3):249-256. doi: 10.1016/j.chemosphere.2012.04.028

    CrossRef Google Scholar

    [47] JING F, CHEN X M, WEN X, LIU W, HU S M, YANG Z J, GUO B L, LUO Y, YU Q X, XU Y L. 2020. Biochar effects on soil chemical properties and mobilization of cadmium (Cd) and lead (Pb) in paddy soil[J]. Soil Use and Management,36(2):320-327. doi: 10.1111/sum.12557

    CrossRef Google Scholar

    [48] KARER J, ZEHETNER F, DUNST G, FESSL J, WAGNER M, PUSCHENREITER M, STAPKĒVIČA M, FRIESL-HANL W, SOJA G. 2018. Immobilisation of metals in a contaminated soil with biochar-compost mixtures and inorganic additives: 2-year greenhouse and field experiments[J]. Environmental Science and Pollution Research,25(3):2506-2516. doi: 10.1007/s11356-017-0670-2

    CrossRef Google Scholar

    [49] KO I, CHANG Y Y, LEE C H, KIM K W. 2005. Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction[J]. Journal of Hazardous Materials,127(1/3):1-13. doi: 10.1016/j.jhazmat.2005.06.041

    CrossRef Google Scholar

    [50] KYPRITIDOU Z, ARGYRAKI A. 2021. Geochemical interactions in the trace element-soil-clay system of treated contaminated soils by Fe-rich clays[J]. Environmental Geochemistry and Health,43(7):2483-2503. doi: 10.1007/s10653-020-00542-1

    CrossRef Google Scholar

    [51] LEBRUN M, MIARD F, NANDILLON R, MORABITO D, BOURGERIE S. 2021. Biochar application rate: improving soil fertility and Linum usitatissimum growth on an arsenic and lead contaminated technosol[J]. International Journal of Environmental Research,15(1):125-134. doi: 10.1007/s41742-020-00302-0

    CrossRef Google Scholar

    [52] LI Y F, HU S D, CHEN J H, MÜLLER K, LI Y C, FU W J, LIN Z W, WANG H L. 2018. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review[J]. Journal of Soils and Sediments,18(2):546-563. doi: 10.1007/s11368-017-1906-y

    CrossRef Google Scholar

    [53] LI G, KHAN S, IBRAHIM M, SUN T R, TANG J F, COTNER J B, XU Y Y. 2018. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium[J]. Journal of Hazardous Materials,348:100-108. doi: 10.1016/j.jhazmat.2018.01.031

    CrossRef Google Scholar

    [54] LI B, LI M, ZHANG P P, PAN Y F, HUANG Z H, XIAO H N. 2022. Remediation of Cd (II) ions in aqueous and soil phases using novel porous cellulose/chitosan composite spheres loaded with zero-valent iron nanoparticles[J]. Reactive and Functional Polymers,173:105210. doi: 10.1016/j.reactfunctpolym.2022.105210

    CrossRef Google Scholar

    [55] LI Q, YIN J, WU L L, LI S L, CHEN L. 2023. Effects of biochar and zero valent iron on the bioavailability and potential toxicity of heavy metals in contaminated soil at the field scale[J]. Science of the Total Environment,897:165386. doi: 10.1016/j.scitotenv.2023.165386

    CrossRef Google Scholar

    [56] LIANG X, SU Y L, WANG X N, LIANG C T, TANG C J, WEI J Y, LIU K H, MA J M, YU F M, LI Y. 2023. Insights into the heavy metal adsorption and immobilization mechanisms of CaFe-layered double hydroxide corn straw biochar: synthesis and application in a combined heavy metal-contaminated environment[J]. Chemosphere,313:137467. doi: 10.1016/j.chemosphere.2022.137467

    CrossRef Google Scholar

    [57] LIMA J Z, DA SILVA E F, PATINHA C, RODRIGUES V G S. 2022. Sorption and post-sorption performances of Cd, Pb and Zn onto peat, compost and biochar[J]. Journal of Environmental Management,321:115968. doi: 10.1016/j.jenvman.2022.115968

    CrossRef Google Scholar

    [58] LIN P C, LIU H, YIN H, ZHU M H, LUO H Y, DANG Z. 2023. Remediation performance and mechanisms of Cu and Cd contaminated water and soil using Mn/Al-layered double oxide-loaded biochar[J]. Journal of Environmental Sciences,125:593-602. doi: 10.1016/j.jes.2022.03.023

    CrossRef Google Scholar

    [59] LING W T, SHEN Q, GAO Y Z, GU X H, YANG Z P. 2007. Use of bentonite to control the release of copper from contaminated soils[J]. Australian Journal of Soil Research,45(8):618-623. doi: 10.1071/SR07079

    CrossRef Google Scholar

    [60] LIU Y Z, LU Y, LIU S Y. 2023. Study on chemical compatibility of amended cement-soil vertical cutoff wall permeated with heavy metal solutions[J]. Rock and Soil Mechanics,44(2):497-506. (in Chinese with English abstract

    Google Scholar

    [61] LIU Q J, LUO J Y, TANG J P, CHEN Z L, CHEN Z W, LIN Q T. 2022. Remediation of cadmium and lead contaminated soils using Fe-OM based materials[J]. Chemosphere,307:135853. doi: 10.1016/j.chemosphere.2022.135853

    CrossRef Google Scholar

    [62] LIU Y K, MOLINARI S, DALCONI M C, VALENTINI L, BELLOTTO M P, FERRARI G, PELLAY R, RILIEVO G, VIANELLO F, SALVIULO G, CHEN Q S, ARTIOLI G. 2023. Mechanistic insights into Pb and sulfates retention in ordinary portland cement and aluminous cement: assessing the contributions from binders and solid waste[J]. Journal of Hazardous Materials,458:131849. doi: 10.1016/j.jhazmat.2023.131849

    CrossRef Google Scholar

    [63] LIU J J, ZHA F S, XU L, DENG Y F, CHU C F. 2018. Engineering properties of heavy metal contaminated soil solidified/stabilized with high calcium fly ash and soda residue[C]//Proceedings of GeoShanghai 2018 International Conference: Geoenvironment and Geohazard. GSIC 2018. Springer, Singapore, 442-449.

    Google Scholar

    [64] LIU R Q, ZHAO D Y. 2013. Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil[J]. Chemosphere,91(5):594-601. doi: 10.1016/j.chemosphere.2012.12.034

    CrossRef Google Scholar

    [65] MA M Y, XU X Q, HA Z H, SU Q M K, LV C Y, LI J, DU D Y, CHI R. 2023. Deep insight on mechanism and contribution of arsenic removal and heavy metals remediation by mechanical activation phosphogypsum[J]. Environmental Pollution,336:122258. doi: 10.1016/j.envpol.2023.122258

    CrossRef Google Scholar

    [66] MCBRIDE M B, MARTÍNEZ C E. 2000. Copper phytotoxicity in a contaminated soil: remediation tests with adsorptive materials[J]. Environmental Science & Technology,34(20):4386-4391.

    Google Scholar

    [67] MEIER S, CURAQUEO G, KHAN N, BOLAN N, CEA M, EUGENIA G M, CORNEJO P, OK Y S, BORIE F. 2017. Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil[J]. Journal of Soils and Sediments,17(3):741-750. doi: 10.1007/s11368-015-1256-6

    CrossRef Google Scholar

    [68] MÉNDEZ A, PAZ-FERREIRO J, ARAUJO F, GASCÓ G. 2014. Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil[J]. Journal of Analytical and Applied Pyrolysis,107:46-52. doi: 10.1016/j.jaap.2014.02.001

    CrossRef Google Scholar

    [69] MENG F D, HUANG Q X, CAI Y B, XIAO L, WANG T, LI X L, WU W G, YUAN G D. 2023. A comparative assessment of humic acid and biochar altering cadmium and arsenic fractions in a paddy soil[J]. Journal of Soils and Sediments,23(2):845-855. doi: 10.1007/s11368-022-03385-8

    CrossRef Google Scholar

    [70] MICHÁLKOVÁ Z, KOMÁREK M, VÍTKOVÁ M, ŘEČÍNSKÁ M, ETTLER V. 2016. Stability, transformations and stabilizing potential of an amorphous manganese oxide and its surface-modified form in contaminated soils[J]. Applied Geochemistry,75:125-136. doi: 10.1016/j.apgeochem.2016.10.020

    CrossRef Google Scholar

    [71] MIN T, LUO T, CHEN L L, LU W D, WANG Y, CHENG L Y, RU S B, LI J H. 2021. Effect of dissolved organic matter on the phytoremediation of Cd-contaminated soil by cotton[J]. Ecotoxicology and Environmental Safety,226:112842. doi: 10.1016/j.ecoenv.2021.112842

    CrossRef Google Scholar

    [72] MOORE F, GONZÁLEZ M E, KHAN N, CURAQUEO G, SANCHEZ-MONEDERO M, RILLING J, MORALES E, PANICHINI M, MUTIS A, JORQUERA M, MEJIAS J, HIRZEL J, MEIER S. 2018. Copper immobilization by biochar and microbial community abundance in metal-contaminated soils[J]. Science of the Total Environment,616-617:960-969. doi: 10.1016/j.scitotenv.2017.10.223

    CrossRef Google Scholar

    [73] NAZEER M, KHAN M J, MUHAMMAD D, KHAN A. 2023. Biochar application stabilized the heavy metals in coal mined soil[J]. Canadian Journal of Soil Science,103(2):297-304. doi: 10.1139/cjss-2022-0073

    CrossRef Google Scholar

    [74] NING D F, LIANG Y C, SONG A L, DUAN A W, LIU Z D. 2016. In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer[J]. Environmental Science and Pollution Research,23(23):23638-23647. doi: 10.1007/s11356-016-7588-y

    CrossRef Google Scholar

    [75] O'CONNOR D, PENG T Y, ZHANG J L, TSANG D C W, ALESSI D S, SHEN Z T, BOLAN N S, HOU D Y. 2018. Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials[J]. Science of the Total Environment,619-620:815-826. doi: 10.1016/j.scitotenv.2017.11.132

    CrossRef Google Scholar

    [76] OUYANG J D, LUO G F, HAN Z W, XIAO H, YANG M. 2023. Release mechanism and stabilization effect of Sb and As: A case study of the antimony mine in karst area, southwestern China[J]. Polish Journal of Environmental Studies,32(2):1743-1754. doi: 10.15244/pjoes/157574

    CrossRef Google Scholar

    [77] PARK J H, CHOPPALA G K, BOLAN N S, CHUNG J W, CHUASAVATHI T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals[J]. Plant and Soil,348(1-2):439-451. doi: 10.1007/s11104-011-0948-y

    CrossRef Google Scholar

    [78] PEI G P, ZHU Y E, WEN J G, PEI Y X, LI H. 2020. Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil[J]. Environmental Pollution,256:113407. doi: 10.1016/j.envpol.2019.113407

    CrossRef Google Scholar

    [79] PENG Y X, ZHANG S R, ZHONG Q M, WANG G Y, FENG C, XU X X, PU Y L, GUO X. 2021. Removal of heavy metals from abandoned smelter contaminated soil with poly-phosphonic acid: two-objective optimization based on washing efficiency and risk assessment[J]. Chemical Engineering Journal,421:129882. doi: 10.1016/j.cej.2021.129882

    CrossRef Google Scholar

    [80] PIATAK N M, PARSONS M B, SEAL R R. 2015. Characteristics and environmental aspects of slag: a review[J]. Applied Geochemistry,57:236-266. doi: 10.1016/j.apgeochem.2014.04.009

    CrossRef Google Scholar

    [81] QIAN W, LIANG J Y, ZHANG W X, HUANG S T, DIAO Z H. 2022. A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil[J]. Journal of Environmental Sciences,113:231-241. doi: 10.1016/j.jes.2021.06.014

    CrossRef Google Scholar

    [82] QIAN S X, ZHOU X R, FU Y K, SONG B, YAN H C, CHEN Z X, SUN Q, YE H Y, QIN L, LAI C. 2023. Biochar-compost as a new option for soil improvement: application in various problem soils[J]. Science of the Total Environment,870:162024. doi: 10.1016/j.scitotenv.2023.162024

    CrossRef Google Scholar

    [83] RAN H Z, GUO Z H, SHI L, FENG W L, XIAO X Y. 2023. Cadmium bioavailability in agricultural soil after mixed amendments combined with rice-rape cropping: a five-season field experiment[J]. Journal of Soils and Sediments,23(11):3879-3890. doi: 10.1007/s11368-023-03575-y

    CrossRef Google Scholar

    [84] RASHEED T, ADEEL M, NABEEL F, BILAL M, IQBAL H M N. 2019. TiO2/SiO2 decorated carbon nanostructured materials as a multifunctional platform for emerging pollutants removal[J]. Science of the Total Environment,688:299-311. doi: 10.1016/j.scitotenv.2019.06.200

    CrossRef Google Scholar

    [85] REDDY A S, CHAVALI R V P. 2023. Solidification/stabilization of copper-contaminated soil using magnesia-activated blast furnace slag[J]. Innovative Infrastructure Solutions,8(2):79. doi: 10.1007/s41062-023-01036-6

    CrossRef Google Scholar

    [86] REDDY V A, SOLANKI C H, KUMAR S, REDDY K R, DU Y J. 2020. Pb-Zn smelter residue (LZSR) stabilized using low-carbon, low-cost limestone-calcined clay cement: leachability, chemical speciation, strength, and microstructure[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 24(4): 4020054.

    Google Scholar

    [87] SHANABLEH A, ABU-ZER M O. 2001. Lime-based immobilization and leaching of Cr, Cd, Pb, and Ni as soil contaminants[J]. Arabian Journal for Science and Engineering, 26: 69-79.

    Google Scholar

    [88] SHAO X, YU J, CHANG J H, HUANG Z, JIANG Y Y, DENG S W. 2023. Effect of vermiculite modified with nano-iron-based material on stabilization of lead in lead contaminated soil[J]. Environmental Science and Pollution Research,30(35):83821-83833. doi: 10.1007/s11356-023-28205-5

    CrossRef Google Scholar

    [89] SHARIATMADARI N, WENG C H, DARYAEE H. 2009. Enhancement of hexavalent chromium [Cr(VI)] remediation from clayey soils by electrokinetics coupled with a nano-sized zero-valent iron barrier[J]. Environmental Engineering Science,26(6):1071-1079. doi: 10.1089/ees.2008.0257

    CrossRef Google Scholar

    [90] SHI W Y, LI H, DU S, WANG K B, SHAO H B. 2013. Immobilization of lead by application of zeolite: Leaching column and rhizobox incubation studies[J]. Applied Clay Science,85:103-108. doi: 10.1016/j.clay.2013.08.022

    CrossRef Google Scholar

    [91] SHIN W, KIM Y K. 2016. Stabilization of heavy metal contaminated marine sediments with red mud and apatite composite[J]. Journal of Soils and Sediments,16(2):726-735. doi: 10.1007/s11368-015-1279-z

    CrossRef Google Scholar

    [92] SINGH J, KALAMDHAD A S. 2013. Reduction of bioavailability and leachability of heavy metals during vermicomposting of water hyacinth[J]. Environmental Science and Pollution Research,20(12):8974-8985. doi: 10.1007/s11356-013-1848-x

    CrossRef Google Scholar

    [93] SIVARANJANEE R, KUMAR P S, RANGASAMY G. 2023. A critical review on biochar for environmental applications[J]. Carbon Letters,33(5):1407-1432. doi: 10.1007/s42823-023-00527-x

    CrossRef Google Scholar

    [94] SONG H H, LIANG W Y, LUO K L, WANG G H, LI Q N, JI X W, WAN J, SHAO X C, GONG K L, ZHANG W, PENG C. 2023. Simultaneous stabilization of Pb, Cd, and As in soil by rhamnolipid coated sulfidated nano zero-valent iron: effects and mechanisms[J]. Journal of Hazardous Materials,443:130259. doi: 10.1016/j.jhazmat.2022.130259

    CrossRef Google Scholar

    [95] SUI F F, WANG J B, ZUO J, JOSEPH S, MUNROE P, DROSOS M, LI L Q, PAN G X. 2020. Effect of amendment of biochar supplemented with Si on Cd mobility and rice uptake over three rice growing seasons in an acidic Cd-tainted paddy from central South China[J]. Science of the Total Environment,709:136101. doi: 10.1016/j.scitotenv.2019.136101

    CrossRef Google Scholar

    [96] SUI F F, ZUO J, CHEN D, LI L Q, PAN G X, CROWLEY D E. 2018. Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study[J]. Environmental Science and Pollution Research,25(4):3368-3377. doi: 10.1007/s11356-017-0652-4

    CrossRef Google Scholar

    [97] SUN Y B, LI Y, XU Y M, LIANG X F, WANG L. 2015. In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite[J]. Applied Clay Science,105-106:200-206. doi: 10.1016/j.clay.2014.12.031

    CrossRef Google Scholar

    [98] SUN Y B, ZHAO D, XU Y M, WANG L, LIANG X F, SHEN Y. 2016. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation[J]. Frontiers of Environmental Science & Engineering,10(1):85-92.

    Google Scholar

    [99] SUN L G, ZHOU G Z, YANG R C, LI Y M, TENG S C, ZHANG L Y, YU P P. 2022. Synthesis of novel magnesium-doped hydroxyapatite/chitosan nanomaterial and mechanisms for enhanced stabilization of heavy metals in soil[J]. Journal of Inorganic and Organometallic Polymers and Materials,32(9):3601-3620. doi: 10.1007/s10904-022-02391-0

    CrossRef Google Scholar

    [100] TANG H, CHEN M, WU P, FAHEEM M, FENG Q W, LEE X Q, WANG S S, WANG B. 2023. Engineered biochar effects on soil physicochemical properties and biota communities: a critical review[J]. Chemosphere,311:137025. doi: 10.1016/j.chemosphere.2022.137025

    CrossRef Google Scholar

    [101] TANG Y Q, WANG C, HOLM P E, HANSEN H C B, BRANDT K K. 2023. Impacts of biochar materials on copper speciation, bioavailability, and toxicity in chromated copper arsenate polluted soil[J]. Journal of Hazardous Materials,459:132067. doi: 10.1016/j.jhazmat.2023.132067

    CrossRef Google Scholar

    [102] TAO C J, LI M H, MA M H, ZHANG X R, DU G Q, LIANG H X. 2023. Ecological risk assessment of heavy metals in soil-rice in a typical selenium-rich area of southern Anhui province[J]. East China Geology,44(2):160-171 (in Chinese with English abstract).

    Google Scholar

    [103] TONG F, HUANG Q, LIU L Z, FAN G P, SHI G L, LU X, GAO Y. 2023. Interactive effects of inorganic-organic compounds on passivation of cadmium in weakly alkaline soil[J]. Agronomy,13(10):2647. doi: 10.3390/agronomy13102647

    CrossRef Google Scholar

    [104] TRAN H T, BOLAN N S, LIN C, BINH Q A, NGUYEN M K, LUU T A, LE V G, PHAM C Q, HOANG H G, VO D V N. 2023. Succession of biochar addition for soil amendment and contaminants remediation during co-composting: a state of art review[J]. Journal of Environmental Management,342:118191. doi: 10.1016/j.jenvman.2023.118191

    CrossRef Google Scholar

    [105] TRIPTI, KUMAR A, MALEVA M, BORISOVA G, RAJKUMAR M. 2023. Amaranthus biochar-based microbial cell composites for alleviation of drought and cadmium stress: A novel bioremediation approach[J]. Plants,12(10):1973. doi: 10.3390/plants12101973

    CrossRef Google Scholar

    [106] VAN POUCKE R, AINSWORTH J, MAESEELE M, OK Y S, MEERS E, TACK F M G. 2018. Chemical stabilization of Cd-contaminated soil using biochar[J]. Applied Geochemistry,88:122-130. doi: 10.1016/j.apgeochem.2017.09.001

    CrossRef Google Scholar

    [107] VANDYCK M M, ARTHUR E K, GIKUNOO E, AGYEMANG F O, KOOMSON B, FOLI G, BAAH D S. 2023. Use of limekiln dust in the stabilization of heavy metals in Ghanaian gold oxide ore mine tailings[J]. Environmental Monitoring and Assessment,195(6):711-719. doi: 10.1007/s10661-023-11306-6

    CrossRef Google Scholar

    [108] VEJVODOVÁ K, DRÁBEK O, ASH C, TEJNECKÝ V, NĚMEČEK K, BORŮVKA L. 2020. Effect of clay on the fractions of potentially toxic elements in contaminated soil[J]. Soil and Water Research,16(1):1-10. doi: 10.17221/13/2020-SWR

    CrossRef Google Scholar

    [109] WAN J P, ZENG Y F, WANG M, DONG B, XU Z X. 2022. New mechanism of FA in composted sludge inducing Cu fixation on Albite in open-pit mine soil[J]. Journal of Environmental Sciences,116:142-150. doi: 10.1016/j.jes.2021.08.029

    CrossRef Google Scholar

    [110] WANG G F, CAO W S, LIANG G C, XIANG J, CHEN Y L, LIU H Y. 2023. Leaching behavior of heavy metals from Pb-Zn tailings and remediation by Ca- or Na-montmorillonite[J]. Water, Air, & Soil Pollution, 234(2): 101.

    Google Scholar

    [111] WANG J X, FU H Y, XU D M, MU Z Q, FU R B. 2022. The remediation mechanisms and effects of chemical amendments for heavy metals in contaminated soils: a review of literature[J]. Polish Journal of Environmental Studies,31(5):4511-4522. doi: 10.15244/pjoes/146705

    CrossRef Google Scholar

    [112] WANG H Y, GAO Z, LI X, DUAN Z Q. 2023. Cadmium accumulation and immobilization by Artemisia selengensis under different compound amendments in cadmium-contaminated soil[J]. Agronomy,13(4):1011. doi: 10.3390/agronomy13041011

    CrossRef Google Scholar

    [113] WANG F, MIAO L J, WANG Y F, ZHANG M Y, ZHANG H J, DING Y, ZHU W Q. 2022. Using cow dung and mineral vermireactors to produce vermicompost for use as a soil amendment to slow Pb2+ migration[J]. Applied Soil Ecology,170:104299. doi: 10.1016/j.apsoil.2021.104299

    CrossRef Google Scholar

    [114] WANG Q, SHAHEEN S M, JIANG Y H, LI R H, SLANÝ M, ABDELRAHMAN H, KWON E, BOLAN N, RINKLEBE J, ZHANG Z Q. 2021. Fe/Mn- and P-modified drinking water treatment residuals reduced Cu and Pb phytoavailability and uptake in a mining soil[J]. Journal of Hazardous Materials,403:123628. doi: 10.1016/j.jhazmat.2020.123628

    CrossRef Google Scholar

    [115] WANG L N, WEI J, YANG L, CHEN Y, WANG M J, XIAO L, YUAN G D. 2023. Enhancing soil remediation of copper-contaminated soil through washing with a soluble humic substance and chemical reductant[J]. Agronomy,13(7):1754. doi: 10.3390/agronomy13071754

    CrossRef Google Scholar

    [116] WANG Q, WEN J, YANG L S, CUI H S, ZENG T J, HUANG J. 2023. Exploration on the role of different iron species in the remediation of As and Cd co-contamination by sewage sludge biochar[J]. Environmental Science and Pollution Research,30(13):39154-39168. doi: 10.1007/s11356-022-24952-z

    CrossRef Google Scholar

    [117] WANG H, XIA W, LU P. 2017. Study on adsorption characteristics of biochar on heavy metals in soil[J]. Korean Journal of Chemical Engineering,34(6):1867-1873. doi: 10.1007/s11814-017-0048-7

    CrossRef Google Scholar

    [118] WANG Y, XU Y A, LI D, TANG B C, MAN S L, JIA Y F, XU H. 2018. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress[J]. Science of the Total Environment,621:1057-1065. doi: 10.1016/j.scitotenv.2017.10.121

    CrossRef Google Scholar

    [119] WANG N, XUE X M, JUHASZ A L, CHANG Z Z, LI H B. 2017. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic[J]. Environmental Pollution,220:514-522. doi: 10.1016/j.envpol.2016.09.095

    CrossRef Google Scholar

    [120] WU Y F, CHEN G G. 2022. Assessment on soil conservation service based on InVEST model——a case study of Yindingge mining area[J]. East China Geology,43(2):184-195 (in Chinese with English abstract).

    Google Scholar

    [121] WU H L, SONG H, SUN X P, BI Y Z, FU S J, YANG N. 2023. Geo-environmental properties and microstructural characteristics of sustainable limestone calcined clay cement (LC3) binder treated Zn-contaminated soils[J]. Journal of Zhejiang University-SCIENCE A,24(10):898-911. doi: 10.1631/jzus.A2200531

    CrossRef Google Scholar

    [122] XING Y, WANG J X, XIA J C, LIU Z M, ZHANG Y H, DU Y, WEI W L. 2019. A pilot study on using biochars as sustainable amendments to inhibit rice uptake of Hg from a historically polluted soil in a Karst region of China[J]. Ecotoxicology and Environmental Safety,170:18-24. doi: 10.1016/j.ecoenv.2018.11.111

    CrossRef Google Scholar

    [123] XU Z L, NIE N, LIU K Y, LI Q, CUI H J, DU H H. 2023. Analog soil organo-ferrihydrite composites as suitable amendments for cadmium and arsenic stabilization in co-contaminated soils[J]. Science of the Total Environment,877:162929. doi: 10.1016/j.scitotenv.2023.162929

    CrossRef Google Scholar

    [124] XUE W J, WEN S Q, ZHU Y L, GAO Y, WANG R Z, XU Y Q. 2023. Immobilization of cadmium in river sediments using sulfidized nanoscale zero-valent iron synthesized with different iron precursors: performance and mechanism[J]. Journal of Soils and Sediments,23(9):3550-3566. doi: 10.1007/s11368-023-03606-8

    CrossRef Google Scholar

    [125] YANG S X, CAO J B, HU W Y, ZHANG X J, DUAN C. 2013. An evaluation of the effectiveness of novel industrial by-products and organic wastes on heavy metal immobilization in Pb-Zn mine tailings[J]. Environmental Science: Processes & Impacts, 15(11): 2059-2067.

    Google Scholar

    [126] YANG J, JIN C H, LI J, GAO X H, WANG Y L, WANG J S, TENG Y G. 2023 Remediation of vanadium contaminated soils in a waste smelter by eco-friendly chitosan@mineral composites[J]. Environmental Technology & Innovation, 32: 103291.

    Google Scholar

    [127] YANG Z P, ZHANG K S, LI X Y, REN S P, LI P. 2023. The effects of long-term freezing-thawing on the strength properties and the chemical stability of compound solidified/stabilized lead-contaminated soil[J]. Environmental Science and Pollution Research,30(13):38185-38201.

    Google Scholar

    [128] YAO S X, ZHOU B B, DUAN M L, CAO T, WEN Z Q, CHEN X P, WANG H, WANG M, CHENG W, ZHU H Y, YANG Q, LI Y J. 2023. Combination of biochar and trichoderma harzianum can improve the phytoremediation efficiency of Brassica juncea and the rhizosphere micro-ecology in cadmium and arsenic contaminated soil[J]. Plants,12(16):2939. doi: 10.3390/plants12162939

    CrossRef Google Scholar

    [129] YIN D X, WANG X, PENG B, TAN C Y, MA L Q. 2017. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system[J]. Chemosphere,186:928-937. doi: 10.1016/j.chemosphere.2017.07.126

    CrossRef Google Scholar

    [130] YUAN Z M, ZHAO Y, GUO Z W, YAO J. 2016. Chemical and ecotoxicological assessment of multiple heavy metal-contaminated soil treated by phosphate addition[J]. Water, Air, & Soil Pollution, 227(11): 403.

    Google Scholar

    [131] ZENG G M, HE Y, WANG F, LUO H, LIANG D, WANG J, HUANG J S, YU C Y, JIN L B, SUN D. 2023. Toxicity of nanoscale zero-valent iron to soil microorganisms and related defense mechanisms: a review[J]. Toxics,11(6):514. doi: 10.3390/toxics11060514

    CrossRef Google Scholar

    [132] ZENG Z L, YU C, LIAO R P, CAI X Q, CHEN Z H, YU Z K, WU Z X. 2023. Preparation and characterization of sodium polyacrylate grafted montmorillonite nanocomposite for the adsorption of cadmium ions form aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,656:130389. doi: 10.1016/j.colsurfa.2022.130389

    CrossRef Google Scholar

    [133] ZHANG H J, DONG X B, YANG H M. 2023. Montmorillonite-mediated electron distribution of zirconium phosphate for accelerating remediation of cadmium-contaminated water and soil[J]. Applied Clay Science,236:106883. doi: 10.1016/j.clay.2023.106883

    CrossRef Google Scholar

    [134] ZHANG H M, LARSON S, BALLARD J, NIE J, ZHANG Q Q, KAZERY J A, DASARI S, PRADHAN N, DAI Q L, OLAFUYI O M, ZHU X C, MA Y H, HAN F X. 2023. Interaction of exopolysaccharide with clay minerals and their effects on U(VI) adsorption[J]. Journal of Soils and Sediments,23(11):4002-4016. doi: 10.1007/s11368-023-03589-6

    CrossRef Google Scholar

    [135] ZHANG T, LI Q, YANG X, ZHENG D M, DENG H L, ZENG Z J, YU J H, WANG Q Z, SHI Y F, WANG S L, PI K W, GERSON A R. 2023. Pb contaminated soil from a lead-acid battery plant immobilized by municipal sludge and raw clay[J]. Environmental Technology,45(14):2796-2808. doi: 10.1080/09593330.2023.2187319

    CrossRef Google Scholar

    [136] ZHANG M, SHAN S D, CHEN Y G, WANG F, YANG D Y, REN J K, LU H Y, PING L F, CHAI Y J. 2019. Biochar reduces cadmium accumulation in rice grains in a tungsten mining area-field experiment: effects of biochar type and dosage, rice variety, and pollution level[J]. Environmental Geochemistry and Health,41(1):43-52. doi: 10.1007/s10653-018-0120-1

    CrossRef Google Scholar

    [137] ZHANG J Q, WANG Z, LUO Y, JIA W J, WANG Z Y, CHENG Q Q, ZHANG Z L, FENG X Y, ZENG Q P. 2023. A preparation method of Fe(II/III)loaded attapulgite-biochar to passivate Cd(II) in soil[J]. Soil and Sediment Contamination: An International Journal,32(8):1012-1032. doi: 10.1080/15320383.2022.2161471

    CrossRef Google Scholar

    [138] ZHANG J, CHEN G G, WANG S X, NIU X N, SHUAI S , CHEN S , YU J J, CAO X Q. 2022. Distribution status and restoration suggestions on shelter forests in sandy shoreline of Fujian Province[J]. East China Geology,43(1):72-78. (in Chinese with English abstract).

    Google Scholar

    [139] ZHANG D D, XU Y Q, LI X F, WANG L N, HE X W, MA Y, ZOU D X. 2020. The immobilization effect of natural mineral materials on Cr(VI) remediation in water and soil[J]. International Journal of Environmental Research and Public Health,17(8):2832. doi: 10.3390/ijerph17082832

    CrossRef Google Scholar

    [140] ZHANG Y, XU Y M, LIANG X F, WANG L, SUN Y B, HUANG Q Q, QIN X. 2023. Ionomic analysis reveals the mechanism of mercaptosilane-modified palygorskite on reducing Cd transport from soil to wheat[J]. Environmental Science and Pollution Research,30(43):98091-98105. doi: 10.1007/s11356-023-29376-x

    CrossRef Google Scholar

    [141] ZHENG X J, CHEN M, WANG J F, LIU Y, LIAO Y Q, LIU Y C. 2020. Assessment of zeolite, biochar, and their combination for stabilization of multimetal-contaminated soil[J]. ACS Omega,5(42):27374-27382. doi: 10.1021/acsomega.0c03710

    CrossRef Google Scholar

    [142] ZHOU P F, ADEEL M, GUO M L, GE L, SHAKOOR N, LI M S, LI Y B, WANG G Y, RUI Y K. 2023. Characterisation of biochar produced from two types of chestnut shells for use in remediation of cadmium- and lead-contaminated soil[J]. Crop & Pasture Science,74(1-2):147-156.

    Google Scholar

    [143] ZHOU J M, CHEN H L, TAO Y L, THRING R W, MAO J L. 2019. Biochar amendment of chromium-polluted paddy soil suppresses greenhouse gas emissions and decreases chromium uptake by rice grain[J]. Journal of Soils and Sediments,19(4):1756-1766. doi: 10.1007/s11368-018-2170-5

    CrossRef Google Scholar

    [144] ZHOU C Z, WANG J H, WANG Q, LENG Z, GENG Y, SUN S R, HOU H. 2023. Simultaneous adsorption of Cd and As by a novel coal gasification slag based composite: characterization and application in soil remediation[J]. Science of the Total Environment,882:163374. doi: 10.1016/j.scitotenv.2023.163374

    CrossRef Google Scholar

    [145] ZHOU Y C, ZHAO X Q, JIANG Y, DING C C, LIU J G, ZHU C. 2023. Synergistic remediation of lead pollution by biochar combined with phosphate solubilizing bacteria[J]. Science of the Total Environment,861:160469.

    Google Scholar

    [146] ZHOU Y, ZOU Z K, WANG M F, WANG Y Q, LI J L, QIU L Z, CHENG Y X, DAI Z Y. 2023. Biochar and nano-ferric oxide synergistically alleviate cadmium toxicity of muskmelon[J]. Environmental Science and Pollution Research,30(20):57945-57959. doi: 10.1007/s11356-023-26369-8

    CrossRef Google Scholar

    [147] ZUO W G, WANG S J, ZHOU Y X, MA S, YIN W Q, SHAN Y H, WANG X Z. 2023. Conditional remediation performance of wheat straw biochar on three typical Cd-contaminated soils[J]. Science of the Total Environment,863:160998. doi: 10.1016/j.scitotenv.2022.160998

    CrossRef Google Scholar

    [148] 环境保护部, 国土资源部. 2014. 全国土壤污染状况调查公报[J]. 中国环保产业, (5): 10-11.

    Google Scholar

    [149] 边归国. 2023. 土壤污染修复环境监理技术规范的现状与展望[J]. 青海环境,33(3):110-115. doi: 10.3969/j.issn.1007-2454.2023.03.002

    CrossRef Google Scholar

    [150] 陈毓遒, 舒红锁, 洪荷芳, 任典挺, 王江. 2023. 铅锌尾矿对下游区域农田污染的影响研究[J]. 农业灾害研究,13(8):289-291. doi: 10.3969/j.issn.2095-3305.2023.08.095

    CrossRef Google Scholar

    [151] 陈臻, 曾翠云, 张永合. 2023. 腐植酸在土壤污染防治修复技术中的应用[J]. 腐植酸,(4):1-6,57.

    Google Scholar

    [152] 杜芸, 张岩岩, 张家峰, 杨青, 刘碧云. 2023. 污染场地治理修复中的利益主体问题研究[J]. 中国资源综合利用,41(8):123-129. doi: 10.3969/j.issn.1008-9500.2023.08.035

    CrossRef Google Scholar

    [153] 房彬, 李书锋, 刘建阔, 薛二军, 马劲, 路明. 2023. 生物炭组配膨润土对铬污染土壤原位钝化修复效果[J]. 再生资源与循环经济,16(11):40-42. doi: 10.3969/j.issn.1674-0912.2023.11.014

    CrossRef Google Scholar

    [154] 刘宜昭, 陆阳, 刘松玉. 2023. 重金属作用下改性水泥系隔离墙化学相容性研究[J]. 岩土力学,44(2):497-506.

    Google Scholar

    [155] 陶春军, 李明辉, 马明海, 张笑蓉, 杜国强, 梁红霞. 2023. 皖南某典型富硒区土壤-水稻重金属生态风险评估[J]. 华东地质,44(2):160-171.

    Google Scholar

    [156] 武翼飞, 陈国光. 2022. 基于InVEST模型的矿区土壤保持功能评估——以银顶格矿区为例[J]. 华东地质,43(2):184-195.

    Google Scholar

    [157] 张洁, 陈国光, 王尚晓, 牛晓楠, 帅爽, 陈思, 于俊杰, 曹新晴. 2022. 福建省沿海砂质岸线防护林分布特征及生态修复探讨[J]. 华东地质,43(1):72-78.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(4)

Article Metrics

Article views(390) PDF downloads(22) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint