2025 Vol. 45, No. 2
Article Contents

HUANG Zizhao, QIAO Shuqing, JIN Lina, LI Xiaoyan, CHEN Liang, LIU Qiang, YIN Zhengxin. Composition of deep water in the northwestern Indian Ocean: Evidence from Nd isotopes and redox sensitive elements of surface sediments[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 68-78. doi: 10.16562/j.cnki.0256-1492.2024050901
Citation: HUANG Zizhao, QIAO Shuqing, JIN Lina, LI Xiaoyan, CHEN Liang, LIU Qiang, YIN Zhengxin. Composition of deep water in the northwestern Indian Ocean: Evidence from Nd isotopes and redox sensitive elements of surface sediments[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 68-78. doi: 10.16562/j.cnki.0256-1492.2024050901

Composition of deep water in the northwestern Indian Ocean: Evidence from Nd isotopes and redox sensitive elements of surface sediments

More Information
  • The Indian Ocean deep water, as an important part of the global ocean circulation, is composed of mainly the Antarctic Bottom Water (AABW) and North Atlantic Deep Water (NADW), which is currently a research hot topic of marine substance circulation and environmental changes. We discussed the deep water redox state and composition of the bottom water through the analyses of Nd isotopes, redox-sensitive elements, total organic carbon of surface sediments in the northwestern Indian Ocean. Results show that sensitive elements such as Mn, Mo, and Ni indicated that the study area was generally in an oxidizing environment, and there was a strongly oxidizing area in the south side of the ridge. The εNd ranged from −7.16 to −8, indicating that the bottom water were mainly composed of AABW, and almost no NADW. Due to a certain amount of dust input, the study area has heavier εNd records compared with adjacent areas. The heavier εNd is indicative of an increased AABW contribution in the south, which may be influenced by the strong equatorial eastward flow within the Somali Basin. We revealed the characteristics of redox-sensitive elements and Nd isotopes of surface sediment and their possible influencing factors, and especially provided an important reference for subsequent in-depth research on bottom water.

  • 加载中
  • [1] Goswami V, Singh S K, Bhushan R. Impact of water mass mixing and dust deposition on Nd concentration and εNd of the Arabian Sea water column[J]. Geochimica et Cosmochimica Acta, 2014, 145:30-49. doi: 10.1016/j.gca.2014.09.006

    CrossRef Google Scholar

    [2] Manabe S, Stouffer R J. The rôle of thermohaline circulation in climate[J]. Tellus B: Chemical and Physical Meteorology, 1999, 51(1):91-109. doi: 10.3402/tellusb.v51i1.16262

    CrossRef Google Scholar

    [3] Rahmstorf S. Ocean circulation and climate during the past 120 000 years[J]. Nature, 2002, 419(6903):207-214. doi: 10.1038/nature01090

    CrossRef Google Scholar

    [4] Clark P U, Pisias N G, Stocker T F, et al. The role of the thermohaline circulation in abrupt climate change[J]. Nature, 2002, 415(6874):863-869. doi: 10.1038/415863a

    CrossRef Google Scholar

    [5] Talley L D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports[J]. Oceanography, 2013, 26(1):80-97. doi: 10.5670/oceanog.2013.07

    CrossRef Google Scholar

    [6] Mantyla A W, Reid J L. On the origins of deep and bottom waters of the Indian Ocean[J]. Journal of Geophysical Research: Oceans, 1995, 100(C2):2417-2439. doi: 10.1029/94JC02564

    CrossRef Google Scholar

    [7] Johnson G C, Rudnick D L, Taft B A. Bottom water variability in the Samoa passage[J]. Journal of Marine Research, 1994, 52(2):177-196. doi: 10.1357/0022240943077118

    CrossRef Google Scholar

    [8] Schmiedl G, Leuschner D C. Oxygenation changes in the deep western Arabian Sea during the last 190, 000 years: Productivity versus deepwater circulation[J]. Paleoceanography, 2005, 20(2):PA2008.

    Google Scholar

    [9] Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: an overview[J]. Geological Society, London, Special Publications, 1991, 58(1):1-24. doi: 10.1144/GSL.SP.1991.058.01.01

    CrossRef Google Scholar

    [10] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1-2):12-32. doi: 10.1016/j.chemgeo.2006.02.012

    CrossRef Google Scholar

    [11] Pattan J N, Pearce N J G. Bottom water oxygenation history in southeastern Arabian Sea during the past 140ka: results from redox-sensitive elements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(3-4):396-405. doi: 10.1016/j.palaeo.2009.06.027

    CrossRef Google Scholar

    [12] Nambiar R, Bhushan R, Raj H. Paleoredox conditions of bottom water in the northern Indian Ocean since 39 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586:110766. doi: 10.1016/j.palaeo.2021.110766

    CrossRef Google Scholar

    [13] Amsler H E, Thöle L M, Stimac I, et al. Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced respired carbon storage since the last glacial inception[J]. Climate of the Past, 2022, 18(8):1797-1813. doi: 10.5194/cp-18-1797-2022

    CrossRef Google Scholar

    [14] Tachikawa K, Jeandel C, Roy-Barman M. A new approach to the Nd residence time in the ocean: the role of atmospheric inputs[J]. Earth and Planetary Science Letters, 1999, 170(4):433-446. doi: 10.1016/S0012-821X(99)00127-2

    CrossRef Google Scholar

    [15] Bender M L. Tracers in the sea[J]. BioScience, 1984, 34(7):452.

    Google Scholar

    [16] Albarède F, Goldstein S L. World map of Nd isotopes in sea-floor ferromanganese deposits[J]. Geology, 1992, 20(8):761-763. doi: 10.1130/0091-7613(1992)020<0761:WMONII>2.3.CO;2

    CrossRef Google Scholar

    [17] Bertram C J, Elderfield H. The geochemical balance of the rare earth elements and neodymium isotopes in the oceans[J]. Geochimica et Cosmochimica Acta, 1993, 57(9):1957-1986. doi: 10.1016/0016-7037(93)90087-D

    CrossRef Google Scholar

    [18] Dileep Kumar M, Li Y H. Spreading of water masses and regeneration of silica and 226Ra in the Indian Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1996, 43(1):83-110. doi: 10.1016/0967-0645(95)00084-4

    CrossRef Google Scholar

    [19] Piotrowski A M, Banakar V K, Scrivner A E, et al. Indian Ocean circulation and productivity during the last glacial cycle[J]. Earth and Planetary Science Letters, 2009, 285(1-2):179-189. doi: 10.1016/j.jpgl.2009.06.007

    CrossRef Google Scholar

    [20] Wilson D J, Piotrowski A M, Galy A, et al. A boundary exchange influence on deglacial neodymium isotope records from the deep western Indian Ocean[J]. Earth and Planetary Science Letters, 2012, 341-344:35-47. doi: 10.1016/j.jpgl.2012.06.009

    CrossRef Google Scholar

    [21] Lathika N, Rahaman W, Tarique M, et al. Deep water circulation in the Arabian Sea during the last glacial cycle: implications for paleo-redox condition, carbon sink and atmospheric CO2 variability[J]. Quaternary Science Reviews, 2021, 257:106853. doi: 10.1016/j.quascirev.2021.106853

    CrossRef Google Scholar

    [22] Singh S P, Singh S K, Goswami V, et al. Spatial distribution of dissolved neodymium and εNd in the Bay of Bengal: role of particulate matter and mixing of water masses[J]. Geochimica et Cosmochimica Acta, 2012, 94:38-56. doi: 10.1016/j.gca.2012.07.017

    CrossRef Google Scholar

    [23] Bang S, Huh Y, Khim B K, et al. Deep-water circulation over the last two glacial cycles reconstructed from authigenic neodymium isotopes in the equatorial Indian Ocean (Core HI1808-GPC04)[J]. Ocean Science Journal, 2022, 57(2):324-333. doi: 10.1007/s12601-021-00046-8

    CrossRef Google Scholar

    [24] Zhang H D, Luo Y M, Yu J M, et al. Indian Ocean sedimentary calcium carbonate distribution and its implications for the glacial deep ocean circulation[J]. Quaternary Science Reviews, 2022, 284:107490. doi: 10.1016/j.quascirev.2022.107490

    CrossRef Google Scholar

    [25] 余星, 韩喜球, 邱中炎, 等. 西北印度洋脊的厘定及其地质构造特征[J]. 地球科学, 2019, 44(2):626-639

    Google Scholar

    YU Xing, HAN Xiqiu, QIU Zhongyan, et al. Definition of northwest Indian ridge and its geologic and tectonic signatures[J]. Earth Science, 2019, 44(2):626-639.]

    Google Scholar

    [26] Gordon A L, Ma S B, Olson D B, et al. Advection and diffusion of Indonesian Throughflow water within the Indian Ocean South Equatorial Current[J]. Geophysical Research Letters, 1997, 24(21):2573-2576. doi: 10.1029/97GL01061

    CrossRef Google Scholar

    [27] You Y Z. Implications of the deep circulation and ventilation of the Indian Ocean on the renewal mechanism of North Atlantic Deep Water[J]. Journal of Geophysical Research: Oceans, 2000, 105(C10):23895-23926. doi: 10.1029/2000JC900105

    CrossRef Google Scholar

    [28] He Z T, Qiao S Q, Jin L N, et al. Clay mineralogy and geochemistry of surface sediments in the equatorial western Indian Ocean and implications for sediment sources and the Antarctic bottom water inputs[J]. Journal of Asian Earth Sciences, 2023, 254:105741. doi: 10.1016/j.jseaes.2023.105741

    CrossRef Google Scholar

    [29] Cai M J, Colin C, Xu Z K, et al. Climate and sea level forcing of terrigenous sediments input to the eastern Arabian Sea since the last glacial period[J]. Marine Geology, 2022, 450:106860.

    Google Scholar

    [30] Kumar A, Suresh K, Rahaman W. Geochemical characterization of modern aeolian dust over the Northeastern Arabian Sea: implication for dust transport in the Arabian Sea[J]. Science of the Total Environment, 2020, 729:138576.

    Google Scholar

    [31] Johnson G C, Warren B A, Olson D B. Flow of bottom water in the Somali Basin[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(6):637-652. doi: 10.1016/0198-0149(91)90003-X

    CrossRef Google Scholar

    [32] Ewing M, Eittreim S, Truchan M, et al. Sediment distribution in the Indian Ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1969, 16(3):231-248.

    Google Scholar

    [33] Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(20):3869-3878.

    Google Scholar

    [34] Algeo T J, Liu J S. A re-assessment of elemental proxies for paleoredox analysis[J]. Chemical Geology, 2020, 540:119549.

    Google Scholar

    [35] Li Y H, Schoonmaker J E. Chemical composition and mineralogy of marine sediments[J]. Treatise on Geochemistry, 2003, 7:1-35.

    Google Scholar

    [36] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation[J]. Chemical Geology, 2009, 268(3-4):211-225.

    Google Scholar

    [37] 何连花, 张辉, 刘季花, 等. MC-ICP-MS测定海洋沉积物中钕同位素的化学分离方法[J]. 矿产与地质, 2020, 34(5):1018-1022

    Google Scholar

    HE Lianhua, ZHANG Hui, LIU Jihua, et al. Chemical separation method for MC-ICP-MS determination of Nd isotopes in marine sediment[J]. Mineral Resources and Geology, 2020, 34(5):1018-1022.]

    Google Scholar

    [38] Tanaka T, Togashi S, Kamioka H, et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium[J]. Chemical Geology, 2000, 168(3-4):279-281.

    Google Scholar

    [39] Jacobsen S B, Wasserburg G J. Sm-Nd isotopic evolution of chondrites and achondrites, II[J]. Earth and Planetary Science Letters, 1984, 67(2):137-150.

    Google Scholar

    [40] Pahnke K, Goldstein S L, Hemming S R. Abrupt changes in Antarctic Intermediate Water circulation over the past 25, 000 years[J]. Nature Geoscience, 2008, 1(12):870-874.

    Google Scholar

    [41] 何州天. MIS 7期以来赤道西印度洋沉积物特征及其对物源和古环境的指示意义[D]. 自然资源部第一海洋研究所硕士学位论文, 2023

    Google Scholar

    HE Zhoutian. Characteristics of sediments in the equatorial western Indian Ocean since MIS 7 and implications for sediment sources and paleoenvironment[D]. Master Dissertation of the First Institute of Oceanography, MNR, 2023.]

    Google Scholar

    [42] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4):2000GC000109.

    Google Scholar

    [43] Boström K. Origin and fate of ferromanganoan active ridge sediments[M]//Hsü K J, Jenkyns H C. Pelagic Sediments: on Land and under the Sea. Oxford: Blackwell Scientific, 1974: 401-401.

    Google Scholar

    [44] Qiu Z Y, Fan W J, Han X Q, et al. Distribution, speciation and mobility of metals in sediments of the Tianxiu hydrothermal field, Carlsberg Ridge, Northwest Indian Ocean[J]. Journal of Marine Systems, 2023, 237:103826.

    Google Scholar

    [45] Qiu Z Y, Han X Q, Li M, et al. The temporal variability of hydrothermal activity of Wocan hydrothermal field, Carlsberg Ridge, northwest Indian Ocean[J]. Ore Geology Reviews, 2021, 132:103999.

    Google Scholar

    [46] Goswami V, Singh S K, Bhushan R, et al. Temporal variations in 87Sr/86Sr and ɛNd in sediments of the southeastern Arabian Sea: impact of monsoon and surface water circulation[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(1):Q01001.

    Google Scholar

    [47] Kohfeld K E, Harrison S P. DIRTMAP: the geological record of dust[J]. Earth-Science Reviews, 2001, 54(1-3):81-114.

    Google Scholar

    [48] Mahowald N M, Muhs D R, Levis S, et al. Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D10):D10202.

    Google Scholar

    [49] Halliday A N, Davidson J P, Holden P, et al. Metalliferous sediments and the scavenging residence time of Nd near hydrothermal vents[J]. Geophysical Research Letters, 1992, 19(8):761-764.

    Google Scholar

    [50] Lacan F, Jeandel C. Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and Rare Earth Element patterns[J]. Earth and Planetary Science Letters, 2001, 186(3-4):497-512.

    Google Scholar

    [51] Tachikawa K, Athias V, Jeandel C. Neodymium budget in the modern ocean and paleo-oceanographic implications[J]. Journal of Geophysical Research: Oceans, 2003, 108(C8):3254.

    Google Scholar

    [52] Rutberg R L, Hemming S R, Goldstein S L. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios[J]. Nature, 2000, 405(6789):935-938.

    Google Scholar

    [53] Johnson G C, Musgrave D L, Warren B A, et al. Flow of bottom and deep water in the Amirante Passage and Mascarene Basin[J]. Journal of Geophysical Research: Oceans, 1998, 103(C13):30973-30984.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(9) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint