2024 Vol. 44, No. 6
Article Contents

HU Guang, HUANG Jianyu, YANG Shengxiong, LI Yuanheng, TIAN Dongmei, CAO Jingya, ZHOU Junming, DENG Yutian. Preliminary study on microseismic response characteristics of cold seep in Qiongdongnan sea area: A case study of “Haima” cold seep[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 12-24. doi: 10.16562/j.cnki.0256-1492.2024090903
Citation: HU Guang, HUANG Jianyu, YANG Shengxiong, LI Yuanheng, TIAN Dongmei, CAO Jingya, ZHOU Junming, DENG Yutian. Preliminary study on microseismic response characteristics of cold seep in Qiongdongnan sea area: A case study of “Haima” cold seep[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 12-24. doi: 10.16562/j.cnki.0256-1492.2024090903

Preliminary study on microseismic response characteristics of cold seep in Qiongdongnan sea area: A case study of “Haima” cold seep

More Information
  • During the migration, fluid in the cold seep system of the submarine natural gas hydrate area will impact the shallow strata, causing the fluid material in the lower strata to undergo a "solid-liquid-gas" transformation. The energy released could cause fracture collapse and pore rupture, thereby generating a series of vibration events. These microseismic signals can visually and accurately reflect the growth and development status and life cycle of the cold seep system, and reveal the laws of its fluid escape activities. We studied the microseismic data monitored at two different times in 2014 and 2021 near the Haima cold seep area in the Qiongdongnan waters. After preprocessing the data, a large number of microseismic events related to cold seep activities were identified using the STA/LTA (short term average/long term average) method. By analyzing the characteristics of waveform, spectrum, and time distribution of these microseismic signals, the response characteristics of the cold seep microseismic events in the natural gas hydrate area in the Qiongdongnan waters were clarified. Preliminary research results show that the microseismic events generated by the cold seep activity in the Haima cold seep area include short duration events and typical cold seep microseismic signals; the tail of the waveform shows a regular and exponential-like decay, with a duration of 0.3~2 s and a main frequency range of 4~26 Hz. There is no obvious tidal-like time distribution pattern for cold seep microseismic activity, and it mostly shows the characteristics of short-term concentrated distribution, which may be related to the activity and strength of the cold seep vents.

  • 加载中
  • [1] 张金华, 方念乔, 魏伟, 等. 天然气水合物成藏条件与富集控制因素[J]. 中国石油勘探, 2018, 23(3):35-46

    Google Scholar

    ZHANG Jinghua, FANG Nianqiao, WEI Wei, et al. Accumulation conditions and enrichment controlling factors of natural gas hydrate reservoirs[J]. China Petroleum Exploration, 2018, 23(3):35-46.]

    Google Scholar

    [2] You K, Flemings P B, Malinverno A, et al. Mechanisms of methane hydrate formation in geological systems[J]. Reviews of Geophysics, 2019, 57(4):1146-1196. doi: 10.1029/2018RG000638

    CrossRef Google Scholar

    [3] 万春燕, 张贺恩, 李磊, 等. 海洋天然气水合物降压开采装备现状与技术探讨[J]. 石油机械, 2024, 52(10):83-90

    Google Scholar

    WAN Chunyan, ZHANG He’en, LI Lei, et al. Current status and techniques of equipment for depressurization exploitation of marine gas hydrate[J]. China Petroleum Machinery, 2024, 52(10):83-90.]

    Google Scholar

    [4] 苏丕波, 梁金强, 张伟, 等. 南海北部神狐海域天然气水合物成藏系统[J]. 天然气工业, 2020, 40(8):77-89

    Google Scholar

    SU Pibo, LIANG Jinqiang, ZHANG Wei, et al. Natural gas hydrate accumulation system in the Shenhu sea area of the northern South China Sea[J]. Natural Gas Industry, 2020, 40(8):77-89.]

    Google Scholar

    [5] 梁金强, 宁伏龙, 张如伟, 等. 海域天然气水合物勘查开发进展及研究方向[J]. 地质学报, 2024, 98(9): 2533-2540

    Google Scholar

    LIANG Jinqiang, NING Fulong, ZHANG Ruwei, et al. Progress and research direction of marine natural gas hydrate exploration and development[J]. Acta Geologica Sinica, 2024, 98(9): 2533-2540. ]]

    Google Scholar

    [6] 邸鹏飞, 冯东, 高立宝, 等. 海底冷泉流体渗漏的原位观测技术及冷泉活动特征[J]. 地球物理学进展, 2008, 23(5):1592-1602

    Google Scholar

    DI Pengfei, FENG Dong, GAO Libao, et al. In situ measurement of fluid flow and signatures of seep activity at marine seep sites[J]. Progress in Geophysics, 2008, 23(5):1592-1602.]

    Google Scholar

    [7] 张锟, 宋海斌, 王宏斌, 等. 南海北部琼东南海域活动冷泉流场特征初探[J]. 科学通报, 2020, 65(12):1130-1140 doi: 10.1360/TB-2019-0582

    CrossRef Google Scholar

    ZHANG Kun, SONG Haibin, WANG Hongbin, et al. A preliminary study on the active cold seeps flow field in the Qiongdongnan Sea Area, the northern South China Sea[J]. Chinese Science Bulletin, 2020, 65(12):1130-1140.] doi: 10.1360/TB-2019-0582

    CrossRef Google Scholar

    [8] 刘莉萍, 初凤友, 郭磊, 等. 海底天然气水合物及冷泉流体渗漏的原位观测技术[J]. 海洋学研究, 2023, 41(1):26-44

    Google Scholar

    LIU Liping, CHU Fengyou, GUO Lei, et al. Explorations of marine gas hydrate deposits and the signatures of hydrocarbon venting using in situ techniques[J]. Journal of Marine Sciences, 2023, 41(1):26-44.]

    Google Scholar

    [9] 吴能友, 杨胜雄, 王宏斌, 等. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J]. 地球物理学报, 2009, 52(6):1641-1650

    Google Scholar

    WU Nengyou, YANG Shengxiong, WANG Hongbin, et al. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, Northern South China Sea[J]. Chinese Journal of Geophysics, 2009, 52(6):1641-1650.]

    Google Scholar

    [10] 何家雄, 夏斌, 孙东山, 等. 琼东南盆地油气成藏组合、运聚规律与勘探方向分析[J]. 石油勘探与开发, 2006, 33(1):53-58

    Google Scholar

    HE Jiaxiong, XIA Bin, SUN Dongshan, et al. Hydrocarbon accumulation, migration and play targets in the Qiongdongnan Basin, South China Sea[J]. Petroleum Exploration and Development, 2006, 33(1):53-58.]

    Google Scholar

    [11] 张云山, 贾永刚, 尉建功. 海底冷泉原位观测装置研究回顾与展望[J]. 海洋地质与第四纪地质, 2022, 42(2):200-213

    Google Scholar

    ZHANG Yunshan, JIA Yonggang, WEI Jiangong. A review and prospect of in-situ observation equipment for cold seep[J]. Marine Geology & Quaternary Geology, 2022, 42(2):200-213.]

    Google Scholar

    [12] 吕泰衡, 孙治雷, 耿威, 等. 海底冷泉区沉积物-水界面甲烷通量原位观测研究进展[J]. 海洋地质与第四纪地质, 2023, 43(4):167-180

    Google Scholar

    LV Taiheng, SUN Zhilei, GENG Wei, et al. Progress in in-situ observation of methane flux at sediment-water interface in cold seep[J]. Marine Geology & Quaternary Geology, 2023, 43(4):167-180.]

    Google Scholar

    [13] 臧虎临, 侯贺晟, 安美建, 等. 海域天然地震资料采集方法综述[J]. 地球物理学进展, 2022, 37(5):2218-2224

    Google Scholar

    ZANG Hulin, HOU Hesheng, AN Meijian, et al. Seismological data acquisition methods in marine area[J]. Progress in Geophysics, 2022, 37(5):2218-2224.]

    Google Scholar

    [14] 魏垚, 牛雄伟, 虞嘉辉, 等. 利用海底地震仪探测碳泄漏的研究进展[J]. 地震学报, 2023, 45(3):392-410

    Google Scholar

    WEI Yao, NIU Xiongwei, YU Jiahui, et al. Research progress on detection of carbon leakage by ocean bottom seismometer[J]. Acta Seismologica Sinica, 2023, 45(3):392-410.]

    Google Scholar

    [15] Lepore S, Grad M. Analysis of the primary and secondary microseisms in the wavefield of the ambient noise recorded in northern Poland[J]. Acta Geophysica, 2018, 66(5):915-929. doi: 10.1007/s11600-018-0194-2

    CrossRef Google Scholar

    [16] Batsi E, Tsang-Hin-Sun E, Klingelhoefer F, et al. Nonseismic signals in the Ocean: indicators of deep sea and seafloor processes on ocean-bottom seismometer data[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(8):3882-3900. doi: 10.1029/2019GC008349

    CrossRef Google Scholar

    [17] Wang Y Z, Yang T, Wu Y C, et al. A new broad-band ocean bottom seismograph and characteristics of the seismic ambient noise on the South China Sea seafloor based on its recordings[J]. Geophysical Journal International, 2022, 230(1):684-695. doi: 10.1093/gji/ggac092

    CrossRef Google Scholar

    [18] Ardhuin F, Gualtieri L, Stutzmann E. How ocean waves rock the Earth: two mechanisms explain microseisms with periods 3 to 300 s[J]. Geophysical Research Letters, 2015, 42(3):765-772. doi: 10.1002/2014GL062782

    CrossRef Google Scholar

    [19] 刘亚楠, 刘保华, 刘晨光, 等. 南海东部次海盆地震背景噪声分析[J]. 海洋地质与第四纪地质, 2021, 41(2):109-117

    Google Scholar

    LIU Ya’nan, LIU Baohua, LIU Chenguang, et al. Research on seismic background noise in the Eastern Subbasin of the South China Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(2):109-117.]

    Google Scholar

    [20] Kuna V M, Nábělek J L. Seismic crustal imaging using fin whale songs[J]. Science, 2021, 371(6530):731-735. doi: 10.1126/science.abf3962

    CrossRef Google Scholar

    [21] Dréo R, Bouffaut L, Leroy E, et al. Baleen whale distribution and seasonal occurrence revealed by an ocean bottom seismometer network in the Western Indian Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2019, 161:132-144. doi: 10.1016/j.dsr2.2018.04.005

    CrossRef Google Scholar

    [22] Ugalde A, Gaite B, Ruiz M, et al. Seismicity and noise recorded by passive seismic monitoring of drilling operations offshore the Eastern Canary Islands[J]. Seismological Research Letters, 2019, 90(4):1565-1576.

    Google Scholar

    [23] 段旻良, 童思友, 陈江欣, 等. 海底流体逃逸活动的地球物理响应特征[J]. 地球物理学进展, 2019, 34(5):2002-2015

    Google Scholar

    DUAN Minliang, TONG Siyou, CHEN Jiangxin, et al. Geophysical characteristics of seabed fluid escape[J]. Progress in Geophysics, 2019, 34(5):2002-2015.]

    Google Scholar

    [24] 栾锡武, 李晓芸. 流体迁移和海底地形与天然气水合物的形成[J]. 海洋地质与第四纪地质, 2012, 32(2):1-10

    Google Scholar

    LUAN Xiwu, LI Xiaoyun. Sea floor topography of shallow gas hydrate area: data from okhotsk sea[J]. Marine Geology & Quaternary Geology, 2012, 32(2):1-10.]

    Google Scholar

    [25] Pontoise B, Hello Y. Monochromatic infra-sound waves recorded offshore Ecuador: possible evidence of methane release[J]. Terra Nova, 2002, 14(6):425-435. doi: 10.1046/j.1365-3121.2002.00437.x

    CrossRef Google Scholar

    [26] Tary J B, Géli L, Guennou C, et al. Microevents produced by gas migration and expulsion at the seabed: a study based on sea bottom recordings from the Sea of Marmara[J]. Geophysical Journal International, 2012, 190(2):993-1007. doi: 10.1111/j.1365-246X.2012.05533.x

    CrossRef Google Scholar

    [27] Tsang-Hin-Sun E, Batsi E, Klingelhoefer F, et al. Spatial and temporal dynamics of gas-related processes in the Sea of Marmara monitored with ocean bottom seismometers[J]. Geophysical Journal International, 2019, 216(3):1989-2003. doi: 10.1093/gji/ggy535

    CrossRef Google Scholar

    [28] Sultan N, Riboulot V, Ker S, et al. Dynamics of fault-fluid-hydrate system around a shale-cored anticline in deepwater Nigeria[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B12):B12110. doi: 10.1029/2011JB008218

    CrossRef Google Scholar

    [29] Franek P, Plaza-Faverola A, Mienert J, et al. Microseismicity linked to gas migration and leakage on the western Svalbard shelf[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(12):4623-4645. doi: 10.1002/2017GC007107

    CrossRef Google Scholar

    [30] 朱俊江, 李三忠, 陆敬安, 等. 南海北部神狐海域地质环境综合调查及科学意义[J]. 地球科学, 2020, 45(4):1416-1426

    Google Scholar

    ZHU Junjiang, LI Sanzhong, LU Jing’an, et al. Scientific implications and preliminary surveying results of geological and physical oceanography environment in the Shenhu Area of the northern South China Sea[J]. Earth Science, 2020, 45(4):1416-1426.]

    Google Scholar

    [31] Wang X C, Nie B, Wu Z Y, et al. Identification and characteristics analysis of micro-seismic signals in the Haima Seep Area[J]. Journal of Earth Science, 2024, 35(1):288-291. doi: 10.1007/s12583-024-1968-x

    CrossRef Google Scholar

    [32] Liu B, Huang J Y, Jiang W B, et al. Seismic monitoring of sub-seafloor fluid processes in the [36]Haima cold seep area using an Ocean Bottom Seismometer (OBS)[J]. Earth and Planetary Physics, 2023, 7(5): 582-602.

    Google Scholar

    [33] 王宜志, 杨挺, 刘晨光, 等. 中国南海西北次海盆海底地震记录的短时事件分析[J]. 地震学报, 2023, 45(3):431-444 doi: 10.11939/jass.20220175

    CrossRef Google Scholar

    WANG Yizhi, YANG Ting, LIU Chenguang, et al. Short duration events on OBS recordings in the Northwest Sub-basin of the South China Sea[J]. Acta Seismologica Sinica, 2023, 45(3):431-444.] doi: 10.11939/jass.20220175

    CrossRef Google Scholar

    [34] 刘晨光, 华清峰, 裴彦良, 等. 南海海底天然地震台阵观测实验及其数据质量分析[J]. 科学通报, 2014, 59(16):1542-1552 doi: 10.1360/csb2014-59-16-1542

    CrossRef Google Scholar

    LIU Chenguang, HUA Qingfeng, PEI Yanliang, et al. Passive-source Ocean Bottom Seismograph (OBS) array experiment in South China Sea and data quality analyses[J]. Chinese Science Bulletin, 2014, 59(16):1542-1552.] doi: 10.1360/csb2014-59-16-1542

    CrossRef Google Scholar

    [35] 孙国静, 管红香, 张志顺, 等. 南海海马冷泉区沉积物孔隙水地球化学特征对冷泉活动的指示[J]. 海洋地质与第四纪地质, 2024, 44(1):1-14

    Google Scholar

    SUN Guojing, GUAN Hongxiang, ZHANG Zhishun, et al. Geochemical characteristics of sediment pore water in Haima area of the South China Sea: an indication of cold seeps[J]. Marine Geology & Quaternary Geology, 2024, 44(1):1-14.]

    Google Scholar

    [36] Huang Y Y, Feng J C, Xie Y, et al. Phase equilibrium characteristics of natural gas hydrate formation at the deep-water environment of “Haima” cold seep[J]. Energy Reports, 2022, 8:5501-5509. doi: 10.1016/j.egyr.2022.04.011

    CrossRef Google Scholar

    [37] 赵静, 梁前勇, 尉建功, 等. 南海北部陆坡西部海域“海马”冷泉甲烷渗漏及其海底表征[J]. 地球化学, 2020, 49(1):108-118

    Google Scholar

    ZHAO Jing, LIANG Qianyong, WEI Jiangong, et al. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea[J]. Geochimica, 2020, 49(1):108-118.]

    Google Scholar

    [38] Feng J X, Yang S X, Wang H B, et al. Methane source and turnover in the shallow sediments to the west of Haima cold seeps on the northwestern slope of the South China Sea[J]. Geofluids, 2019, 2019:1010824.

    Google Scholar

    [39] 杨力, 刘斌, 徐梦婕, 等. 南海北部琼东南海域活动冷泉特征及形成模式[J]. 地球物理学报, 2018, 61(7):2905-2914

    Google Scholar

    YANG Li, LIU Bin, XU Mengjie, et al. Characteristics of active cold seepages in Qiongdongnan Sea area of the northern South China Sea[J]. Chinese Journal of Geophysics, 2018, 61(7):2905-2914.]

    Google Scholar

    [40] 赵文宇, 童思友, 陈江欣, 等. 海底冷泉羽状流及其资源效应探讨[J]. 地球物理学进展, 2021, 36(5):2251-2263

    Google Scholar

    ZHAO Wenyu, TONG Siyou, CHEN Jiangxin, et al. Discussion on the submarine bubble plume and its effect on hydrocarbon resources[J]. Progress in Geophysics, 2021, 36(5):2251-2263.]

    Google Scholar

    [41] Stevenson P R. Microearthquakes at Flathead Lake, Montana: A study using automatic earthquake processing[J]. Bulletin of the Seismological Society of America, 1976, 66(1):61-80.

    Google Scholar

    [42] Allen R V. Automatic earthquake recognition and timing from single traces[J]. Bulletin of the Seismological Society of America, 1978, 68(5):1521-1532. doi: 10.1785/BSSA0680051521

    CrossRef Google Scholar

    [43] Earle P S, Shearer P M. Characterization of global seismograms using an automatic-picking algorithm[J]. Bulletin of the Seismological Society of America, 1994, 84(2):366-376. doi: 10.1785/BSSA0840020366

    CrossRef Google Scholar

    [44] 杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4):1-14

    Google Scholar

    YANG Shengxiong, LIANG Jinqiang, LU Jing'an, et al. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(4):1-14.]

    Google Scholar

    [45] 雷裕红, 宋颖睿, 张立宽, 等. 海洋天然气水合物成藏系统研究进展及发展方向[J]. 石油学报, 2021, 42(6):801-820

    Google Scholar

    LEI Yuhong, SONG Yingrui, ZHANG Likuan, et al. Research progress and development direction of reservoir-forming system of marine gas hydrates[J]. Acta Petrolei Sinica, 2021, 42(6):801-820.]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Article Metrics

Article views(178) PDF downloads(20) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint