2024 Vol. 44, No. 5
Article Contents

JIA Mengjiao, BAI Yazhi, DU Jiazong, ZHANG Yuying, LIN Fudong, HU Limin. Constraints of organic carbon burial on sedimentary mercury in the Bohai Sea over the past century[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 129-139. doi: 10.16562/j.cnki.0256-1492.2024071002
Citation: JIA Mengjiao, BAI Yazhi, DU Jiazong, ZHANG Yuying, LIN Fudong, HU Limin. Constraints of organic carbon burial on sedimentary mercury in the Bohai Sea over the past century[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 129-139. doi: 10.16562/j.cnki.0256-1492.2024071002

Constraints of organic carbon burial on sedimentary mercury in the Bohai Sea over the past century

More Information
  • In the global warming scheme, organic carbon burial and its environmental effects on coastal shelves are important in the marine carbon cycle, and a window for understanding the impact of modern human activities on coastal ecosystems. A 53-cm long core was acquired by box-coring in 2013 from the central mud deposition area of the Bohai Sea, North China. The high-resolution sedimentary records of total organic carbon (TOC), stable carbon isotopes (δ13C), biomarkers, and sedimentary mercury over the past century were comprehensively analyzed, and the evolutionary characteristics of organic carbon from various sources and constraining effects on mercury burial were clarified. By correcting the δ13C of organic carbon for the Suess effect and applying a two-endmember mixing model, we estimated that marine organic carbon contributes approximately 59% to 90%, with a marked increase since the 1970. The trends of marine organic carbon align closely with those of brassicasterol and dinosterol, indicating a significant increase in marine primary productivity since the 1970, due likely to increased nutrient input and climate warming. The burial records of sedimentary mercury are generally consistent with the trends of the aforementioned productivity parameters and exhibit a significant positive correlation with marine organic carbon and other indicators since the 1970. This suggests that the increase in phytoplankton productivity in recent decades may have played a crucial role in the accumulation of sedimentary mercury. Therefore, biological processes may have a significant impact on the sequestration and fate of mercury in coastal areas. A further comparison of the relative changes in recent anthropogenic atmospheric mercury emissions and sedimentary mercury burial rates revealed a significant decline in the burial efficiency relative to emissions after the 2000s. This decline may be related to concurrent changes in nutrient levels and phytoplankton community structure, such as a notable increase in dinoflagellates, which potentially reduced the efficiency of biological mercury scavenging.

  • 加载中
  • [1] Bauer J E, Cai W J, Raymond P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478):61-70. doi: 10.1038/nature12857

    CrossRef Google Scholar

    [2] Sun X S, Hu L M, Sun X, et al. Mercury burial in modern sedimentary systems of the East China marginal seas: the role of coastal oceans in global mercury cycling[J]. Global Biogeochemical Cycles, 2023, 37(9):e2023GB007760. doi: 10.1029/2023GB007760

    CrossRef Google Scholar

    [3] Yin R S, Guo Z G, Hu L M, et al. Mercury inputs to Chinese marginal seas: impact of industrialization and development of China[J]. Journal of Geophysical Research: Oceans, 2018, 123(8):5599-5611. doi: 10.1029/2017JC013691

    CrossRef Google Scholar

    [4] Cao Y L, Bi R, Wang X C, et al. The sources and burial of marine organic carbon in the eastern China marginal seas[J]. Frontiers in Marine Science, 2022, 9:824181. doi: 10.3389/fmars.2022.824181

    CrossRef Google Scholar

    [5] 张桂成, 孙军. 渤海环境污染现状及研究进展[J]. 环境化学, 2023, 42(3):918-930 doi: 10.7524/j.issn.0254-6108.2022101805

    CrossRef Google Scholar

    ZHANG Guicheng, SUN Jun. State of environmental pollution in the Bohai Sea, China: a review[J]. Environmental Chemistry, 2023, 42(3):918-930.] doi: 10.7524/j.issn.0254-6108.2022101805

    CrossRef Google Scholar

    [6] 王焕松, 雷坤, 李子成, 等. 辽东湾北岸主要入海河流污染物入海通量及其影响因素分析[J]. 海洋学报, 2011, 33(6):110-116

    Google Scholar

    WANG Huansong, LEI Kun, LI Zicheng, et al. Analysis of major pollutants flux into the sea and influencing factors on the north shore of the Liaodong Gulf[J]. Acta Oceanological Sinica, 2011, 33(6):110-116.]

    Google Scholar

    [7] Zhou Q X, Wang S M, Liu J Q, et al. Geological evolution of offshore pollution and its long-term potential impacts on marine ecosystems[J]. Geoscience Frontiers, 2022, 13(5):101427. doi: 10.1016/j.gsf.2022.101427

    CrossRef Google Scholar

    [8] Azoury S, Tronczyński J, Chiffoleau J F, et al. Historical records of mercury, lead, and polycyclic aromatic hydrocarbons depositions in a dated sediment core from the eastern mediterranean[J]. Environmental Science & Technology, 2013, 47(13):7101-7109.

    Google Scholar

    [9] Zhu A M, Liu J H, Qiao S Q. Quantitative source apportionment of heavy metals in sediments from the Bohai Sea, China[J]. Marine Pollution Bulletin, 2023, 196:115620. doi: 10.1016/j.marpolbul.2023.115620

    CrossRef Google Scholar

    [10] Tian H Z, Zhu C Y, Gao J J, et al. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies[J]. Atmospheric Chemistry and Physics, 2015, 15(17):10127-10147. doi: 10.5194/acp-15-10127-2015

    CrossRef Google Scholar

    [11] Filgueiras A V, Lavilla I, Bendicho C. Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study[J]. Science of the Total Environment, 2004, 330(1-3):115-129. doi: 10.1016/j.scitotenv.2004.03.038

    CrossRef Google Scholar

    [12] Bartoli G, Papa S, Sagnella E, et al. Heavy metal content in sediments along the Calore river: relationships with physical–chemical characteristics[J]. Journal of Environmental Management, 2012, 95:S9-S14. doi: 10.1016/j.jenvman.2011.02.013

    CrossRef Google Scholar

    [13] Le Faucheur S, Campbell P G C, Fortin C, et al. Interactions between mercury and phytoplankton: speciation, bioavailability, and internal handling[J]. Environmental Toxicology and Chemistry, 2014, 33(6):1211-1224. doi: 10.1002/etc.2424

    CrossRef Google Scholar

    [14] Outridge P M, Sanei L H, Stern G A, et al. Evidence for control of mercury accumulation rates in Canadian High Arctic lake sediments by variations of aquatic primary productivity[J]. Environmental Science & Technology, 2007, 41(15):5259-5265.

    Google Scholar

    [15] Stern G A, Sanei H, Roach P, et al. Historical interrelated variations of mercury and aquatic organic matter in lake sediment cores from a subArctic lake in Yukon, Canada: further evidence toward the algal-mercury scavenging hypothesis[J]. Environmental Science & Technology, 2009, 43(20):7684-7690.

    Google Scholar

    [16] Wu F C, Xu L B, Liao H Q, et al. Relationship between mercury and organic carbon in sediment cores from Lakes Qinghai and Chenghai, China[J]. Journal of Soils and Sediments, 2013, 13(6):1084-1092. doi: 10.1007/s11368-013-0694-2

    CrossRef Google Scholar

    [17] Chakraborty P, Sarkar A, Vudamala K, et al. Organic matter — A key factor in controlling mercury distribution in estuarine sediment[J]. Marine Chemistry, 2015, 173:302-309. doi: 10.1016/j.marchem.2014.10.005

    CrossRef Google Scholar

    [18] Zaferani S, Biester H. Biogeochemical processes accounting for the natural mercury variations in the southern Ocean diatom ooze sediments[J]. Ocean Science, 2020, 16(3):729-741. doi: 10.5194/os-16-729-2020

    CrossRef Google Scholar

    [19] Chen B, Hu L M, Liu J H, et al. High-resolution depositional records of lead isotopes and polycyclic aromatic hydrocarbons in the Bohai Sea, China: implications for a sediment footprint of anthropogenic impact[J]. Marine Geology, 2021, 432:106396. doi: 10.1016/j.margeo.2020.106396

    CrossRef Google Scholar

    [20] Liu L, Wang J Y, Wang L J, et al. Vertical distributions of mercury in marine sediment cores from central and southern part of Bohai Sea, China[J]. Ecotoxicology and Environmental Safety, 2019, 170:399-406. doi: 10.1016/j.ecoenv.2018.12.003

    CrossRef Google Scholar

    [21] Zhou D, Yu M, Yu J B, et al. Impacts of inland pollution input on coastal water quality of the Bohai Sea[J]. Science of the Total Environment, 2021, 765:142691. doi: 10.1016/j.scitotenv.2020.142691

    CrossRef Google Scholar

    [22] Fang Y, Chen Y J, Lin T, et al. Spatiotemporal trends of elemental carbon and char/soot ratios in five sediment cores from eastern China marginal seas: indicators of anthropogenic activities and transport patterns[J]. Environmental Science & Technology, 2018, 52(17):9704-9712.

    Google Scholar

    [23] 李凤业, 高抒, 贾建军, 等. 黄、渤海泥质沉积区现代沉积速率[J]. 海洋与湖沼, 2002, 33(4):364-369 doi: 10.3321/j.issn:0029-814X.2002.04.004

    CrossRef Google Scholar

    LI Fengye, GAO Shu, JIA Jianjun, et al. Contemporary deposition rates of fine-grained sediment in the Bohai and Yellow Seas[J]. Oceanologia et Limnologia Sinica, 2002, 33(4):364-369.] doi: 10.3321/j.issn:0029-814X.2002.04.004

    CrossRef Google Scholar

    [24] Song J M, Duan L Q. Chapter 17 - The Bohai sea[M]//Sheppard C. World Seas: an Environmental Evaluation. 2nd ed. Amsterdam: Elsevier, 2019: 377-394.

    Google Scholar

    [25] Ding X K, Guo X Y, Zhang C, et al. Water conservancy project on the Yellow River modifies the seasonal variation of chlorophyll-a in the Bohai Sea[J]. Chemosphere, 2020, 254:126846. doi: 10.1016/j.chemosphere.2020.126846

    CrossRef Google Scholar

    [26] 赵海萍, 李清雪, 陶建华. 渤海湾表层水质时空变化及污染源识别[J]. 水力发电学报, 2016, 35(10):21-30 doi: 10.11660/slfdxb.20161003

    CrossRef Google Scholar

    ZHAO Haiping, LI Qingxue, TAO Jianhua. Spatio-temporal water quality variations and identification of surface water pollutant sources in Bohai Bay[J]. Journal of Hydroelectric Engineering, 2016, 35(10):21-30.] doi: 10.11660/slfdxb.20161003

    CrossRef Google Scholar

    [27] 陶磊, 孙健, 刘海英, 等. 潮汐和季风作用下渤海湾水交换研究[J]. 水力发电学报, 2020, 39(5):99-107 doi: 10.11660/slfdxb.20200510

    CrossRef Google Scholar

    TAO Lei, SUN Jian, LIU Haiying, et al. Study on water exchange in Bohai Bay under effects of tides and seasonal winds[J]. Journal of Hydroelectric Engineering, 2020, 39(5):99-107.] doi: 10.11660/slfdxb.20200510

    CrossRef Google Scholar

    [28] Ding X K, Guo X Y, Gao H W, et al. Seasonal variations of nutrient concentrations and their ratios in the central Bohai Sea[J]. Science of the Total Environment, 2021, 799:149416. doi: 10.1016/j.scitotenv.2021.149416

    CrossRef Google Scholar

    [29] Ding X K, Shi J, Guo X Y, et al. Interannual variations in the nutrient cycle in the central Bohai Sea in response to anthropogenic inputs[J]. Chemosphere, 2023, 313:137620. doi: 10.1016/j.chemosphere.2022.137620

    CrossRef Google Scholar

    [30] Gao X L, Zhou F X, Chen C T A. Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals[J]. Environment International, 2014, 62:12-30. doi: 10.1016/j.envint.2013.09.019

    CrossRef Google Scholar

    [31] Wang J J, Yu Z G, Wei Q S, et al. Long-term nutrient variations in the Bohai Sea over the past 40 years[J]. Journal of Geophysical Research: Oceans, 2019, 124(1):703-722. doi: 10.1029/2018JC014765

    CrossRef Google Scholar

    [32] Xin M, Wang B D, Xie L P, et al. Long-term changes in nutrient regimes and their ecological effects in the Bohai Sea, China[J]. Marine Pollution Bulletin, 2019, 146:562-573. doi: 10.1016/j.marpolbul.2019.07.011

    CrossRef Google Scholar

    [33] 郭术津, 李彦翘, 张翠霞, 等. 渤海浮游植物群落结构及与环境因子的相关性分析[J]. 海洋通报, 2014, 33(1):95-105 doi: 10.11840/j.issn.1001-6392.2014.01.013

    CrossRef Google Scholar

    GUO Shujin, LI Yanqiao, ZHANG Cuixia, et al. Phytoplankton community in the Bohai Sea and its relationship with environmental factors[J]. Marine Science Bulletin, 2014, 33(1):95-105.] doi: 10.11840/j.issn.1001-6392.2014.01.013

    CrossRef Google Scholar

    [34] Hu L M, Guo Z G, Shi X F, et al. Temporal trends of aliphatic and polyaromatic hydrocarbons in the Bohai Sea, China: evidence from the sedimentary record[J]. Organic Geochemistry, 2011, 42(10):1181-1193. doi: 10.1016/j.orggeochem.2011.08.009

    CrossRef Google Scholar

    [35] Xu Y P, Zhou S Z, Hu L M, et al. Different controls on sedimentary organic carbon in the Bohai Sea: River mouth relocation, turbidity and eutrophication[J]. Journal of Marine Systems, 2018, 180:1-8. doi: 10.1016/j.jmarsys.2017.12.004

    CrossRef Google Scholar

    [36] Li L, Wang Y J, Liu D Y. Phytoplankton shifts in the Central Bohai Sea over the last 250 years reflect eutrophication and input from the Yellow River[J]. Ecological Indicators, 2021, 126:107676. doi: 10.1016/j.ecolind.2021.107676

    CrossRef Google Scholar

    [37] Wang Y J, Liu D Y, Xiao W P, et al. Coastal eutrophication in China: trend, sources, and ecological effects[J]. Harmful Algae, 2021, 107:102058. doi: 10.1016/j.hal.2021.102058

    CrossRef Google Scholar

    [38] Hu L M, Shi X F, Guo Z G, et al. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: the importance of depositional hydrodynamic forcing[J]. Marine Geology, 2013, 335:52-63. doi: 10.1016/j.margeo.2012.10.008

    CrossRef Google Scholar

    [39] Xia P, Meng X W, Yin P, et al. Eighty-year sedimentary record of heavy metal inputs in the intertidal sediments from the Nanliu River estuary, Beibu Gulf of South China Sea[J]. Environmental Pollution, 2011, 159(1):92-99. doi: 10.1016/j.envpol.2010.09.014

    CrossRef Google Scholar

    [40] Schelske C L, Hodell D A. Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie[J]. Limnology and Oceanography, 1995, 40(5):918-929. doi: 10.4319/lo.1995.40.5.0918

    CrossRef Google Scholar

    [41] Keeling C D, Bacastow R B, Carter A F, et al. A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data[M]//Peterson D H. Aspects of Climate Variability in the Pacific and the Western Americas. Washington: American Geophysical Union, 1989: 165-236.

    Google Scholar

    [42] Friedli H, Lötscher H, Oeschger H, et al. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries[J]. Nature, 1986, 324(6094):237-238. doi: 10.1038/324237a0

    CrossRef Google Scholar

    [43] Jia G D, Xu S D, Chen W F, et al. 100-year ecosystem history elucidated from inner shelf sediments off the Pearl River estuary, China[J]. Marine Chemistry, 2013, 151:47-55. doi: 10.1016/j.marchem.2013.02.005

    CrossRef Google Scholar

    [44] Zonneveld K A F, Versteegh G J M, Kasten S, et al. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record[J]. Biogeosciences, 2010, 7(2):483-511. doi: 10.5194/bg-7-483-2010

    CrossRef Google Scholar

    [45] Minoura K, Hoshino K, Nakamura T, et al. Late Pleistocene-Holocene paleoproductivity circulation in the Japan Sea: sea-level control on δ13C and δ15N records of sediment organic material[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 135(1-4):41-50. doi: 10.1016/S0031-0182(97)00026-6

    CrossRef Google Scholar

    [46] 宋逸群, 王传远, 靳文静, 等. 渤海辽东湾海域表层沉积物有机质特征、来源及环境评价分析[J]. 生态科学, 2022, 41(2):84-90 doi: 10.32846/2306-9716/2022.eco.2-41.14

    CrossRef Google Scholar

    SONG Yiqun, WANG Chuanyuan, JIN Wenjing, et al. Characteristics, sources of organic matter in surface sediments and environmental assessment of Liaodong Bay, Bohai Sea[J]. Ecological Science, 2022, 41(2):84-90.] doi: 10.32846/2306-9716/2022.eco.2-41.14

    CrossRef Google Scholar

    [47] Fry B, Sherr E B. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems[J]. Contributions in Marine Science, 1984, 27:13-47.

    Google Scholar

    [48] Xing L, Zhao M X, Zhang T, et al. Ecosystem responses to anthropogenic and natural forcing over the last 100 years in the coastal areas of the East China Sea[J]. The Holocene, 2016, 26(5):669-677. doi: 10.1177/0959683615618248

    CrossRef Google Scholar

    [49] Zimmerman A R, Canuel E A. Sediment geochemical records of eutrophication in the mesohaline Chesapeake Bay[J]. Limnology and Oceanography, 2002, 47(4):1084-1093. doi: 10.4319/lo.2002.47.4.1084

    CrossRef Google Scholar

    [50] Kuypers M M M, Pancost R D, Nijenhuis I A, et al. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic Basin during the Late Cenomanian oceanic anoxic event[J]. Paleoceanography, 2002, 17(4):1051.

    Google Scholar

    [51] Algeo T J, Henderson C M, Tong J N, et al. Plankton and productivity during the Permian–Triassic boundary crisis: an analysis of organic carbon fluxes[J]. Global and Planetary Change, 2013, 105:52-67. doi: 10.1016/j.gloplacha.2012.02.008

    CrossRef Google Scholar

    [52] Krumhardt K M, Lovenduski N S, Long M C, et al. Potential predictability of net primary production in the ocean[J]. Global Biogeochemical Cycles, 2020, 34(6):e2020GB006531. doi: 10.1029/2020GB006531

    CrossRef Google Scholar

    [53] Wang H J, Yang Z S, Saito Y, et al. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: connections to impacts from ENSO events and dams[J]. Global and Planetary Change, 2006, 50(3-4):212-225. doi: 10.1016/j.gloplacha.2006.01.005

    CrossRef Google Scholar

    [54] 邢磊, 赵美训, 张海龙, 等. 二百年来黄海浮游植物群落结构变化的生物标志物记录[J]. 中国海洋大学学报, 2009, 39(2):317-322

    Google Scholar

    XING Lei, ZHAO Meixun, ZHANG Hailong, et al. Biomarker records of phytoplankton community structure changes in the yellow sea over the Last 200 Years[J]. Periodical of Ocean University of China, 2009, 39(2):317-322.]

    Google Scholar

    [55] 丁玲, 邢磊, 赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9):981-989

    Google Scholar

    DING Ling, XING Lei, ZHAO Meixun. Applications of biomarkers for reconstructing phytoplankton productivity and community structure changes[J]. Advances in Earth Science, 2010, 25(9):981-989.]

    Google Scholar

    [56] 于培松, 张海生, 扈传昱, 等. 利用沉积生物标志物分析南极普里兹湾浮游植物群落结构变化[J]. 极地研究, 2012, 24(2):143-150

    Google Scholar

    YU Peisong, ZHANG Haisheng, HU Chuanyu, et al. Using biomarkers in sediments as indicators to rebuild the phytoplankton community in Prydz Bay, Antarctica[J]. Chinese Journal of Polar Research, 2012, 24(2):143-150.]

    Google Scholar

    [57] 冯旭文, 段杉杉, 石学法, 等. 浙江近岸泥质区百年来浮游植物生产力的变化及对环境的响应[J]. 海洋学报, 2013, 35(4):155-161 doi: 10.3969/j.issn.0253-4193.2013.04.018

    CrossRef Google Scholar

    FENG Xuwen, DUAN Shanshan, SHI Xuefa, et al. Changes in phytoplankton productivity and impacts on environment in the Zhejiang coastal mud area during the last 100 years[J]. Acta Oceanological Sinica, 2013, 35(4):155-161.] doi: 10.3969/j.issn.0253-4193.2013.04.018

    CrossRef Google Scholar

    [58] Xiong W, Mei X, Meng X J, et al. Phytoplankton biomarkers in surface sediments from Liaodong Bay and their potential as indicators of primary productivity[J]. Marine Pollution Bulletin, 2020, 159:111536. doi: 10.1016/j.marpolbul.2020.111536

    CrossRef Google Scholar

    [59] Volkman J K. A review of sterol markers for marine and terrigenous organic matter[J]. Organic Geochemistry, 1986, 9(2):83-99. doi: 10.1016/0146-6380(86)90089-6

    CrossRef Google Scholar

    [60] Song Y Y, Guo Y Y, Liu H J, et al. Water quality shifts the dominant phytoplankton group from diatoms to dinoflagellates in the coastal ecosystem of the Bohai Bay[J]. Marine Pollution Bulletin, 2022, 183:114078. doi: 10.1016/j.marpolbul.2022.114078

    CrossRef Google Scholar

    [61] Malone T C, Newton A. The globalization of cultural eutrophication in the coastal ocean: causes and consequences[J]. Frontiers in Marine Science, 2020, 7:670. doi: 10.3389/fmars.2020.00670

    CrossRef Google Scholar

    [62] 冉祥滨, 韦钦胜, 于志刚. 中国近海营养盐结构失衡与磷消耗问题及其生态环境效应的研究进展[J]. 海洋科学, 2023, 47(8):75-89

    Google Scholar

    RAN Xiangbin, WEI Qinsheng, YU Zhigang. Stoichiometric imbalance in the rates of nutrient and phosphorus depletion in coastal China with implications for the ecological environment[J]. Marine Sciences, 2023, 47(8):75-89.]

    Google Scholar

    [63] De Senerpont Domis L N, Van de Waal D B, Helmsing N R, et al. Community stoichiometry in a changing world: combined effects of warming and eutrophication on phytoplankton dynamics[J]. Ecology, 2014, 95(6):1485-1495. doi: 10.1890/13-1251.1

    CrossRef Google Scholar

    [64] 李磊. 黄河口邻近海域浮游植物百年演变特征及与环境变化的响应关系[D]. 华东师范大学博士学位论文, 2021

    Google Scholar

    LI Lei. A century-long phytoplankton shift and environmental responses in the adjacent sea of the Yellow River Estuary[D]. Doctor Dissertation of East China Normal University, 2021.]

    Google Scholar

    [65] Hutchins D A, Tagliabue A. Feedbacks between phytoplankton and nutrient cycles in a warming ocean[J]. Nature Geoscience, 2024, 17(6):495-502. doi: 10.1038/s41561-024-01454-w

    CrossRef Google Scholar

    [66] Wang F, Li X G, Tang X H, et al. The seas around China in a warming climate[J]. Nature Reviews Earth & Environment, 2023, 4(8):535-551.

    Google Scholar

    [67] Wan N N, Zhang R P, Kong X L, et al. Effect of aquatic organic matter and global warming on accumulation of PAHs in lakes, East China[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(11):e2022JG007167. doi: 10.1029/2022JG007167

    CrossRef Google Scholar

    [68] Lee J H, Kwon S Y, Lee H, et al. Climate-associated changes in mercury sources in the arctic fjord sediments[J]. ACS Earth and Space Chemistry, 2021, 5(9):2398-2407. doi: 10.1021/acsearthspacechem.1c00095

    CrossRef Google Scholar

    [69] Manceau A, Nagy K L. Thiols in natural organic matter: molecular forms, acidity, and reactivity with mercury(II) from first-principles calculations and high energy-resolution X-ray absorption near-edge structure spectroscopy[J]. ACS Earth and Space Chemistry, 2019, 3(12):2795-2807. doi: 10.1021/acsearthspacechem.9b00278

    CrossRef Google Scholar

    [70] 栾青杉, 康元德, 王俊. 渤海浮游植物群落的长期变化(1959~2015)[J]. 渔业科学进展, 2018, 39(4):9-18

    Google Scholar

    LUAN Qingshan, KANG Yuande, WANG Jun. Long-term changes in the phytoplankton community in the Bohai Sea (1959~2015)[J]. Progress in Fishery Sciences, 2018, 39(4):9-18.]

    Google Scholar

    [71] 孙军, 刘东艳, 杨世民, 等. 渤海中部和渤海海峡及邻近海域浮游植物群落结构的初步研究[J]. 海洋与湖沼, 2002, 33(5):461-471 doi: 10.3321/j.issn:0029-814X.2002.05.002

    CrossRef Google Scholar

    SUN Jun, LIU Dongyan, YANG Shimin, et al. The preliminary study on phytoplankton community structure in the central Bohai Sea and the Bohai Strait and its adjacent area[J]. Oceanologia et Limnologia Sinica, 2002, 33(5):461-471.] doi: 10.3321/j.issn:0029-814X.2002.05.002

    CrossRef Google Scholar

    [72] Egge J K. Are diatoms poor competitors at low phosphate concentrations?[J]. Journal of Marine Systems, 1998, 16(3-4):191-198. doi: 10.1016/S0924-7963(97)00113-9

    CrossRef Google Scholar

    [73] Xiao W P, Liu X, Irwin A J, et al. Warming and eutrophication combine to restructure diatoms and dinoflagellates[J]. Water Research, 2018, 128:206-216. doi: 10.1016/j.watres.2017.10.051

    CrossRef Google Scholar

    [74] Spilling K, Olli K, Lehtoranta J, et al. Shifting diatom—dinoflagellate dominance during spring bloom in the baltic sea and its potential effects on biogeochemical cycling[J]. Frontiers in Marine Science, 2018, 5:327. doi: 10.3389/fmars.2018.00327

    CrossRef Google Scholar

    [75] Fowler S W, Knauer G A. Role of large particles in the transport of elements and organic compounds through the oceanic water column[J]. Progress in Oceanography, 1986, 16(3):147-194. doi: 10.1016/0079-6611(86)90032-7

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(450) PDF downloads(89) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint