2024 Vol. 44, No. 5
Article Contents

GU Yu, CHANG Xin, KONG Fanxing, LAN Kai, ZHUANG Guangchao, LIU Xiting. Holocene sediment source-to-sink processes and their controlling factors in the central South Yellow Sea mud area[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 140-150. doi: 10.16562/j.cnki.0256-1492.2024051401
Citation: GU Yu, CHANG Xin, KONG Fanxing, LAN Kai, ZHUANG Guangchao, LIU Xiting. Holocene sediment source-to-sink processes and their controlling factors in the central South Yellow Sea mud area[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 140-150. doi: 10.16562/j.cnki.0256-1492.2024051401

Holocene sediment source-to-sink processes and their controlling factors in the central South Yellow Sea mud area

More Information
  • The central South Yellow Sea mud area is an ideal object for the study of sediment provenance because of the large amount of terrigenous sediments discharged from neighboring rivers. However, the transport processes and controlling factors of these sediments in this area remain unclear. To understand the sediment source-to-sink processes and their controlling factors in the study area since the Holocene, the grain size and element geochemistry of sediments in core YSCW-1 from the mud area were analyzed. The AMS14C ages of core YSCW-1 indicate that the time of deposition is since 9.3 ka, and the formation of the mud depocenter occurred around 6.5 ka. The sediments are mainly composed of sandy silt, clayey silt, and silt. Relevant geochemical indices reveal that, the sediment sources in the study area are mainly from the Huanghe (Yellow) River and the Changjiang (Yangtze) River. Before 6.7 ka, sediments were mainly derived from the Hanghe River. After 6.7 ka, contribution from the Changjiang River increased, which may be related to the establishment of the modern circulation system in the Yellow Sea. Marine fronts may have limited the transport of sediments from the Huanghe River and Korean rivers to the mud area in the central South Yellow Sea.

  • 加载中
  • [1] Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17):2141-2156.

    Google Scholar

    [2] Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003, 63(1):93-120.

    Google Scholar

    [3] 谷玉, 刘喜停, 吴晓, 等. 山东半岛全新世近岸泥质区沉积过程与沉积记录[J]. 古地理学报, 2022, 24(1):164-179

    Google Scholar

    GU Yu, LIU Xiting, WU Xiao, et al. Sedimentary processes and records of the mud area off Shandong Peninsula[J]. Journal of Paleogeography, 2022, 24(1):164-179.]

    Google Scholar

    [4] 刘健, 李绍全, 王圣洁, 等. 末次冰消期以来黄海海平面变化与黄海暖流的形成[J]. 海洋地质与第四纪地质, 1999, 19(1): 13-24

    Google Scholar

    LIU Jian, LI Shaoquan, WANG Shengjie, et al. Sea level changes of the Yellow Sea and formation of the Yellow Sea Warm Current since the last deglaciation [J]. Marine Geology & Quaternary Geology, 1999, 19 (1): 1913-1924.]

    Google Scholar

    [5] 向荣, 杨作升, 郭志刚, 等. 济州岛西南泥质区粒度组分变化的古环境应用[J]. 地球科学, 2005, 30(5):582-588 doi: 10.3321/j.issn:1000-2383.2005.05.010

    CrossRef Google Scholar

    XIANG Rong, YANG Zuosheng, GUO Zhigang, et al. Paleoenvironmental implications of grain-size component variations in the mud area southwest off Cheju island[J]. Earth Science, 2005, 30(5):582-588.] doi: 10.3321/j.issn:1000-2383.2005.05.010

    CrossRef Google Scholar

    [6] Hu B Q, Yang Z S, Zhao M X, et al. Grain size records reveal variability of the East Asian Winter Monsoon since the Middle Holocene in the Central Yellow Sea mud area, China[J]. Science China Earth Sciences, 2012, 55(10):1656-1668. doi: 10.1007/s11430-012-4447-7

    CrossRef Google Scholar

    [7] Hu B Q, Li J, Zhao J T, et al. Sr–Nd isotopic geochemistry of Holocene sediments from the South Yellow Sea: Implications for provenance and monsoon variability[J]. Chemical Geology, 2018, 479:102-112. doi: 10.1016/j.chemgeo.2017.12.033

    CrossRef Google Scholar

    [8] Koo H, Lee Y, Kim S, et al. Clay mineral distribution and provenance in surface sediments of Central Yellow Sea Mud[J]. Geosciences Journal, 2018, 22(6):989-1000. doi: 10.1007/s12303-018-0019-y

    CrossRef Google Scholar

    [9] Mei X, Li R H, Zhang X H, et al. Evolution of the Yellow Sea Warm Current and the Yellow Sea Cold Water Mass since the Middle Pleistocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 442:48-60. doi: 10.1016/j.palaeo.2015.11.018

    CrossRef Google Scholar

    [10] Xiang R, Yang Z S, Saito Y, et al. Paleoenvironmental changes during the last 8400 years in the southern Yellow Sea: Benthic foraminiferal and stable isotopic evidence[J]. Marine Micropaleontology, 2008, 67(1):104-119.

    Google Scholar

    [11] Gao F, Qiao L L, Li G X. Modelling the dispersal and depositional processes of the suspended sediment in the central South Yellow Sea during the winter[J]. Geological Journal, 2016, 51(S1):35-48. doi: 10.1002/gj.2827

    CrossRef Google Scholar

    [12] Hu D X. Upwelling and sedimentation dynamics[J]. Chinese Journal of Oceanology and Limnology, 1984, 2(1):12-19. doi: 10.1007/BF02888388

    CrossRef Google Scholar

    [13] Hu D X. Some Striking Features of Circulation in Huanghai Sea and East China Sea [M]//Oceanology of China Seas. Dordrecht, Springer Netherlands. 1994: 27-38.

    Google Scholar

    [14] Lie H J, Oh K H, Cho C H, et al. Wintertime Large Temperature inversions in the Yellow Sea Associated with the Cheju and Yellow Sea Warm Currents[J]. Journal of Geophysical Research: Oceans, 2019, 124(7):4856-4874. doi: 10.1029/2019JC015180

    CrossRef Google Scholar

    [15] Lin X P, Yang J Y, Guo J S, et al. An asymmetric upwind flow, Yellow Sea Warm Current: 1. New observations in the western Yellow Sea[J]. Journal of Geophysical Research: Oceans, 2011, 116(C04026):1-13.

    Google Scholar

    [16] Dong L X, Guan W B, Chen Q, et al. Sediment transport in the Yellow Sea and East China Sea[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3):248-258. doi: 10.1016/j.ecss.2011.04.003

    CrossRef Google Scholar

    [17] Zhu Y, Chang R. Preliminary Study of the dynamic origin of the distribution pattern of bottom sediments on the continental shelves of the Bohai Sea, Yellow Sea and East China Sea[J]. Estuarine, Coastal and Shelf Science, 2000, 51(5):663-680. doi: 10.1006/ecss.2000.0696

    CrossRef Google Scholar

    [18] Gao F, Qiao L L, Li G X. Winter meso-scale shear front in the Yellow Sea and its sedimentary effects[J]. Journal of Ocean University of China, 2016, 15(1):50-56. doi: 10.1007/s11802-016-2668-7

    CrossRef Google Scholar

    [19] Shi Y, Gao J H, Sheng H, et al. Cross-Front sediment transport induced by quick oscillation of the Yellow Sea Warm Current: Evidence from the sedimentary record[J]. Geophysical Research Letters, 2019, 46(1):226-234. doi: 10.1029/2018GL080751

    CrossRef Google Scholar

    [20] Zhang X D, Ji Y, Yang Z S, et al. End member inversion of surface sediment grain size in the South Yellow Sea and its implications for dynamic sedimentary environments[J]. Science China Earth Sciences, 2016, 59(2):258-267. doi: 10.1007/s11430-015-5165-8

    CrossRef Google Scholar

    [21] Alexander C R, DeMaster D J, Nittrouer C A. Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea[J]. Marine Geology, 1991, 98(1):51-72. doi: 10.1016/0025-3227(91)90035-3

    CrossRef Google Scholar

    [22] Milliman J D, Shen H T, Yang Z S, et al. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf[J]. Continental Shelf Research, 1985, 4(1):37-45.

    Google Scholar

    [23] Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91:1-21. doi: 10.1086/628741

    CrossRef Google Scholar

    [24] Wang H J, Yang Z S, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities[J]. Global and Planetary Change, 2007, 57(3):331-354.

    Google Scholar

    [25] Yang S L, Milliman J D, Xu K H, et al. Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River[J]. Earth-Science Reviews, 2014, 138:469-486. doi: 10.1016/j.earscirev.2014.07.006

    CrossRef Google Scholar

    [26] Yang S L, Xu K H, Milliman J D, et al. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes[J]. Scientific Reports, 2015, 5(1):1-14.

    Google Scholar

    [27] Kim D, Park B K, Shin I C. Paleoenvironmental changes of the Yellow Sea during the Late Quaternary[J]. Geo-Marine Letters, 1998, 18(3):189-194. doi: 10.1007/s003670050067

    CrossRef Google Scholar

    [28] Lee H J, Chough S K. Sediment distribution, dispersal and budget in the Yellow Sea[J]. Marine Geology, 1989, 87(2):195-205.

    Google Scholar

    [29] Milliman J D, Li F, Zhao Y Y, et al. Suspended matter regime in the Yellow Sea[J]. Progress in Oceanography, 1986, 17(3):215-227.

    Google Scholar

    [30] Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea[J]. Marine Geology, 2007, 240(1):169-176.

    Google Scholar

    [31] Li J, Hu B Q, Wei H L, et al. Provenance variations in the Holocene deposits from the southern Yellow Sea: Clay mineralogy evidence[J]. Continental Shelf Research, 2014, 90:41-51. doi: 10.1016/j.csr.2014.05.001

    CrossRef Google Scholar

    [32] 杨守业, 李从先, Lee C B, 等. 黄海周边河流的稀土元素地球化学及沉积物物源示踪[J]. 科学通报, 1233, 48(11):1233-1236

    Google Scholar

    YANG Shouye, LI Congxian, Lee C B, et al. REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators[J]. Science Bulletin, 48(11): 1233, 48(11):1233-1236.]

    Google Scholar

    [33] 刘庚, 韩喜彬, 陈燕萍, 等. 南黄海沉积物磁性特征及其对物源变化的指示——以南黄海中部泥质区YSC-10孔为例[J]. 沉积学报, 2021, 39(2):383-394

    Google Scholar

    LIU Geng, HAN Xibin, CHEN Yanping, et al. Magnetic characteristics of core YSC-310 sediments in the Central Yellow Sea mud area and implications for provenance changes[J]. Acta Sedimentologica Sinica, 2021, 39(2):383-394.]

    Google Scholar

    [34] Wang Y H, Li G X, Zhang W G, et al. Sedimentary environment and formation mechanism of the mud deposit in the central South Yellow Sea during the past 40kyr[J]. Marine Geology, 2014, 347:123-135. doi: 10.1016/j.margeo.2013.11.008

    CrossRef Google Scholar

    [35] Bian C W, Jiang W S, Greatbatch R J. An exploratory model study of sediment transport sources and deposits in the Bohai Sea, Yellow Sea, and East China Sea[J]. Journal of Geophysical Research: Oceans, 2013, 118(11):5908-5923. doi: 10.1002/2013JC009116

    CrossRef Google Scholar

    [36] Li G X, Qiao L L, Dong P, et al. Hydrodynamic condition and suspended sediment diffusion in the Yellow Sea and East China Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(8):6204-6222. doi: 10.1002/2015JC011442

    CrossRef Google Scholar

    [37] Naimie C E, Blain C A, Lynch D R. Seasonal mean circulation in the Yellow Sea — a model-generated climatology[J]. Continental Shelf Research, 2001, 21(6):667-695.

    Google Scholar

    [38] Park S, Chu P C, Lee J H. Interannual-to-interdecadal variability of the Yellow Sea Cold Water Mass in 1967–2008: Characteristics and seasonal forcings[J]. Journal of Marine Systems, 2011, 87(3):177-193.

    Google Scholar

    [39] 李广雪, 杨子赓, 刘勇. 中国东部海域海底沉积环境成因研究[M]. 北京: 科学出版社, 2005: 1-44

    Google Scholar

    LI Guangxue, YANG Zigeng, LIU Yong. Formation environment of the seafloor sediment in the Eastern China Seas [M]. Beijing: Science Press, 2005: 1-44.]

    Google Scholar

    [40] Zhong F C, Xiang R, Zhang L L, et al. A synthesized study of the spatiotemporal evolution of Central Yellow Sea Mud depositional processes during the Holocene[J]. Frontiers in Earth Science, 2021, 9:1-16.

    Google Scholar

    [41] Kim J M, Kucera M. Benthic foraminifer record of environmental changes in the Yellow Sea (Hwanghae) during the last 15000 years[J]. Quaternary Science Reviews, 2000, 19(11):1067-1085. doi: 10.1016/S0277-3791(99)00086-4

    CrossRef Google Scholar

    [42] Kim H, Lee H, Lee G A. New marine reservoir correction values (ΔR) applicable to dates on Neolithic Shells from the south coast of Korea[J]. Radiocarbon, 2021, 63(4):1287-1302. doi: 10.1017/RDC.2021.45

    CrossRef Google Scholar

    [43] Kong G S, Lee C W. Marine reservoir corrections (ΔR) for southern coastal waters of Korea [J]. 2005, 10(2): 124-128.

    Google Scholar

    [44] Southon J, Kashgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia[J]. Radiocarbon, 2002, 44(1):167-180. doi: 10.1017/S0033822200064778

    CrossRef Google Scholar

    [45] Yoneda M, Uno H, Shibata Y, et al. Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 259(1):432-437. doi: 10.1016/j.nimb.2007.01.184

    CrossRef Google Scholar

    [46] Taylor S R, McLennan S M. The continental crust: Its composition and evolution [M]. United States: Blackwell Scientific Publication, 1985.

    Google Scholar

    [47] 杨守业, 李从先. 长江与黄河沉积物REE地球化学及示踪作用[J]. 地球化学, 1999, 28(4):374-380

    Google Scholar

    YANG Shouye, LI Congxian. REE geochemistry and tracing application in the Yangtze River and theYellow River sediments[J]. Geochimica, 1999, 28(4):374-380.]

    Google Scholar

    [48] 杨守业, 李从先, Jung H S, 等. 中韩河流沉积物微量元素地球化学研究[J]. 海洋地质与第四纪地质, 2003, 23(2):19-24

    Google Scholar

    YANG Shouye, LI Congxian, JUNG Hoisoo, et al. Geochemistry of trace elements in Chinese and Korean river sediments[J]. Marine Geology & Quaternary Geology, 2003, 23(2):19-24.]

    Google Scholar

    [49] 杨守业, Jung H S, 李从先, 等. 黄河、长江与韩国Keum、Yeongsan江沉积物常量元素地球化学特征[J]. 地球化学, 2004, 33(1):99-105 doi: 10.3321/j.issn:0379-1726.2004.01.013

    CrossRef Google Scholar

    YANG Shouye, JUNG Hoisoo, LI Congxian, et al. Major element geochemistry of sediments from Chinese and Korean rivers[J]. Geochimica, 2004, 33(1):99-105.] doi: 10.3321/j.issn:0379-1726.2004.01.013

    CrossRef Google Scholar

    [50] Yang S Y, Li C X, Jung H S, et al. Discrimination of geochemical compositions between the Changjiang and the Huanghe sediments and its application for the identification of sediment source in the Jiangsu coastal plain, China[J]. Marine Geology, 2002, 186(3):229-241.

    Google Scholar

    [51] Cho Y G, Lee C B, Choi M S. Geochemistry of surface sediments off the southern and western coasts of Korea[J]. Marine Geology, 1999, 159(1):111-129.

    Google Scholar

    [52] Yang S Y, Youn J S. Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments[J]. Marine Geology, 2007, 243(1):229-241.

    Google Scholar

    [53] Lu J, Li A C, Zhang J, et al. Yangtze River-derived sediments in the southwestern South Yellow Sea: Provenance discrimination and seasonal transport mechanisms[J]. Journal of Asian Earth Sciences, 2019, 176:353-367. doi: 10.1016/j.jseaes.2019.03.007

    CrossRef Google Scholar

    [54] 蓝先洪, 张志珣, 李日辉, 等. 南黄海NT2孔沉积物物源研究[J]. 沉积学报, 2010, 28(6): 1182-1189

    Google Scholar

    LAN Xianhong, ZHANG Zhixun, LI Rihui, et al. Provenance study of sediments in core NT2 of the South Yellow Sea [J]. Acta Sedimentologica Sinica, 2020, 28(6): 1182-1189.]

    Google Scholar

    [55] 密蓓蓓, 张勇, 梅西, 等. 中国东部海域表层沉积物稀土元素赋存特征及物源探讨[J]. 中国地质, 2020, 47(5):1530-1541

    Google Scholar

    MI Beibei, ZHANG Yong, MEI Xi, et al. The rare earth element content in surface sediments of coastal areas in eastern China's sea areas and an analysis of material sources[J]. Geology in China, 2020, 47(5):1530-1541.]

    Google Scholar

    [56] Zhu Y T, Bao R, Zhu L H, et al. Investigating the provenances and transport mechanisms of surface sediments in the offshore muddy area of Shandong Peninsula: Insights from REE analyses[J]. Journal of Marine Systems, 2022, 226:1-12.

    Google Scholar

    [57] Rao W B, Mao C P, Wang Y G, et al. Geochemical constraints on the provenance of surface sediments of radial sand ridges off the Jiangsu coastal zone, East China[J]. Marine Geology, 2015, 359:35-49. doi: 10.1016/j.margeo.2014.11.007

    CrossRef Google Scholar

    [58] Rao W B, Mao C P, Wang Y G, et al. Using Nd-Sr isotopes and rare earth elements to study sediment provenance of the modern radial sand ridges in the southwestern Yellow Sea[J]. Applied Geochemistry, 2017, 81:23-35. doi: 10.1016/j.apgeochem.2017.03.011

    CrossRef Google Scholar

    [59] 孙效功, 方明, 黄伟. 黄、东海陆架区悬浮体输运的时空变化规律[J]. 海洋与湖沼, 2000, 31(6):581-587 doi: 10.3321/j.issn:0029-814X.2000.06.001

    CrossRef Google Scholar

    SUN Xiaogong, FANG Ming, HUANG Wei. 2000. Spatial and temporal variations in suspended particulate matter transport on the Yellow and East China Sea shelf[J]. Oceanologia et Limnologia Sinica, 2000, 31(6):581-587.] doi: 10.3321/j.issn:0029-814X.2000.06.001

    CrossRef Google Scholar

    [60] 王勇智, 乔璐璐, 杨作升, 等. 近岸强海流切变锋作用下悬浮沉积物的输送和沉积——以山东半岛东端外海为例[J]. 沉积学报, 2013, 31(3):486-496

    Google Scholar

    WANG Yongzhi, QIAO Lulu, YANG Zuosheng, et al. Suspend sediment transport and deposition due to strong regional shear current front: an example from the shelf waters off eastern Shandong Peninsula[J]. Acta Sedimentologica Sinica, 2013, 31(3):486-496.]

    Google Scholar

    [61] 杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(1992):81-90

    Google Scholar

    YANG Zuosheng, GUO Zhigang, WANG Zhaoxiang, et al. The macro pattern of the suspended body of the Yellow Sea and the East China Sea to the eastern deep sea area[J]. Acta Oceanologica Sinica, 1992, 14(1992):81-90.]

    Google Scholar

    [62] Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences, 2014, 111(43):15296-15303. doi: 10.1073/pnas.1411762111

    CrossRef Google Scholar

    [63] Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea[J]. Marine Geology, 2010, 278(1):54-76.

    Google Scholar

    [64] 薛春汀, 周永青, 朱雄华. 晚更新世末至公元前7世纪的黄河流向和黄河三角洲[J]. 海洋学报, 2004, 26(1):48-61 doi: 10.3321/j.issn:0253-4193.2004.01.006

    CrossRef Google Scholar

    XUE Chunting, ZHOU Yongqing, ZHU Xionghua. The Huanghe River course and delta from end of Late Pleistocene to the 47th century BC[J]. Acta Oceanologica Sinica, 2004, 26(1):48-61.] doi: 10.3321/j.issn:0253-4193.2004.01.006

    CrossRef Google Scholar

    [65] Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3):208-224.

    Google Scholar

    [66] 夏东兴, 刘振夏. 末次冰期盛期长江入海流路探讨[J]. 海洋学报, 2001, 23(5):87-94

    Google Scholar

    XIA Dongxing, LIU Zhenxia. Tracing the Changjiang River’s flowing route entering the sea during the last ice age maximum[J]. Acta Oceanologica Sinica, 2001, 23(5):87-94.]

    Google Scholar

    [67] Hori K, Saito Y, Zhao Q H, et al. Evolution of the coastal depositional systems of the Changjiang (Yangtze) River in response to Late Pleistocene-Holocene sea-level changes[J]. Journal of Sedimentary Research, 2002, 72(6):884-897. doi: 10.1306/052002720884

    CrossRef Google Scholar

    [68] Saito Y, Wei H, Zhou Y, et al. Delta progradation and chenier formation in the Huanghe (Yellow River) delta, China[J]. Journal of Asian Earth Sciences, 2000, 18(4):489-497. doi: 10.1016/S1367-9120(99)00080-2

    CrossRef Google Scholar

    [69] Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209(1):45-67.

    Google Scholar

    [70] Yang D Y, Yu G, Xie Y B, et al. Sedimentary records of large Holocene floods from the middle reaches of the Yellow River, China[J]. Geomorphology, 2000, 33(1):73-88.

    Google Scholar

    [71] Li T G, Nan Q Y, Jiang B, et al. Formation and evolution of the modern warm current system in the East China Sea and the Yellow Sea since the last deglaciation[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(2):237-249. doi: 10.1007/s00343-009-9149-4

    CrossRef Google Scholar

    [72] Zhao S Q, Zhao J T, Jia C, et al. The impact of Holocene interactions among climate, ocean current, and shear front factors on fine sediment dispersal in the central South Yellow Sea[J]. Continental Shelf Research, 2022, 246:1-9.

    Google Scholar

    [73] Xu K H, Li A C, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291-294:176-191. doi: 10.1016/j.margeo.2011.06.003

    CrossRef Google Scholar

    [74] Zhong Y, Qiao L L, Song D H, et al. Impact of cold water mass on suspended sediment transport in the South Yellow Sea[J]. Marine Geology, 2020, 428:1-20.

    Google Scholar

    [75] Hu B Q, Yang Z S, Qiao S Q, et al. Holocene shifts in riverine fine-grained sediment supply to the East China Sea Distal Mud in response to climate change[J]. The Holocene, 2014, 24(10):1253-1268. doi: 10.1177/0959683614540963

    CrossRef Google Scholar

    [76] Lim D, Xu Z K, Choi J Y, et al. Holocene changes in detrital sediment supply to the eastern part of the central Yellow Sea and their forcing mechanisms[J]. Journal of Asian Earth Sciences, 2015, 105:18-31. doi: 10.1016/j.jseaes.2015.03.032

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(530) PDF downloads(29) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint