2024 Vol. 45, No. 3
Article Contents

ZHU Yongsheng, LI Chao, LIU Qun, JIANG Zhi, ZHENG Ying, GUO Jun. 2024. Geochemical characteristics of apatite from the Yaocun granite in the eastern Jiangnan Orogen: insights into magmatic properties. East China Geology, 45(3): 302-317. doi: 10.16788/j.hddz.32-1865/P.2023.12.006
Citation: ZHU Yongsheng, LI Chao, LIU Qun, JIANG Zhi, ZHENG Ying, GUO Jun. 2024. Geochemical characteristics of apatite from the Yaocun granite in the eastern Jiangnan Orogen: insights into magmatic properties. East China Geology, 45(3): 302-317. doi: 10.16788/j.hddz.32-1865/P.2023.12.006

Geochemical characteristics of apatite from the Yaocun granite in the eastern Jiangnan Orogen: insights into magmatic properties

More Information
  • Due to the fact that apatite is a common accessory mineral in magmatic rocks, its geochemical composition is often used to indicate the petrogenesis of granites and provide constraints on their magmatic properties. Mesozoic A-type granites are widely distributed in the eastern Jiangnan Orogen. At present, the origin of these A-type granites is still controversial, and their mineralization potential is not clear. Therefore, this study investigates the geochemical composition of apatite in the Yaocun granite, constrains the magmatic properties, and evaluates its metallogenic potential. The results show that the apatite in Yaocun granite generally exhibits oscillatory zoning or homogeneous texture, and has high F, REE, Y, and Th, and low Cl contents, indicating its magmatic origins. In addition, the REE, Y, and Th contents of a single apatite grain show continuous changes from the core to the rim, and the REE pattern displays obvious negative Eu anomalies, which can be attributed to fractional crystallization. Quantitative calculations show that Yaocun granitic magma is characterized by high F, low H2O-Cl, and low oxygen fugacity. Considering the relation between magmatic properties and the behavior of ore-forming elements, our study suggests that Yaocun granite has rare metal mineralization potential.

  • 加载中
  • [1] ARNDT N. 2013. Formation and evolution of the continental crust[J]. Geochemical Perspectives,2(3):405-533. doi: 10.7185/geochempersp.2.3

    CrossRef Google Scholar

    [2] BONIN B. 2007. A-type granites and related rocks: evolution of a concept, problems and prospects[J]. Lithos,97(1-2):1-29.

    Google Scholar

    [3] BROMILEY G D. 2021. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas?[J]. Lithos,384-385:105900. doi: 10.1016/j.lithos.2020.105900

    CrossRef Google Scholar

    [4] BRUAND E, FOWLER M, STOREY C, LAURENT O, ANTOINE C, GUITREAU M, HEILIMO E, NEBEL O. 2020. Accessory mineral constraints on crustal evolution: elemental fingerprints for magma discrimination[J]. Geochemical Perspectives Letters,13:7-12.

    Google Scholar

    [5] CHEN D D. 2019. Characteristics of rare metals content in Fuling rock mass in southern Anhui province and its indication to mineralization of rare metal granite[J]. World Nonferrous Metals,(5):233-235 (in Chinese with English abstract).

    Google Scholar

    [6] CHU M F, WANG K L, GRIFFIN W L, CHUNG S L, O’REILLY S Y, PEARSON N J, IIZUKA Y. 2009. Apatite composition: tracing petrogenetic processes in Transhimalayan granitoids[J]. Journal of Petrology,50(10):1829-1855. doi: 10.1093/petrology/egp054

    CrossRef Google Scholar

    [7] DALL’AGNOL R, DE OLIVEIRAL D C. 2007. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: implications for classification and petrogenesis of A-type granites[J]. Lithos,93(3-4):215-233. doi: 10.1016/j.lithos.2006.03.065

    CrossRef Google Scholar

    [8] DING X, SU K L, YAN H B, LIANG J L, SUN W D. 2022. Effect of F-rich fluids on the A-Type magmatism and related metal mobilization: new insights from the Fogang-Nankunshan-Yajishan igneous rocks in Southeast China[J]. Journal of Earth Science,33(3):591-608. doi: 10.1007/s12583-022-1611-7

    CrossRef Google Scholar

    [9] GAO L, YAN J, LI Q Z, XIE J C. 2022. Occurrence characteristics of REE in granite weathering crust of Yaocun granite in southern Anhui[J]. Geological Review,68(5):1820-1838 (in Chinese with English abstract).

    Google Scholar

    [10] HARLOV D E, FÖRSTER H J. 2003. Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: nature and experiment. Part II. Fluorapatite[J]. American Mineralogist,88(8-9):1209-1229.

    Google Scholar

    [11] HSIEH P S, CHEN C H, YANG H J, LEE C Y. 2008. Petrogenesis of the Nanling Mountains granites from South China: constraints from systematic apatite geochemistry and whole-rock geochemical and Sr-Nd isotope compositions[J]. Journal of Asian Earth Sciences,33(5-6):428-451. doi: 10.1016/j.jseaes.2008.02.002

    CrossRef Google Scholar

    [12] JIANG X Y, LI H, DING X, WU K, GUO J, LIU J Q, SUN W D. 2018a. Formation of A-type granites in the Lower Yangtze River Belt: a perspective from apatite geochemistry[J]. Lithos,304-307:125-134. doi: 10.1016/j.lithos.2018.02.005

    CrossRef Google Scholar

    [13] JIANG X Y, LING M X, WU K, ZHANG Z K, SUN W D, SUI Q L, XIA X P. 2018b. Insights into the origin of coexisting A1- and A2-type granites: implications from zircon Hf-O isotopes of the Huayuangong intrusion in the Lower Yangtze River Belt, eastern China[J]. Lithos,318-319:230-243. doi: 10.1016/j.lithos.2018.08.008

    CrossRef Google Scholar

    [14] JIANG X Y, WU K, LUO J C, ZHANG L P, SUN W D, XIA X P. 2020. An A1-type granite that borders A2-type: insights from the geochemical characteristics of the Zongyang A-type granite in the Lower Yangtze River Belt, China[J]. International Geology Review,62(17):2203-2220. doi: 10.1080/00206814.2019.1689534

    CrossRef Google Scholar

    [15] JIANG Y H, ZHAO P, ZHOU Q, LIAO S Y, JIN G D. 2011. Petrogenesis and tectonic implications of Early Cretaceous S- and A-type granites in the northwest of the Gan-Hang rift, SE China[J]. Lithos,121(1-4):55-73.

    Google Scholar

    [16] JUNG S, HOERNES S, MASBERG P, HOFFER E. 1999. The petrogenesis of some migmatites and granites (Central Damara Orogen, Namibia): evidence for disequilibrium melting, wall-rock contamination and crystal fractionation[J]. Journal of Petrology,40(8):1241-1269. doi: 10.1093/petroj/40.8.1241

    CrossRef Google Scholar

    [17] KEMP A I S, HAWKESWORTH C J, PATERSON B A, KINNY P D. 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon[J]. Nature,439(7076):580-583. doi: 10.1038/nature04505

    CrossRef Google Scholar

    [18] KONECKE B A, FIEGE A, SIMON A C, LINSLER S, HOLTZ F. 2019. An experimental calibration of a sulfur-in-apatite oxybarometer for mafic systems[J]. Geochimica et Cosmochimica Acta,265:242-258. doi: 10.1016/j.gca.2019.08.044

    CrossRef Google Scholar

    [19] KONG Z G. 2020. Weakly fractionated oxidized I-type granitoids related tungsten polymetallic mineralization - a case study of Zhuxiling deposit, southern Anhui Province, China[D]. Xi’an: Chang’an University (in Chinese with English abstract).

    Google Scholar

    [20] KRNETA S, CIOBANU C L, COOK N J, EHRIG K, KONTONIKAS-CHAROS A. 2016. Apatite at Olympic dam, South Australia: a petrogenetic tool[J]. Lithos,262:470-485.

    Google Scholar

    [21] LAURENT O, ZEH A, GERDES A, VILLAROS A, GROS K, SłABY E. 2017. How do granitoid magmas mix with each other? Insights from textures, trace element and Sr-Nd isotopic composition of apatite and titanite from the Matok pluton (South Africa)[J]. Contributions to Mineralogy and Petrology,172(9):80. doi: 10.1007/s00410-017-1398-1

    CrossRef Google Scholar

    [22] LEE C T A, MORTON D M. 2015. High silica granites: terminal porosity and crystal settling in shallow magma chambers[J]. Earth and Planetary Science Letters,409:23-31. doi: 10.1016/j.jpgl.2014.10.040

    CrossRef Google Scholar

    [23] LI W R, COSTA F. 2020. A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets[J]. Geochimica et Cosmochimica Acta,269:203-222. doi: 10.1016/j.gca.2019.10.035

    CrossRef Google Scholar

    [24] LI H J, HERMANN J. 2017. Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800 ℃: a new experimentally derived thermodynamic model[J]. American Mineralogist,102(3):580-594. doi: 10.2138/am-2017-5891

    CrossRef Google Scholar

    [25] LI C, YAN J. 2023. Apatite geochemical composition of Mesozoic granitoids in the eastern Jiangnan Orogen, S. China: insights into petrogenesis and intrinsic magmatic variables[J]. International Geology Review, 1-23, doi: 10.1080/00206814.2023.2291777.

    Google Scholar

    [26] LOUCKS R R. 2014. Distinctive composition of copper-ore-forming arc magmas[J]. Australian Journal of Earth Sciences,61(1):5-16. doi: 10.1080/08120099.2013.865676

    CrossRef Google Scholar

    [27] MENG X Y, KLEINSASSER J M, RICHARDS J P, TAPSTER S R, JUGO P J, SIMON A C, KONTAK D J, ROBB L, BYBEE G M, MARSH J H, STERN R A. 2021. Oxidized sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga[J]. Nature Communications,12(1):2189. doi: 10.1038/s41467-021-22349-z

    CrossRef Google Scholar

    [28] MICHAUD J A S, PICHAVANT M. 2020. Magmatic fractionation and the magmatic-hydrothermal transition in rare metal granites: evidence from Argemela (central Portugal)[J]. Geochimica et Cosmochimica Acta,289:130-157. doi: 10.1016/j.gca.2020.08.022

    CrossRef Google Scholar

    [29] MILES A J, GRAHAM C M, HAWKESWORTH C J, GILLESPIE M R, HINTON R W, BROMILEY G D. 2014. Apatite: a new redox proxy for silicic magmas?[J]. Geochimica et Cosmochimica Acta,132:101-119.

    Google Scholar

    [30] NASH W P, CRECRAFT H R. 1985. Partition coefficients for trace elements in silicic magmas[J]. Geochimica et Cosmochimica Acta,49(11):2309-2322. doi: 10.1016/0016-7037(85)90231-5

    CrossRef Google Scholar

    [31] O’SULLIVAN G, CHEW D, KENNY G, HENRICHS I, MULLIGAN D. 2020. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews,201:103044.

    Google Scholar

    [32] PAN Y, FLEET M E. 2002. Compositions of the apatite-group minerals: substitution mechanisms and controlling factors[J]. Reviews in Mineralogy and Geochemistry,48(1):13-49. doi: 10.2138/rmg.2002.48.2

    CrossRef Google Scholar

    [33] PARAT F, HOLTZ F. 2004. Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions[J]. Contributions to Mineralogy and Petrology,147(2):201-212. doi: 10.1007/s00410-004-0553-7

    CrossRef Google Scholar

    [34] PARAT F, HOLTZ F, KLÜGEL A. 2011. S-rich apatite-hosted glass inclusions in xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline magmas[J]. Contributions to Mineralogy and Petrology,162(3):463-478.

    Google Scholar

    [35] PENG G Y, LUHR J F, MCGEE J J. 1997. Factors controlling sulfur concentrations in volcanic apatite[J]. American Mineralogist,82(11-12):1210-1224. doi: 10.2138/am-1997-11-1217

    CrossRef Google Scholar

    [36] PICCOLI P, CANDELA P. 1994. Apatite in felsic rocks: a model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne Intrusive Suite (Sierra Nevada Batholith) magmas[J]. American Journal of Science,294(1):92-135.

    Google Scholar

    [37] QUAN Y K, YANG D B, YAN X Y, WANG A Q, HAO L R, YANG H T, WANG F, XU W L. 2023. Petrogenesis of Mesozoic granitoids in the northeastern North China Craton: constraints from apatite trace elements and in-situ Nd isotopic data[J]. Lithos,450-451:107190. doi: 10.1016/j.lithos.2023.107190

    CrossRef Google Scholar

    [38] SHA L K, CHAPPELL B W. 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis[J]. Geochimica et Cosmochimica Acta,63(22):3861-3881.

    Google Scholar

    [39] SHU L S, SHI Y S, GUO L Z, CHARVET J, SUN Y. 1995. Plate-body tectonics and collision orogeny in the middle of Jiangnan[M]. Nanjing: Nanjing University Press (in Chinese).

    Google Scholar

    [40] STRECK M J. 2008. Mineral textures and zoning as evidence for open system processes[J]. Reviews in Mineralogy and Geochemistry,69(1):595-622.

    Google Scholar

    [41] SUN C Y, CAWOOD P A, XU W L, ZHANG X M, TANG J, LI Y, SUN Z X, XU T. 2022. In situ geochemical composition of apatite in granitoids from the eastern Central Asian Orogenic Belt: a window into petrogenesis[J]. Geochimica et Cosmochimica Acta,317:552-573. doi: 10.1016/j.gca.2021.10.028

    CrossRef Google Scholar

    [42] SUN J F, YANG J H, ZHANG J H, YANG Y H, ZHU Y S. 2021. Apatite geochemical and Sr-Nd isotopic insights into granitoid petrogenesis[J]. Chemical Geology,566:120104. doi: 10.1016/j.chemgeo.2021.120104

    CrossRef Google Scholar

    [43] SUN J D, XU M C, TAN G L, LÜ J S, WU B, ZHANG Y , JIANG X Q. 2023. Geochemical characteristics and metallogenic significance of Huangshan Nb-Ta deposit in northeast Jiangxi Province[J]. East China Geology,44(1):28-38. (in Chinese with English abstract).

    Google Scholar

    [44] TAN H M R, HUANG X W, QI L, GAO J F, MENG Y M, XIE H. 2022. Research progress on chemical composition of apatite: application in petrogenesis, ore genesis and mineral exploration[J]. Acta Petrologica Sinica,38(10):3067-3084 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.10.11

    CrossRef Google Scholar

    [45] TURNER S P, FODEN J D, MORRISON R S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia[J]. Lithos,28(2):151-179. doi: 10.1016/0024-4937(92)90029-X

    CrossRef Google Scholar

    [46] VASYUKOVA O, WILLIAMS-JONES A. 2020. Partial melting, fractional crystallisation, liquid immiscibility and hydrothermal mobilisation -A ‘recipe’ for the formation of economic A-type granite-hosted HFSE deposits[J]. Lithos,356-357:105300. doi: 10.1016/j.lithos.2019.105300

    CrossRef Google Scholar

    [47] WANG X L. 2017. Some new research progresses and main scientific problems of granitic rocks[J]. Acta Petrologica Sinica,33(5):1445-1458 (in Chinese with English abstract).

    Google Scholar

    [48] WANG H R, CAI K D, SUN M, XIA X P, LAI C K, LI P F, WAN B, ZHANG Z Y. 2022. Apatite as a magma redox indicator and its application in metallogenic research[J]. Lithos,422-423:106749. doi: 10.1016/j.lithos.2022.106749

    CrossRef Google Scholar

    [49] WANG C Z, HUANG Z Z, ZHAO X L, CHU P L, HUANG W C, SONG S M, XU Y, YANG C. 2021. Geochronology, geochemistry and petrogenesis of early Cretaceous Yaocun A-type granite in the Lower Yangtze region[J]. Geology in China,48(2):549-563 (in Chinese with English abstract).

    Google Scholar

    [50] WANG R, LUO C H, XIA W J, SUN Y C, LIU B, ZHANG J B. 2021. Progresses in the study of high magmatic water and oxidation state of post-collisional magmas in the Gangdese porphyry deposit belt[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1061-1077 (in Chinese with English abstract).

    Google Scholar

    [51] WANG L X, MA C Q, ZHANG C, ZHU Y X, MARKS M A W. 2018. Halogen geochemistry of I- and A-type granites from Jiuhuashan region (South China): insights into the elevated fluorine in A-type granite[J]. Chemical Geology,478:164-182. doi: 10.1016/j.chemgeo.2017.09.033

    CrossRef Google Scholar

    [52] WEBSTER J D, PICCOLI P M. 2015. Magmatic apatite: a powerful, yet deceptive, mineral[J]. Elements,11(3):177-182. doi: 10.2113/gselements.11.3.177

    CrossRef Google Scholar

    [53] WEBSTER J D, TAPPEN C M, MANDEVILLE C W. 2009. Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: felsic silicate systems at 200 MPa[J]. Geochimica et Cosmochimica Acta,73(3):559-581. doi: 10.1016/j.gca.2008.10.034

    CrossRef Google Scholar

    [54] WHALEN J B, CURRIE K L, CHAPPELL B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology,95(4):407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [55] WU F Y, LIU X C, JI W Q, WANG J M, YANG L. 2017. Highly fractionated granites: recognition and research[J]. Science China Earth Sciences,60(7):1201-1219. doi: 10.1007/s11430-016-5139-1

    CrossRef Google Scholar

    [56] XING F M, XU X. 1999. Magma belt and mineralization in Anhui Yangzi[M]. Hefei: Anhui Renmin Press, 1-170 (in Chinese).

    Google Scholar

    [57] YAN J, HOU T J, WANG A G, WANG D E, ZHANG D Y, WENG W F, LIU J M, LIU X Q, LI Q Z. 2017. Petrogenetic contrastive studies on the Mesozoic early stage ore-bearing and late stage ore-barren granites from the southern Anhui Province[J]. Science China Earth Sciences,60(11):1920-1941. doi: 10.1007/s11430-016-9070-4

    CrossRef Google Scholar

    [58] YAN X Y, YANG D B, XU W L, QUAN Y K, WANG A Q, HAO L R, YANG H T, WANG F. 2023. Apatite geochemistry from mafic rocks in the northeastern North China Craton: new insights into petrogenesis[J]. Lithos,436-437:106942. doi: 10.1016/j.lithos.2022.106942

    CrossRef Google Scholar

    [59] YANG J H, WU F Y, CHUNG S L, WILDE S A, CHU M F. 2006. A hybrid origin for the Qianshan A-type granite, northeast China: geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos,89(1-2):89-106. doi: 10.1016/j.lithos.2005.10.002

    CrossRef Google Scholar

    [60] YAO J L, CAWOOD P A, SHU L S, ZHAO G C. 2019. Jiangnan Orogen, South China: a ~970-820 Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews,196:102872. doi: 10.1016/j.earscirev.2019.05.016

    CrossRef Google Scholar

    [61] YUE Q. 2020. Geochronology and petrogenesis of Yanshanian granites in southern Anhui[D]. Hefei: Hefei University of Technology (in Chinese with English abstract).

    Google Scholar

    [62] YUE Q, YAN J, LIU J M, XIE J C, LI Q Z, LUO Q K. 2020. Geochronology, petrogenesis and tectonic implications of the early Cretaceous granitoids in the Jingde-Guangde area, Anhui province, South China[J]. Journal of Asian Earth Sciences,190:104150. doi: 10.1016/j.jseaes.2019.104150

    CrossRef Google Scholar

    [63] ZAJACZ Z, CANDELA P A, PICCOLI P M, SANCHEZ-VALLE C. 2012. The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations[J]. Geochimica et Cosmochimica Acta,89:81-101. doi: 10.1016/j.gca.2012.04.039

    CrossRef Google Scholar

    [64] ZHANG X B, GUO F, ZHANG B, ZHAO L, WANG G Q. 2021. Mixing of cogenetic magmas in the Cretaceous Zhangzhou calc-alkaline granite from Southeast China recorded by in-situ apatite geochemistry[J]. American Mineralogist,106(10):1679-1689. doi: 10.2138/am-2021-7786

    CrossRef Google Scholar

    [65] ZHANG S B, ZHENG Y F. 2013. Formation and evolution of Precambrian continental lithosphere in South China[J]. Gondwana Research,23(4):1241-1260. doi: 10.1016/j.gr.2012.09.005

    CrossRef Google Scholar

    [66] ZHANG X P, ZHANG J, LUO X D, LU F L. 2021. Discussion on geochemical characteristics of rock rare metal in Yaocun, southern Anhui and the prospecting potential[J]. Energy Technology and Management,46(3):19-21 (in Chinese).

    Google Scholar

    [67] ZHANG F, ZHANG D Y, WENG W F, WEI D Z, WANG J, JIANG Z R, HOU S Y, ZHOU T F. 2023. The genesis and Rb mineralization of the Changlingjian granite porphyry, eastern Jiangnan Orogenic Belt[J]. Acta Petrologica Sinica,39(6):1649-1673 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.06.05

    CrossRef Google Scholar

    [68] ZHANG J Y, ZHANG S, ZHANG Z Z, WANG J. 2022. Geochronology and geochemistry of Niuwangzhai pluton in east end of North Huaiyang: constraints on deep geological process of Dabie Orogen in Early Cretaceous[J]. East China Geology,43(2):141-153 (in Chinese with English abstract).

    Google Scholar

    [69] ZHAO G C, CAWOOD P A. 2012. Precambrian geology of China[J]. Precambrian Research,222-223:13-54. doi: 10.1016/j.precamres.2012.09.017

    CrossRef Google Scholar

    [70] 陈冬冬. 2019. 皖南伏岭岩体稀有金属含量特征及其对稀有金属花岗岩成矿作用的指示[J]. 世界有色金属,(5):233-235.

    Google Scholar

    [71] 高玲, 闫峻, 李全忠, 谢建成. 2022. 皖南姚村岩体花岗岩风化壳稀土元素赋存特征[J]. 地质论评,68(5):1820-1838.

    Google Scholar

    [72] 孔志岗. 2020. 与弱分异氧化型Ⅰ型花岗质岩有关的钨多金属矿床成矿作用研究——以皖南竹溪岭为例[D]. 西安: 长安大学.

    Google Scholar

    [73] 舒良树, 施央申, 郭令智, CHARVET J, 孙岩. 1995. 江南中段板块-地体构造与碰撞造山运动学[M]. 南京: 南京大学出版社.

    Google Scholar

    [74] 孙建东, 徐敏成, 谭桂丽, 吕劲松, 武彬, 张勇, 江小强. 2023. 赣东北黄山铌钽矿床成矿岩体地球化学特征及成矿意义[J]. 华东地质,44(1):28-38.

    Google Scholar

    [75] 谭侯铭睿, 黄小文, 漆亮, 高剑峰, 孟郁苗, 谢欢. 2022. 磷灰石化学组成研究进展: 成岩成矿过程示踪及对矿产勘查的指示[J]. 岩石学报,38(10):3067-3084.

    Google Scholar

    [76] 王孝磊. 2017. 花岗岩研究的若干新进展与主要科学问题[J]. 岩石学报,33(5):1445-1458.

    Google Scholar

    [77] 王存智, 黄志忠, 赵希林, 褚平利, 黄文成, 宋世明, 徐杨, 杨超. 2021. 下扬子地区姚村A型花岗岩年代学、地球化学特征及岩石成因[J]. 中国地质,48(2):549-563.

    Google Scholar

    [78] 王瑞, 罗晨皓, 夏文杰, 孙英才, 刘彪, 张京渤. 2021. 冈底斯后碰撞斑岩成矿带高水、高氧逸度岩浆成因研究进展[J]. 矿物岩石地球化学通报,40(5):1061-1077.

    Google Scholar

    [79] 邢凤鸣, 徐祥. 1999. 安徽扬子岩浆岩带与成矿[M]. 合肥: 安徽人民出版社, 1-170.

    Google Scholar

    [80] 岳倩. 2020. 皖南燕山期花岗岩年代学与岩石成因[D]. 合肥: 合肥工业大学.

    Google Scholar

    [81] 张小胖, 张军, 罗贤冬, 卢逢亮. 2021. 皖南姚村岩体稀有金属元素地球化学特征及找矿前景探讨[J]. 能源技术与管理,46(3):19-21.

    Google Scholar

    [82] 张飞, 张达玉, 翁望飞, 韦导忠, 王静, 姜重任, 侯舒雅, 周涛发. 2023. 江南造山带东段长岭尖花岗斑岩的形成年代、岩石成因及Rb成矿指示[J]. 岩石学报,39(6):1649-1673.

    Google Scholar

    [83] 张靖怡, 张舒, 张赞赞, 汪晶. 2022. 北淮阳东端牛王寨岩体年代学及地球化学研究: 对大别造山带早白垩世深部地质过程的制约[J]. 华东地质,43(2):141-153.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(98) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint