2023 Vol. 44, No. 2
Article Contents

XU Naizheng, TAO Xiaohu, GONG Jianshi, TAN Mengjiao. 2023. Exposure risk of high Fe and Mn groundwater from Huaihe River Plain. East China Geology, 44(2): 119-127. doi: 10.16788/j.hddz.32-1865/P.2023.02.001
Citation: XU Naizheng, TAO Xiaohu, GONG Jianshi, TAN Mengjiao. 2023. Exposure risk of high Fe and Mn groundwater from Huaihe River Plain. East China Geology, 44(2): 119-127. doi: 10.16788/j.hddz.32-1865/P.2023.02.001

Exposure risk of high Fe and Mn groundwater from Huaihe River Plain

More Information
  • Based on the analysis of hydro-geochemical data obtained recently, this study assessed exposure risk of high Fe and Mn groundwater from Huaihe River Plain in eastern China using Indicator Kriging method, as well as discussed its origin. The results showed that Fe and Mn were the main chemical substances affecting groundwater quality, indicating obvious spatial variability. The peak value of Fe and Mn risk probability were distributed similarly in spatial pattern. The high-risk areas of Fe and Mn presented an island distribution, and the hazard risk of deep groundwater were significantly reduced against the shallow counterpart. The high risk zone of Fe in shallow groundwater covers 1 257.15 km2, accounting for 0.07% of the study area, and the counterpart in deep groundwater was 476.93 km2, accounting for 0.03%, respectively. The high risk zone of Mn in shallow groundwater covers 35 883.16 km2, accounting for 19.19%, while its counterpart in deep groundwater was 1 269.30 km2, accounting for 0.07%, respectively. The high Fe and Mn groundwater was of in-situ origin, and Fe and Mn were derived from geogenic iron and manganese minerals in aquifers by reductive dissolution. This paper carried out research on exposure risk of high Fe and Mn groundwater from Huaihe River Plain, which may provide guidance for the regionalization of drinking groundwater safety.
  • 加载中
  • [1] CAO H L, XIE X J, WANG Y X, et al. Predicting the risk of groundwater arsenic contamination in drinking water wells[J]. Journal of Hydrology, 2018, 560:318-325.

    Google Scholar

    [2] LI Y F, WAN D, LIU Y Y, et al. A predictive risk model of groundwater arsenic contamination in China applied to the Huai River Basin, with a focus on the region’s cluster of elevated cancer mortalities[J]. Applied Geochemistry, 2017, 77: 178-183.

    Google Scholar

    [3] SHAHID N M, NIAZI K, DUMAT C, et al. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan[J]. Environmental Pollution, 2018, 242(A):307-319.

    Google Scholar

    [4] 李璐,殷乐宜,牛浩博,等. 基于贝叶斯模型的地下水风险源污染概率估计方法研究[J].环境科学研究,2020,33(6):1322-1327.

    Google Scholar

    LI L, YIN L Y, NIU H B, et al. Contamination probability of groundwater risk sources by Bayesian [J]. Research of Environmental Sciences, 2020, 33(6):1322-1327.

    Google Scholar

    [5] 滕彦国,左锐,苏小四,等.区域地下水环境风险评价技术方法[J].环境科学研究, 2014,27(12):1532-1539.

    Google Scholar

    TENG Y G, ZUO R, SU X S, et al. Technique for assessing environmental risk of regional groundwater[J]. Research of Environmental Sciences, 2014, 27(12):1532-1539.

    Google Scholar

    [6] 左锐,石榕涛,王膑,等.地下水型水源地水质安全预警技术体系研究[J].环境科学研究, 2018,31(3):409-418.

    Google Scholar

    ZUO R,SHI R T,WANG B,et al.Technological system of early warning for groundwater quality in a groundwater source area [J]. Research of Environmental Sciences, 2018, 31(3): 409-418.

    Google Scholar

    [7] 张博,李国秀,程品,等. 基于随机理论的地下水环境风险评价[J]. 水科学进展, 2016,27(1):100-106.

    Google Scholar

    ZHANG B, LI G X, CHENG P, et al. Groundwater environment risk assessment based on stochastic theory[J]. Advances in Water Science, 2016, 27(1):100-106.

    Google Scholar

    [8] 姚丽利,高童,胡立堂.地下水水源地污染预警应用研究——以浑河冲洪积扇为例[J].南水北调水利科技, 2016,14(1):37-41,66. YAO L L, GAO T, HU L T. Applications study of groundwater pollution early warning in source field: A case study in alluvial-pluvial fan of Hun River [J]. South-North Water Transfer and Water Science & Technology, 2016,14(1):37-41, 66.

    Google Scholar

    [9] PARRONE D, GHERGO S, FROLLIINI E, et al. Arsenic-fluoride contamination in groundwater: Background and anomalies in a volcanic-sedimentary aquifer in central Italy [J]. Journal of Geochemical Exploration, 2020, 217:106590.

    Google Scholar

    [10] 谢云峰,杜平, 曹云者,等. 基于地统计条件模拟的土壤重金属污染范围预测方法研究[J].环境污染与防治,2015,37(1): 1-6.

    Google Scholar

    XIE Y F, DU P, CAO Y Z, et al. Estimating the area of heavy metal contaminated soil using geostatistical conditional stimulation [J]. Environmental Pollution & Control, 2015, 37(1): 1-6.

    Google Scholar

    [11] 谢云峰,曹云者,杜晓明,等. 土壤污染调查加密布点优化方法构建及验证[J]. 环境科学学报, 2016,36(3): 981-989

    Google Scholar

    . XIE Y F, CAO Y Z, DU X M, et al. Development and validation of a sampling design optimization procedure for detailed soil pollution investigation [J]. Acta Scientiae Circumstantiae, 2016, 36(3): 981-989

    Google Scholar

    [12] 徐英,陈亚新,王俊生,等. 农田土壤水分和盐分空间分布的指示克立格分析评价[J]. 水科学进展,2006,17(4): 477-482.

    Google Scholar

    XU Y, CHEN Y X, WANG J S, et al. Using indicator Kriging to analyze and evaluate spatial distributions of soil water and salt in field[J]. Advances in Water Science, 2006, 17(4):477-482.

    Google Scholar

    [13] 李保国,胡克林,黄元仿,等.区域浅层地下水硝酸盐含量评价的指示克立格法[J].水利学报,2001(3): 1-5.

    Google Scholar

    LI B G, HU K L, HUANG Y F, et al. Application of indicator Kriging method for assessing nitrate content of regional shallow groundwater[J].Journal of Hydraulic Engineering, 2001(3): 1-5.

    Google Scholar

    [14] 刘瑞民,王学军,张巍. 天津表土PAHs区域环境风险评价研究[J]. 环境科学, 2008, 29(6):1719-1723.

    Google Scholar

    LIU R M, WANG X J, ZHANG W. Regional environment risk assessment and probability distribution of topsoil PAHs in Tianjin area [J]. Environmental Science, 2008, 29(6): 1719-1723.

    Google Scholar

    [15] 姜菲菲,孙丹峰,李红,等.北京市农业土壤重金属污染环境风险等级评价[J].农业工程学报,2011,27(8): 330-337.

    Google Scholar

    JIANG F F, SUN D F, LI H, et al. Risk grade assessment for farmland pollution of heavy metals in Beijing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8): 330-337.

    Google Scholar

    [16] 张小文,何江涛,黄冠星. 石家庄地区浅层地下水铁锰分布特征及影响因素分析[J].地学前缘, 2021, 28(4):206-218.

    Google Scholar

    ZHANG X W, HE J T, HUANG G X. Iron and manganese in shallow groundwater in Shijiazhuang: Distribution characteristics and a cause analysis [J]. Earth Science Frontiers, 2021, 28(4):206-218.

    Google Scholar

    [17] 蔡玲,胡成,陈植华,等.江汉平原东北部地区高铁锰地下水成因与分布规律[J]. 水文地质工程地质, 2019, 46(4):18-25.

    Google Scholar

    CAI L, HU C, CHEN Z H, et al. Distribution and genesis of high Fe and Mn groundwater in the northeast of the Jianghan Plain[J]. Hydrogeology & Engineering Geology, 2019, 46(4):18-25.

    Google Scholar

    [18] 周锴锷,王赫生,龚建师,等. 淮河流域平原区浅层地下水铁锰分布特征及成因浅析[J]. 资源调查与环境, 2014,35(2):147-151.

    Google Scholar

    ZHOU K E, WANG H S, GONG J S, et al. Elementary analysis of distribution features and formation of Fe2+ and Mn2+ in the shallow groundwater of the Huaihe River alley plain [J]. Resource Survey and Environment, 2014,35(2):147-151.

    Google Scholar

    [19] 张克信,潘桂棠,何卫红,等. 中国构造-地层大区划分新方案[J].中国地质大学学报:地球科学, 2015, 40(2): 206-233.

    Google Scholar

    ZHANG K X, PAN G T, HE W H, et al. New division of tectonic-strata super region in China [J]. Earth Science, 2015, 40: 206-233.

    Google Scholar

    [20] 许乃政,龚建师,檀梦皎,等.淮河流域高砷地下水的形成演化过程及其环境健康风险[J]. 中国地质,2021,48(5): 1418-1428.

    Google Scholar

    XU N Z, GONG J S, TAN M J, et al. Hydrogeochemical processes and potential exposure risk of high-arsenic groundwater in Huaihe River Basin, China [J]. Geology in China, 2021, 48(5):1418-1428.

    Google Scholar

    [21] World Health Organization. Guidelines for drinking-water quality (Fourth edition) [M]. Geneva: The World Health Organization, 2011: 1-564.

    Google Scholar

    [22] 中国卫生部. GB5749—2006生活饮用水卫生标准[S]. 北京:中国标准出版社,2006:1-10.

    Google Scholar

    Ministry of Health, PRC. GB5749—2006 Quality standard for drinking water [S].Beijing: China Standard Publishing House, 2006:1-10.

    Google Scholar

    [23] 中国国土资源部和水利部. GB/T 14848—2017 地下水质量标准[S]. 北京:中国标准出版社,2017:1-14.

    Google Scholar

    Ministry of Land and Resources, Ministry of Water Resources, PRC. GB/T 14848—2017 Quality standard for ground water[S]. Beijing: China Standard Publishing House, 2017:1-14.

    Google Scholar

    [24] SARKAR M, CHANDRA PAL S. Human health hazard assessment for high groundwater arsenic and fluoride intact in Malda district, Eastern India [J]. Groundwater for Sustainable Development, 2021, 13:100565.

    Google Scholar

    [25] 韩吟文,马振东, 张宏飞,等. 地球化学[M].北京:地质出版社, 2003:1-370.

    Google Scholar

    HAN Y W, MA Z D, ZHANG H F, et al. Geochemistry [M]. Beijing: Geological Publishing House, 2003:1-370.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(786) PDF downloads(57) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint