2024 Vol. 44, No. 6
Article Contents

TIAN Dongmei, YANG Shengxiong, LIU Xin, LI Yuanheng, HU Guang, CAO Jingya, ZHOU Junming, DENG Yutian. Intelligent identification and application of gas hydrate in South China Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 25-33. doi: 10.16562/j.cnki.0256-1492.2024092401
Citation: TIAN Dongmei, YANG Shengxiong, LIU Xin, LI Yuanheng, HU Guang, CAO Jingya, ZHOU Junming, DENG Yutian. Intelligent identification and application of gas hydrate in South China Sea[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 25-33. doi: 10.16562/j.cnki.0256-1492.2024092401

Intelligent identification and application of gas hydrate in South China Sea

More Information
  • Gas hydrate is an important ideal energy source, with advantages of high energy, large reserves, wide distribution, and shallow burial. Accurate identification of gas hydrate reservoirs and estimation of hydrate saturation are the prerequisite for the application of gas hydrate resources. This study focuses on the difficult issues of hydrate identification, combining the interdisciplinary technologies of oceanology, geology, and artificial intelligence. Effective methods of hydrate-bearing strata identification were proposed based on the geophysical attributes, and verified in the Dongsha area of South China Sea. Machine-learning algorithms were used to analyze whether the sediment contains gas hydrates. Several commonly used machine-learning algorithms were selected, including random forest, Bagging, AdaBoost, and KNN; and data were analyzed based on the P-wave velocity and density attributes that are more sensitive to hydrate existence. The parameters of different algorithms were trained and optimized, and the effects of different algorithms on the identification and classification were compared. All these algorithms could do good on whether there is hydrate in the sediment, of which KNN algorithm was shown the best. Therefore, machine-learning-based methods could improve the identification accuracy of gas hydrate.

  • 加载中
  • [1] Sloan E D Jr, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton: CRC Press, 2007.

    Google Scholar

    [2] Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 2016, 162:1633-1652. doi: 10.1016/j.apenergy.2014.12.061

    CrossRef Google Scholar

    [3] Collett T S, Johnson A H, Knapp C C, et al. Natural gas hydrates-A review[M]//Collett T, Johnson A, Knapp C, et al. Natural Gas Hydrates—Energy Resource Potential and Associated Geologic Hazards. American Association of Petroleum Geologists, 2009, 89: 146-219.

    Google Scholar

    [4] Boswell R, Hancock S, Yamamoto K, et al. Natural gas hydrates: Status of potential as an energy resource[M]//Letcher T M. Future Energy: Improved, Sustainable and Clean Options for our Planet. 3rd ed. New York: Elsevier, 2020: 111-135.

    Google Scholar

    [5] Yang S X, Liang J Q, Lei Y, et al. GMGS4 gas hydrate drilling expedition in the South China Sea[J]. Fire in the Ice, 2017, 17(1):7-11.

    Google Scholar

    [6] 雷裕红, 宋颖睿, 张立宽, 等. 海洋天然气水合物成藏系统研究进展及发展方向[J]. 石油学报, 2021, 42(6):801-820

    Google Scholar

    LEI Yuhong, SONG Yingrui, ZHANG Likuan, et al. Research progress and development direction of reservoir-forming system of marine gas hydrates[J]. Acta Petrolei Sinica, 2021, 42(6):801-820.]

    Google Scholar

    [7] Zhang G X, Liang J Q, Lu J A, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2015, 67:356-367. doi: 10.1016/j.marpetgeo.2015.05.021

    CrossRef Google Scholar

    [8] Liang J Q, Zhang W, Lu J A, et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: Insights from Site GMGS5-W9-2018[J]. Marine Geology, 2019, 418:106042. doi: 10.1016/j.margeo.2019.106042

    CrossRef Google Scholar

    [9] Sha Z B, Liang J Q, Zhang G X, et al. A seepage gas hydrate system in northern South China Sea: Seismic and well log interpretations[J]. Marine Geology, 2015, 366:69-78. doi: 10.1016/j.margeo.2015.04.006

    CrossRef Google Scholar

    [10] Milkov A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?[J]. Earth-Science Reviews, 2004, 66(3-4):183-197. doi: 10.1016/j.earscirev.2003.11.002

    CrossRef Google Scholar

    [11] 勾丽敏, 张金华, 王嘉玮. 海洋天然气水合物地震识别方法研究进展[J]. 地球物理学进展, 2017, 32(6):2626-2635

    Google Scholar

    GOU Limin, ZHANG Jinhua, WANG Jiawei. Progress in seismic identification approach of marine gas hydrate[J]. Progress in Geophysics, 2017, 32(6):2626-2635.]

    Google Scholar

    [12] 宋海斌, 张岭, 江为为, 等. 海洋天然气水合物的地球物理研究(Ⅲ): 似海底反射[J]. 地球物理学进展, 2003, 18(2):182-187

    Google Scholar

    SONG Haibin, ZHANG Ling, JIANG Weiwei, et al. Geophysical researches on marine gas hydrates (Ⅲ): bottom simulating reflections[J]. Progress in Geophysics, 2003, 18(2):182-187.]

    Google Scholar

    [13] White R S. Gas hydrate layers trapping free gas in the Gulf of Oman[J]. Earth and Planetary Science Letters, 1979, 42(1):114-120. doi: 10.1016/0012-821X(79)90196-1

    CrossRef Google Scholar

    [14] Stoll R D, Ewing J, Bryan G M. Anomalous wave velocities in sediments containing gas hydrates[J]. Journal of Geophysical Research, 1971, 76(8):2090-2094. doi: 10.1029/JB076i008p02090

    CrossRef Google Scholar

    [15] Liu X W, He J, Sun Q L. Gas hydrate identification from △Vp/△Vs[C]//Beijing 2009 International Geophysical Conference & Exposition. Beijing: Society of Exploration Geophysicists, 2009: 150.

    Google Scholar

    [16] Tian D M, Liu X W. Identification of gas hydrate based on velocity cross plot analysis[J]. Marine Geophysical Research, 2021, 42(2):11. doi: 10.1007/s11001-021-09431-3

    CrossRef Google Scholar

    [17] Chen J Z, You J C, Wei J T, et al. Interpreting XGBoost predictions for shear-wave velocity using SHAP: Insights into gas hydrate morphology and saturation[J]. Fuel, 2024, 364:131145. doi: 10.1016/j.fuel.2024.131145

    CrossRef Google Scholar

    [18] Luo Y L, Zhang G L, Liang G W, et al. Limited-label multiscale deep-learning multihorizon tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62:5918814.

    Google Scholar

    [19] 王迪, 张益明, 张繁昌, 等. 利用先验信息约束的深度学习方法定量预测致密砂岩“甜点”[J]. 石油地球物理勘探, 2023, 58(1):65-74

    Google Scholar

    WANG Di, ZHANG Yiming, ZHANG Fanchang, et al. Quantitative prediction of tight sandstone sweet spots based on deep learning method with prior information constraints[J]. Oil Geophysical Prospecting, 2023, 58(1):65-74.]

    Google Scholar

    [20] Bai Y, Tan M J. Dynamic committee machine with fuzzy-c-means clustering for total organic carbon content prediction from wireline logs[J]. Computers & Geosciences, 2021, 146:104626.

    Google Scholar

    [21] 陈钢花, 张寓侠, 王军, 等. 双向长短时记忆神经网络在滩坝砂储层岩性识别中的应用[J]. 测井技术, 2023, 47(3):319-325

    Google Scholar

    CHEN Ganghua, ZHANG Yuxia, WANG Jun, et al. Application of BiLSTM in lithology identification of beach-bar sand reservoir[J]. Well Logging Technology, 2023, 47(3):319-325.]

    Google Scholar

    [22] Chen Y J, Dunn K J, Liu X W, et al. New method for estimating gas hydrate saturation in the Shenhu area[J]. Geophysics, 2014, 79(5):IM11-IM22. doi: 10.1190/geo2013-0264.1

    CrossRef Google Scholar

    [23] Zhu X Y, Liu T, Ma S, et al. Morphology identification of gas hydrate based on a machine learning method and its applications on saturation estimation[J]. Geophysical Journal International, 2023, 234(2):1307-1325. doi: 10.1093/gji/ggad133

    CrossRef Google Scholar

    [24] 杨笑, 王志章, 周子勇, 等. 基于参数优化AdaBoost算法的酸性火山岩岩性分类[J]. 石油学报, 2019, 40(4):457-467

    Google Scholar

    YANG Xiao, WANG Zhizhang, ZHOU Ziyong, et al. Lithology classification of acidic volcanic rocks based on parameter-optimized AdaBoost algorithm[J]. Acta Petrolei Sinica, 2019, 40(4):457-467.]

    Google Scholar

    [25] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-23. doi: 10.1023/A:1010933404324

    CrossRef Google Scholar

    [26] 任涛, 林梦楠, 陈宏峰, 等. 基于Bagging集成学习算法的地震事件性质识别分类[J]. 地球物理学报, 2019, 62(1):383-392

    Google Scholar

    REN Tao, LIN Mengnan, CHEN Hongfeng, et al. Seismic event classification based on Bagging ensemble learning algorithm[J]. Chinese Journal of Geophysics, 2019, 62(1):383-392.]

    Google Scholar

    [27] Bayar B, Stamm M C. Constrained convolutional neural networks: a new approach towards general purpose image manipulation detection[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(11):2691-2706. doi: 10.1109/TIFS.2018.2825953

    CrossRef Google Scholar

    [28] Nguyen B, Morell C, De Baets B. Large-scale distance metric learning for k-nearest neighbors regression[J]. Neurocomputing, 2016, 214:805-814. doi: 10.1016/j.neucom.2016.07.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(271) PDF downloads(27) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint