2023 Vol. 44, No. 2
Article Contents

LIU Chunlei, LI Yasong, CAO Shengwei, LI Jianfeng, WANG Wanli. 2023. Geochemical characteristics and genetic model of hydro-geothermal system in Xiamen City, Fujian Province. East China Geology, 44(2): 128-140. doi: 10.16788/j.hddz.32-1865/P.2023.02.002
Citation: LIU Chunlei, LI Yasong, CAO Shengwei, LI Jianfeng, WANG Wanli. 2023. Geochemical characteristics and genetic model of hydro-geothermal system in Xiamen City, Fujian Province. East China Geology, 44(2): 128-140. doi: 10.16788/j.hddz.32-1865/P.2023.02.002

Geochemical characteristics and genetic model of hydro-geothermal system in Xiamen City, Fujian Province

More Information
  • The seawater-recharged geothermal system in the coastal areas of Xiamen City has abundant recharge source, however, the geothermal water is always saline and low-temperature, and the exploitation of geothermal water in these areas may even incur seawater intrusion. Therefore, to ascertain the hydro-chemical characteristics and genetic mechanisms of the geothermal resources is significant for the rational exploitation and protection of these resources. In this study, the chemical and isotopic compositions of the geothermal water, cold groundwater, and surface water samples collected from a geothermal field were analyzed. The results showed that in the mountainous and the piedmont zones of Xiamen City, geothermal water is mainly recharged by the precipitation and is dominated by HCO3·SO4-Ca·Na water with low TDS content. By contrast, the geothermal water in the coastal areas is mainly recharged by seawater mixed to different degrees and is dominated by hydro-chemical type of Cl-Na with high TDS content. Based on the characteristics of the Cl-mixing model of 13 geothermal fields in Xiamen, 10 geothermal fields are recharged by seawater, among which the maximum seawater mixing ratio in geothermal water is 73.20% in Pubian area. The geothermal water infiltrates in the low mountainous areas and is transported through NW-trending faults to regional deep-rooted geothermal-controlling NE faults, where the geothermal water receives the heat conducted from deeper parts. The temperature of the deep geothermal reservoirs was estimated from 185 ℃ to 225 ℃. While rising along faults, geothermal water was recharged by seawater and cold groundwater, creating shallow geothermal reservoirs with temperatures from 80 ℃ to 139 ℃. As indicated by the comprehensive analysis, seawater is an important recharge resource for geothermal water in the study area and significantly influenced the chemical components of the geothermal water. In addition, the geothermal water could be mixed with cold groundwater or seawater twice or more times, reducing the temperature of the geothermal reservoirs.
  • 加载中
  • [1] 甘浩男,蔺文静,闫晓雪,等. 粤中隐伏岩体区地热赋存特征及热异常成因分析[J]. 地质学报, 2020, 94(7): 2096-2106.

    Google Scholar

    GAN H N, LIN W J, YAN X X, et al. Analysis of geothermal occurrence characteristics and origin of the thermal anomalies in the hidden igneous rock area in the central Guangdong[J]. Acta Geologica Sinica, 2020,94(7): 2096-2106.

    Google Scholar

    [2] ARMANNSSON H. The fluid geochemistry of Icelandic high temperature geothermal areas[J]. Applied Geochemistry, 2016, 66: 14-64.

    Google Scholar

    [3] 郭清海. 岩浆热源型地热系统及其水文地球化学判据[J]. 地质学报, 2020, 94(12): 3544-3554.

    Google Scholar

    GUO Q H. Magma-heated geothermal systems and hydrogeochemical evidence of their occurrence[J]. Acta Geologica Sinica, 2020, 94(12): 3544-3554.

    Google Scholar

    [4] 沈照理, 王焰新, 郭华明. 水-岩相互作用研究的机遇与挑战[J]. 地球科学,2012,37(2):207-219.

    Google Scholar

    SHEN Z L, WANG Y X, GUO H M. Opportunities and challenges of water-rock interaction studies[J]. Earth Science,2012,37(2):207-219.

    Google Scholar

    [5] KONG Y L,PANG Z H,SHAO H B, et al. Recent studies on hydrothermal systems in China: a review[C]. Geothermal Energy,2014:1-12.

    Google Scholar

    [6] 高芳蕾,杨小强,吴国爱,等. 海南岛温泉特征与地下热水成因[J]. 吉林大学学报:地球科学版, 2009, 39(2): 281-287. GAO F L, YANG X Q, WU G A, et al. Characteristics of thermal springs and genesis of thermal underground waters in Hainan Island[J]. Journal of Jilin University, 2009, 39(2):281-287,

    Google Scholar

    [7] 汪啸. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征[D]. 武汉:中国地质大学(武汉), 2018. WANG X. Formation conditions and hydrogeochemical characteristics of the geothermal water in typical coastal geothermal field with deep faults, Guangdong Province[D].Wuhan:China University of Geosciences(Wuhan), 2018.

    Google Scholar

    [8] 熊绍柏, 金东敏. 福建漳州地热田及其邻近地区的地壳深部构造特征[J]. 地球物理学报,1991, 34(1): 55-63. XIONG S B, JIN D M. Some characteristics of deep structure of the Zhangzhou geothermal field and it's neighbourhood in the Fujian Province[J]. Chinese Journal of Geophysics, 1991, 34(1):55-63,

    Google Scholar

    [9] 李亭昕,蔺文静,甘浩男,等. 东南沿海干热岩资源成因模式探讨及勘查进展[J]. 地质力学学报, 2020, 26(2): 187-200.

    Google Scholar

    LI T X, LIN W J, GAN H N, et al. Research on the genetic model and exploration progress of hot dry rock resources on the southeast coast of China[J]. Journal of Geomechanics, 2020, 26(2):187-200.

    Google Scholar

    [10] 裘中良. 厦门地热资源及成因研究[D]. 北京:中国地质大学(北京), 2018. QIU Z L. Study on geothermal resources and its causes in Xiamen[D].Beijing: China University of Geosciences(Beijing),2018.

    Google Scholar

    [11] 韩庆之,庄庆祥. 漳州盆地地下热水的来源和运移途径的初步研究[J]. 地球科学, 1988, 13(3): 45-51.

    Google Scholar

    HAN Q Z, ZHUANG Q X. Study on the source and pathway of hot water in Zhangzhou basin, Fujian[J]. Scientific Journal of Earth Science, 1988, 13(3): 45-51.

    Google Scholar

    [12] 范蔚茗,MENZIES M A,尹汉辉,等. 中国东南沿海深部岩石圈的性质和深部作用过程初探[J]. 大地构造与成矿学, 1993, 17(1): 23-30.

    Google Scholar

    FAN W M, MENZIES M A, YIN H H, et al. Nature and processes of the lower lithosphere of the southeast China coast[J]. Geotectonica et Metallogenia, 1993, 17(1): 23-30.

    Google Scholar

    [13] 马振波,马艳飞,张平,等. 广域电磁法在福建洪塘镇地热勘查中的应用[J]. 矿产勘查, 2021, 12(3): 661-667.

    Google Scholar

    MA Z B, MA Y F, ZHANG P, et al. Application of wide area electromagnetic method in geothermal exploration of Hongtang Town, Fujian Province[J]. Mineral Exploration, 2021, 12(3): 661-667.

    Google Scholar

    [14] 庞忠和. 漳州盆地地热系统——成因模式、热能潜力与热水分布规律的研究[D]. 北京:中国科学院地质与地球物理研究所, 1987. PANG Z H. Zhangzhou basin geothermal system:Genesis model, energy pottential and the occurrence of thermal water[D]. Beijing: Institute of Geology and Geophysics,1987.

    Google Scholar

    [15] 蔺文静,陈向阳,甘浩男,等. 东南沿海厦门湾—漳州盆地地热地质特征及干热岩勘查方向[J]. 地质学报, 2020, 94(7): 2066-2077.

    Google Scholar

    LIN W J, CHEN X Y, GAN H N, et al.Geothermal, geological characteristics and exploration direction of hot dry rocks in the Xiamen bay-Zhangzhou basin, southeastern China[J]. Acta Geologica Sinica, 2020, 94(7): 2066-2077.

    Google Scholar

    [16] 王培宗,陈耀安,曹宝庭,等. 福建省地壳——上地幔结构及深部构造背景的研究[J]. 福建地质, 1993, 12(2): 79-158.

    Google Scholar

    WANG P Z, CHEN Y A, CAO B T, et al. Crust-upper mantle structure and deep structure setting of Fujian Province[J]. Geology of Fujian,1993, 12(2): 79-158.

    Google Scholar

    [17] 王德滋,任启江,邱检生,等. 中国东部橄榄安粗岩省的火山岩特征及其成矿作用[J]. 地质学报, 1996, 70(1): 23-34.

    Google Scholar

    WANG D Z, REN Q J, QIU J S, et al. Characteristics of volcanic rocks in the shoshonite Province, Eastern China, and their metallogenesis[J]. Acta Geologica Sinica, 1996, 70(1): 23-34.

    Google Scholar

    [18] 张健,王蓓羽,唐显春,等. 华南陆缘高热流区的壳幔温度结构与动力学背景[J]. 地球物理学报, 2018, 61(10): 3917-3932.

    Google Scholar

    ZHANG J,WANG B Y, TANG X C, et al. Temperature structure and dynamic background of crust and mantle beneath the high heat flow area of the South China continental margin[J]. Chinese Journal of Geophysics, 2018, 61(10): 3917-3932.

    Google Scholar

    [19] 王钧. 东南沿海地区地温场的形成及其分布规律[J]. 地震地质, 1985, 7(1): 49-58.

    Google Scholar

    WANG J. Distributions and formation of the geothermal field along the coast, southeastern China[J]. Seismology and Geology, 1985, 7(1): 49-58.

    Google Scholar

    [20] 李政红,郝奇琛,李亚松,等.福建厦门市地下水质量及开发利用建议[J].华东地质,2022,43(1):40-48.

    Google Scholar

    LI Z H, HAO Q C, LI Y S, et al. The groundwater quality and suggestion on groundwater exploitation in Xiamen, Fujian[J].East China Geology,2022,43(1):40-48.

    Google Scholar

    [21] ARNORSSON S,ANDROSDOTTIR A. Processes controlling the distribution of boron and chlorine in natural waters in Iceland[J]. Geochimica et Cosmochimica Acta, 1995, 59(20): 4125-4146.

    Google Scholar

    [22] 王大纯. 水文地质学基础[M].北京:地质出版社, 1986. WANG D C. General Hydrogeology[M]. Beijing: Geological Publishing House,1986.

    Google Scholar

    [23] YURTSEVERY. Worldwide survey of stable isotopes in precipitation[C]//IAEA.Rep Sect Isotope Hyedrol IAEA,1975:40.

    Google Scholar

    [24] 陈衍婷,杜文娇,陈进生,等. 厦门地区大气降水氢氧同位素组成特征及水汽来源探讨[J]. 环境科学学报, 2016, 36(2): 667-674.

    Google Scholar

    CHEN Y T, DU W J, CHEN J S, et al. Composition of hydrogen and oxygen isotopic of precipitation and source apportionment of water vapor in Xiamen area[J]. Acta Scientiae Circumstantiae,2016, 36(2): 667-674.

    Google Scholar

    [25] 黄秀琴. 九龙江流域水文特性[J]. 水利科技, 2008(1):16-20.

    Google Scholar

    HUANG X Q. Hydrological characteristics in the Jiulong watershed[J]. Hydraulic Science and Technology, 2008(1): 16-20.

    Google Scholar

    [26] 蔡明刚,黄奕普,陈敏,等. 厦门岛南岸地下水的氢氧同位素的示踪研究[J]. 海洋科学, 2003, 27(9): 1-6.

    Google Scholar

    CAI M G, HUANG Y P, CHEN M, et al. The study of hydrogen and oxygen isotopes of coastal groundwater in Xiamen Island[J]. Marine Sciences, 2003, 27(9): 1-6.

    Google Scholar

    [27] CRAIG H. The geochemistry of the stable carbon isotopes[J]. Geochimica et Cosmochimica Acta, 1953, 3(2/3): 53-92.

    Google Scholar

    [28] 郑西来,刘鸿俊. 地热温标中的水-岩平衡状态研究[J]. 西安地质学院学报, 1996, 18(1): 74-79.

    Google Scholar

    ZHENG X L, LIU H J. Study of the water-rock equilibrium state in the application of geothermometer[J]. Journal of Xi'an College of Geology, 1996, 18(1): 74-79.

    Google Scholar

    [29] GIGGENBACH W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765.

    Google Scholar

    [30] REED M,SPYCHER N. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution[J]. Geochimica et Cosmochimica Acta, 1983, 48(7): 1479-1492.

    Google Scholar

    [31] REED P M. Theoretical chemical thermometry on geothermal waters: problems and methods[J]. Geochimica et Cosmochimica Acta, 1998, 62(6): 1083-1091.

    Google Scholar

    [32] SPYCHER N,PEIFFER L,SONNENTHAL E L, et al. Integrated multicomponent solute geothermometry[J]. Geothermics, 2014, 51(l): 113-123.

    Google Scholar

    [33] FOURNIER R O,TRUESDEEL A H. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1255-1275.

    Google Scholar

    [34] ALCICEK H,BULBUL A,BROGI A, et al. Origin, evolution and geothermometry of thermal waters in the Glemezli Geothermal Field, Denizli Basin(SW Anatolia, Turkey)[J]. Journal of Volcanology and Geothermal Research, 2018, 349(1): 1-30.

    Google Scholar

    [35] TIAN J,LI Y M,ZHOU X C, et al. Geochemical characteristics of hydrothermal volatiles from southeast China and its implications on the tectonic structure controlling heat convection[J]. Frontiers in Earth Science, 2021:9.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(713) PDF downloads(56) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint