Citation: | ZHU Yongsheng, LI Chao, LIU Qun, JIANG Zhi, ZHENG Ying, GUO Jun. 2024. Geochemical characteristics of apatite from the Yaocun granite in the eastern Jiangnan Orogen: insights into magmatic properties. East China Geology, 45(3): 302-317. doi: 10.16788/j.hddz.32-1865/P.2023.12.006 |
Due to the fact that apatite is a common accessory mineral in magmatic rocks, its geochemical composition is often used to indicate the petrogenesis of granites and provide constraints on their magmatic properties. Mesozoic A-type granites are widely distributed in the eastern Jiangnan Orogen. At present, the origin of these A-type granites is still controversial, and their mineralization potential is not clear. Therefore, this study investigates the geochemical composition of apatite in the Yaocun granite, constrains the magmatic properties, and evaluates its metallogenic potential. The results show that the apatite in Yaocun granite generally exhibits oscillatory zoning or homogeneous texture, and has high F, REE, Y, and Th, and low Cl contents, indicating its magmatic origins. In addition, the REE, Y, and Th contents of a single apatite grain show continuous changes from the core to the rim, and the REE pattern displays obvious negative Eu anomalies, which can be attributed to fractional crystallization. Quantitative calculations show that Yaocun granitic magma is characterized by high F, low H2O-Cl, and low oxygen fugacity. Considering the relation between magmatic properties and the behavior of ore-forming elements, our study suggests that Yaocun granite has rare metal mineralization potential.
[1] | ARNDT N. 2013. Formation and evolution of the continental crust[J]. Geochemical Perspectives,2(3):405-533. doi: 10.7185/geochempersp.2.3 |
[2] | BONIN B. 2007. A-type granites and related rocks: evolution of a concept, problems and prospects[J]. Lithos,97(1-2):1-29. |
[3] | BROMILEY G D. 2021. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas?[J]. Lithos,384-385:105900. doi: 10.1016/j.lithos.2020.105900 |
[4] | BRUAND E, FOWLER M, STOREY C, LAURENT O, ANTOINE C, GUITREAU M, HEILIMO E, NEBEL O. 2020. Accessory mineral constraints on crustal evolution: elemental fingerprints for magma discrimination[J]. Geochemical Perspectives Letters,13:7-12. |
[5] | CHEN D D. 2019. Characteristics of rare metals content in Fuling rock mass in southern Anhui province and its indication to mineralization of rare metal granite[J]. World Nonferrous Metals,(5):233-235 (in Chinese with English abstract). |
[6] | CHU M F, WANG K L, GRIFFIN W L, CHUNG S L, O’REILLY S Y, PEARSON N J, IIZUKA Y. 2009. Apatite composition: tracing petrogenetic processes in Transhimalayan granitoids[J]. Journal of Petrology,50(10):1829-1855. doi: 10.1093/petrology/egp054 |
[7] | DALL’AGNOL R, DE OLIVEIRAL D C. 2007. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: implications for classification and petrogenesis of A-type granites[J]. Lithos,93(3-4):215-233. doi: 10.1016/j.lithos.2006.03.065 |
[8] | DING X, SU K L, YAN H B, LIANG J L, SUN W D. 2022. Effect of F-rich fluids on the A-Type magmatism and related metal mobilization: new insights from the Fogang-Nankunshan-Yajishan igneous rocks in Southeast China[J]. Journal of Earth Science,33(3):591-608. doi: 10.1007/s12583-022-1611-7 |
[9] | GAO L, YAN J, LI Q Z, XIE J C. 2022. Occurrence characteristics of REE in granite weathering crust of Yaocun granite in southern Anhui[J]. Geological Review,68(5):1820-1838 (in Chinese with English abstract). |
[10] | HARLOV D E, FÖRSTER H J. 2003. Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: nature and experiment. Part II. Fluorapatite[J]. American Mineralogist,88(8-9):1209-1229. |
[11] | HSIEH P S, CHEN C H, YANG H J, LEE C Y. 2008. Petrogenesis of the Nanling Mountains granites from South China: constraints from systematic apatite geochemistry and whole-rock geochemical and Sr-Nd isotope compositions[J]. Journal of Asian Earth Sciences,33(5-6):428-451. doi: 10.1016/j.jseaes.2008.02.002 |
[12] | JIANG X Y, LI H, DING X, WU K, GUO J, LIU J Q, SUN W D. 2018a. Formation of A-type granites in the Lower Yangtze River Belt: a perspective from apatite geochemistry[J]. Lithos,304-307:125-134. doi: 10.1016/j.lithos.2018.02.005 |
[13] | JIANG X Y, LING M X, WU K, ZHANG Z K, SUN W D, SUI Q L, XIA X P. 2018b. Insights into the origin of coexisting A1- and A2-type granites: implications from zircon Hf-O isotopes of the Huayuangong intrusion in the Lower Yangtze River Belt, eastern China[J]. Lithos,318-319:230-243. doi: 10.1016/j.lithos.2018.08.008 |
[14] | JIANG X Y, WU K, LUO J C, ZHANG L P, SUN W D, XIA X P. 2020. An A1-type granite that borders A2-type: insights from the geochemical characteristics of the Zongyang A-type granite in the Lower Yangtze River Belt, China[J]. International Geology Review,62(17):2203-2220. doi: 10.1080/00206814.2019.1689534 |
[15] | JIANG Y H, ZHAO P, ZHOU Q, LIAO S Y, JIN G D. 2011. Petrogenesis and tectonic implications of Early Cretaceous S- and A-type granites in the northwest of the Gan-Hang rift, SE China[J]. Lithos,121(1-4):55-73. |
[16] | JUNG S, HOERNES S, MASBERG P, HOFFER E. 1999. The petrogenesis of some migmatites and granites (Central Damara Orogen, Namibia): evidence for disequilibrium melting, wall-rock contamination and crystal fractionation[J]. Journal of Petrology,40(8):1241-1269. doi: 10.1093/petroj/40.8.1241 |
[17] | KEMP A I S, HAWKESWORTH C J, PATERSON B A, KINNY P D. 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon[J]. Nature,439(7076):580-583. doi: 10.1038/nature04505 |
[18] | KONECKE B A, FIEGE A, SIMON A C, LINSLER S, HOLTZ F. 2019. An experimental calibration of a sulfur-in-apatite oxybarometer for mafic systems[J]. Geochimica et Cosmochimica Acta,265:242-258. doi: 10.1016/j.gca.2019.08.044 |
[19] | KONG Z G. 2020. Weakly fractionated oxidized I-type granitoids related tungsten polymetallic mineralization - a case study of Zhuxiling deposit, southern Anhui Province, China[D]. Xi’an: Chang’an University (in Chinese with English abstract). |
[20] | KRNETA S, CIOBANU C L, COOK N J, EHRIG K, KONTONIKAS-CHAROS A. 2016. Apatite at Olympic dam, South Australia: a petrogenetic tool[J]. Lithos,262:470-485. |
[21] | LAURENT O, ZEH A, GERDES A, VILLAROS A, GROS K, SłABY E. 2017. How do granitoid magmas mix with each other? Insights from textures, trace element and Sr-Nd isotopic composition of apatite and titanite from the Matok pluton (South Africa)[J]. Contributions to Mineralogy and Petrology,172(9):80. doi: 10.1007/s00410-017-1398-1 |
[22] | LEE C T A, MORTON D M. 2015. High silica granites: terminal porosity and crystal settling in shallow magma chambers[J]. Earth and Planetary Science Letters,409:23-31. doi: 10.1016/j.jpgl.2014.10.040 |
[23] | LI W R, COSTA F. 2020. A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets[J]. Geochimica et Cosmochimica Acta,269:203-222. doi: 10.1016/j.gca.2019.10.035 |
[24] | LI H J, HERMANN J. 2017. Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800 ℃: a new experimentally derived thermodynamic model[J]. American Mineralogist,102(3):580-594. doi: 10.2138/am-2017-5891 |
[25] | LI C, YAN J. 2023. Apatite geochemical composition of Mesozoic granitoids in the eastern Jiangnan Orogen, S. China: insights into petrogenesis and intrinsic magmatic variables[J]. International Geology Review, 1-23, doi: 10.1080/00206814.2023.2291777. |
[26] | LOUCKS R R. 2014. Distinctive composition of copper-ore-forming arc magmas[J]. Australian Journal of Earth Sciences,61(1):5-16. doi: 10.1080/08120099.2013.865676 |
[27] | MENG X Y, KLEINSASSER J M, RICHARDS J P, TAPSTER S R, JUGO P J, SIMON A C, KONTAK D J, ROBB L, BYBEE G M, MARSH J H, STERN R A. 2021. Oxidized sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga[J]. Nature Communications,12(1):2189. doi: 10.1038/s41467-021-22349-z |
[28] | MICHAUD J A S, PICHAVANT M. 2020. Magmatic fractionation and the magmatic-hydrothermal transition in rare metal granites: evidence from Argemela (central Portugal)[J]. Geochimica et Cosmochimica Acta,289:130-157. doi: 10.1016/j.gca.2020.08.022 |
[29] | MILES A J, GRAHAM C M, HAWKESWORTH C J, GILLESPIE M R, HINTON R W, BROMILEY G D. 2014. Apatite: a new redox proxy for silicic magmas?[J]. Geochimica et Cosmochimica Acta,132:101-119. |
[30] | NASH W P, CRECRAFT H R. 1985. Partition coefficients for trace elements in silicic magmas[J]. Geochimica et Cosmochimica Acta,49(11):2309-2322. doi: 10.1016/0016-7037(85)90231-5 |
[31] | O’SULLIVAN G, CHEW D, KENNY G, HENRICHS I, MULLIGAN D. 2020. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews,201:103044. |
[32] | PAN Y, FLEET M E. 2002. Compositions of the apatite-group minerals: substitution mechanisms and controlling factors[J]. Reviews in Mineralogy and Geochemistry,48(1):13-49. doi: 10.2138/rmg.2002.48.2 |
[33] | PARAT F, HOLTZ F. 2004. Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions[J]. Contributions to Mineralogy and Petrology,147(2):201-212. doi: 10.1007/s00410-004-0553-7 |
[34] | PARAT F, HOLTZ F, KLÜGEL A. 2011. S-rich apatite-hosted glass inclusions in xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline magmas[J]. Contributions to Mineralogy and Petrology,162(3):463-478. |
[35] | PENG G Y, LUHR J F, MCGEE J J. 1997. Factors controlling sulfur concentrations in volcanic apatite[J]. American Mineralogist,82(11-12):1210-1224. doi: 10.2138/am-1997-11-1217 |
[36] | PICCOLI P, CANDELA P. 1994. Apatite in felsic rocks: a model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne Intrusive Suite (Sierra Nevada Batholith) magmas[J]. American Journal of Science,294(1):92-135. |
[37] | QUAN Y K, YANG D B, YAN X Y, WANG A Q, HAO L R, YANG H T, WANG F, XU W L. 2023. Petrogenesis of Mesozoic granitoids in the northeastern North China Craton: constraints from apatite trace elements and in-situ Nd isotopic data[J]. Lithos,450-451:107190. doi: 10.1016/j.lithos.2023.107190 |
[38] | SHA L K, CHAPPELL B W. 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis[J]. Geochimica et Cosmochimica Acta,63(22):3861-3881. |
[39] | SHU L S, SHI Y S, GUO L Z, CHARVET J, SUN Y. 1995. Plate-body tectonics and collision orogeny in the middle of Jiangnan[M]. Nanjing: Nanjing University Press (in Chinese). |
[40] | STRECK M J. 2008. Mineral textures and zoning as evidence for open system processes[J]. Reviews in Mineralogy and Geochemistry,69(1):595-622. |
[41] | SUN C Y, CAWOOD P A, XU W L, ZHANG X M, TANG J, LI Y, SUN Z X, XU T. 2022. In situ geochemical composition of apatite in granitoids from the eastern Central Asian Orogenic Belt: a window into petrogenesis[J]. Geochimica et Cosmochimica Acta,317:552-573. doi: 10.1016/j.gca.2021.10.028 |
[42] | SUN J F, YANG J H, ZHANG J H, YANG Y H, ZHU Y S. 2021. Apatite geochemical and Sr-Nd isotopic insights into granitoid petrogenesis[J]. Chemical Geology,566:120104. doi: 10.1016/j.chemgeo.2021.120104 |
[43] | SUN J D, XU M C, TAN G L, LÜ J S, WU B, ZHANG Y , JIANG X Q. 2023. Geochemical characteristics and metallogenic significance of Huangshan Nb-Ta deposit in northeast Jiangxi Province[J]. East China Geology,44(1):28-38. (in Chinese with English abstract). |
[44] | TAN H M R, HUANG X W, QI L, GAO J F, MENG Y M, XIE H. 2022. Research progress on chemical composition of apatite: application in petrogenesis, ore genesis and mineral exploration[J]. Acta Petrologica Sinica,38(10):3067-3084 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.10.11 |
[45] | TURNER S P, FODEN J D, MORRISON R S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia[J]. Lithos,28(2):151-179. doi: 10.1016/0024-4937(92)90029-X |
[46] | VASYUKOVA O, WILLIAMS-JONES A. 2020. Partial melting, fractional crystallisation, liquid immiscibility and hydrothermal mobilisation -A ‘recipe’ for the formation of economic A-type granite-hosted HFSE deposits[J]. Lithos,356-357:105300. doi: 10.1016/j.lithos.2019.105300 |
[47] | WANG X L. 2017. Some new research progresses and main scientific problems of granitic rocks[J]. Acta Petrologica Sinica,33(5):1445-1458 (in Chinese with English abstract). |
[48] | WANG H R, CAI K D, SUN M, XIA X P, LAI C K, LI P F, WAN B, ZHANG Z Y. 2022. Apatite as a magma redox indicator and its application in metallogenic research[J]. Lithos,422-423:106749. doi: 10.1016/j.lithos.2022.106749 |
[49] | WANG C Z, HUANG Z Z, ZHAO X L, CHU P L, HUANG W C, SONG S M, XU Y, YANG C. 2021. Geochronology, geochemistry and petrogenesis of early Cretaceous Yaocun A-type granite in the Lower Yangtze region[J]. Geology in China,48(2):549-563 (in Chinese with English abstract). |
[50] | WANG R, LUO C H, XIA W J, SUN Y C, LIU B, ZHANG J B. 2021. Progresses in the study of high magmatic water and oxidation state of post-collisional magmas in the Gangdese porphyry deposit belt[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1061-1077 (in Chinese with English abstract). |
[51] | WANG L X, MA C Q, ZHANG C, ZHU Y X, MARKS M A W. 2018. Halogen geochemistry of I- and A-type granites from Jiuhuashan region (South China): insights into the elevated fluorine in A-type granite[J]. Chemical Geology,478:164-182. doi: 10.1016/j.chemgeo.2017.09.033 |
[52] | WEBSTER J D, PICCOLI P M. 2015. Magmatic apatite: a powerful, yet deceptive, mineral[J]. Elements,11(3):177-182. doi: 10.2113/gselements.11.3.177 |
[53] | WEBSTER J D, TAPPEN C M, MANDEVILLE C W. 2009. Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: felsic silicate systems at 200 MPa[J]. Geochimica et Cosmochimica Acta,73(3):559-581. doi: 10.1016/j.gca.2008.10.034 |
[54] | WHALEN J B, CURRIE K L, CHAPPELL B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology,95(4):407-419. doi: 10.1007/BF00402202 |
[55] | WU F Y, LIU X C, JI W Q, WANG J M, YANG L. 2017. Highly fractionated granites: recognition and research[J]. Science China Earth Sciences,60(7):1201-1219. doi: 10.1007/s11430-016-5139-1 |
[56] | XING F M, XU X. 1999. Magma belt and mineralization in Anhui Yangzi[M]. Hefei: Anhui Renmin Press, 1-170 (in Chinese). |
[57] | YAN J, HOU T J, WANG A G, WANG D E, ZHANG D Y, WENG W F, LIU J M, LIU X Q, LI Q Z. 2017. Petrogenetic contrastive studies on the Mesozoic early stage ore-bearing and late stage ore-barren granites from the southern Anhui Province[J]. Science China Earth Sciences,60(11):1920-1941. doi: 10.1007/s11430-016-9070-4 |
[58] | YAN X Y, YANG D B, XU W L, QUAN Y K, WANG A Q, HAO L R, YANG H T, WANG F. 2023. Apatite geochemistry from mafic rocks in the northeastern North China Craton: new insights into petrogenesis[J]. Lithos,436-437:106942. doi: 10.1016/j.lithos.2022.106942 |
[59] | YANG J H, WU F Y, CHUNG S L, WILDE S A, CHU M F. 2006. A hybrid origin for the Qianshan A-type granite, northeast China: geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos,89(1-2):89-106. doi: 10.1016/j.lithos.2005.10.002 |
[60] | YAO J L, CAWOOD P A, SHU L S, ZHAO G C. 2019. Jiangnan Orogen, South China: a ~970-820 Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews,196:102872. doi: 10.1016/j.earscirev.2019.05.016 |
[61] | YUE Q. 2020. Geochronology and petrogenesis of Yanshanian granites in southern Anhui[D]. Hefei: Hefei University of Technology (in Chinese with English abstract). |
[62] | YUE Q, YAN J, LIU J M, XIE J C, LI Q Z, LUO Q K. 2020. Geochronology, petrogenesis and tectonic implications of the early Cretaceous granitoids in the Jingde-Guangde area, Anhui province, South China[J]. Journal of Asian Earth Sciences,190:104150. doi: 10.1016/j.jseaes.2019.104150 |
[63] | ZAJACZ Z, CANDELA P A, PICCOLI P M, SANCHEZ-VALLE C. 2012. The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations[J]. Geochimica et Cosmochimica Acta,89:81-101. doi: 10.1016/j.gca.2012.04.039 |
[64] | ZHANG X B, GUO F, ZHANG B, ZHAO L, WANG G Q. 2021. Mixing of cogenetic magmas in the Cretaceous Zhangzhou calc-alkaline granite from Southeast China recorded by in-situ apatite geochemistry[J]. American Mineralogist,106(10):1679-1689. doi: 10.2138/am-2021-7786 |
[65] | ZHANG S B, ZHENG Y F. 2013. Formation and evolution of Precambrian continental lithosphere in South China[J]. Gondwana Research,23(4):1241-1260. doi: 10.1016/j.gr.2012.09.005 |
[66] | ZHANG X P, ZHANG J, LUO X D, LU F L. 2021. Discussion on geochemical characteristics of rock rare metal in Yaocun, southern Anhui and the prospecting potential[J]. Energy Technology and Management,46(3):19-21 (in Chinese). |
[67] | ZHANG F, ZHANG D Y, WENG W F, WEI D Z, WANG J, JIANG Z R, HOU S Y, ZHOU T F. 2023. The genesis and Rb mineralization of the Changlingjian granite porphyry, eastern Jiangnan Orogenic Belt[J]. Acta Petrologica Sinica,39(6):1649-1673 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.06.05 |
[68] | ZHANG J Y, ZHANG S, ZHANG Z Z, WANG J. 2022. Geochronology and geochemistry of Niuwangzhai pluton in east end of North Huaiyang: constraints on deep geological process of Dabie Orogen in Early Cretaceous[J]. East China Geology,43(2):141-153 (in Chinese with English abstract). |
[69] | ZHAO G C, CAWOOD P A. 2012. Precambrian geology of China[J]. Precambrian Research,222-223:13-54. doi: 10.1016/j.precamres.2012.09.017 |
[70] | 陈冬冬. 2019. 皖南伏岭岩体稀有金属含量特征及其对稀有金属花岗岩成矿作用的指示[J]. 世界有色金属,(5):233-235. |
[71] | 高玲, 闫峻, 李全忠, 谢建成. 2022. 皖南姚村岩体花岗岩风化壳稀土元素赋存特征[J]. 地质论评,68(5):1820-1838. |
[72] | 孔志岗. 2020. 与弱分异氧化型Ⅰ型花岗质岩有关的钨多金属矿床成矿作用研究——以皖南竹溪岭为例[D]. 西安: 长安大学. |
[73] | 舒良树, 施央申, 郭令智, CHARVET J, 孙岩. 1995. 江南中段板块-地体构造与碰撞造山运动学[M]. 南京: 南京大学出版社. |
[74] | 孙建东, 徐敏成, 谭桂丽, 吕劲松, 武彬, 张勇, 江小强. 2023. 赣东北黄山铌钽矿床成矿岩体地球化学特征及成矿意义[J]. 华东地质,44(1):28-38. |
[75] | 谭侯铭睿, 黄小文, 漆亮, 高剑峰, 孟郁苗, 谢欢. 2022. 磷灰石化学组成研究进展: 成岩成矿过程示踪及对矿产勘查的指示[J]. 岩石学报,38(10):3067-3084. |
[76] | 王孝磊. 2017. 花岗岩研究的若干新进展与主要科学问题[J]. 岩石学报,33(5):1445-1458. |
[77] | 王存智, 黄志忠, 赵希林, 褚平利, 黄文成, 宋世明, 徐杨, 杨超. 2021. 下扬子地区姚村A型花岗岩年代学、地球化学特征及岩石成因[J]. 中国地质,48(2):549-563. |
[78] | 王瑞, 罗晨皓, 夏文杰, 孙英才, 刘彪, 张京渤. 2021. 冈底斯后碰撞斑岩成矿带高水、高氧逸度岩浆成因研究进展[J]. 矿物岩石地球化学通报,40(5):1061-1077. |
[79] | 邢凤鸣, 徐祥. 1999. 安徽扬子岩浆岩带与成矿[M]. 合肥: 安徽人民出版社, 1-170. |
[80] | 岳倩. 2020. 皖南燕山期花岗岩年代学与岩石成因[D]. 合肥: 合肥工业大学. |
[81] | 张小胖, 张军, 罗贤冬, 卢逢亮. 2021. 皖南姚村岩体稀有金属元素地球化学特征及找矿前景探讨[J]. 能源技术与管理,46(3):19-21. |
[82] | 张飞, 张达玉, 翁望飞, 韦导忠, 王静, 姜重任, 侯舒雅, 周涛发. 2023. 江南造山带东段长岭尖花岗斑岩的形成年代、岩石成因及Rb成矿指示[J]. 岩石学报,39(6):1649-1673. |
[83] | 张靖怡, 张舒, 张赞赞, 汪晶. 2022. 北淮阳东端牛王寨岩体年代学及地球化学研究: 对大别造山带早白垩世深部地质过程的制约[J]. 华东地质,43(2):141-153. |
Distribution of magmatic rocks in the eastern section of Jiangnan Orogen(modified from Gao et al.(2022))
Photomicrographs of Yaocun granite: (a) in the cross-polarized light and (b) in the plane-polarized light
Geochemical discrimination diagrams of Yaocun granite (data of Neoproterozoic metamorphic basement, I-type granites and A-type granites in Jiangnan Orogen are from Yue et al.(2020), and data of medium coarse granites in Yaocun are from Wang et al.(2021))
Cathode luminescence of apatite in Yaocun granites
Plots of Cl-F-OH(a) and F-Cl(b) in apatite of Yaocun granite (data of I-type and A-type granite apatite in the eastern Jiangnan Orogen are from Li and Yan(2023))
Apatite rare earth elements standardization diagram (a), magmatic or metamorphic source identification diagram of apatite(O’Sullivan et al., 2020)(b) of Yaocun granite
Core-to-rim profiles of trace element compositions of a single apatite